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ABSTRACT

We analyse the potential of intensive exploitation to have caused evolutionary

changes in the age and length at maturation in North Sea plaice Pleuronectes platessa.

Such evolutionary change in the onset of maturation is expected given that fishing

mortality is more than four times higher than natural mortality. In order to disentangle

phenotypic plasticity from evolutionary change, we employ the probabilistic reaction-

norm approach. This technique allows us to estimate the probabilities of maturing at

each relevant age and size, and to disentangle the plasticity in age and size at

maturation that results from changes in growth rates from evolutionary changes in

maturation propensities themselves. This recently developed method is here applied to

females of 41 cohorts (1955-1995) of North Sea plaice. We focus on trends in fishing

mortality, in growth rates, and in the probabilities of maturing, and test the hypothesis

that the decrease in age and length at maturation is partly caused by fisheries-induced

adaptive change. We find that the reaction norm for age and length at maturation has

indeed significantly shifted towards younger age and smaller length. The reaction-

norm analysis suggests a picture in which short-term fluctuations originating from

plastic responses are superimposed on a persistent long-term trend resulting from

genetic responses.
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INTRODUCTION

Fishing is almost always selective and may therefore induce changes in exploited

populations (Law, 2000). This can occur in various ways and may lead to both

phenotypically plastic and genetic changes in the exploited population. Fishing may

decrease intraspecific competition by decreasing population sizes (Law, 2000), it may

directly or indirectly change food availability (Rijnsdorp and Van Leeuwen, 1996), or

it may cause evolutionary change by selecting for genotypes less affected by fishing

(Borisov, 1978; Law, 2000). Superimposed on the effects of fishing, other changes in

the physical and biotic environment occur, such as temperature fluctuations and

changes in food conditions, which may also influence the processes of growth and

maturation (Law, 2000). In many exploited stocks changes in age and size at

maturation have been attributed to high fishing pressures, e.g., in Pacific salmon

Oncorhynchus spp. (Ricker, 1981), North East Arctic cod Gadus morhua (Law and

Grey, 1989), North Sea cod Gadus morhua (Rowell, 1993), North Sea plaice

Pleuronectes platessa (Rijnsdorp, 1993a), American plaice Hippoglossoides

platessoides (Morgan and Colbourne, 1999), and grayling Thymallus thymallus

(Haugen and Vøllestad, 2001). It is, however, still unclear to which extent these

changes are due to phenotypic plasticity on the one hand or to evolutionary change on

the other. Disentangling phenotypically plastic and evolutionary changes in age and

size at maturation is a challenging task of great importance for management purposes.

Phenotypic changes are readily reversible by, for example, relaxing the exploitation

rate, while genetic changes are not (Law, 2000; Reznick, 1993). For the purpose of

our discussion here, we define phenotypic plasticity as a general term that covers all

types of environmentally induced phenotypic variation (Stearns and Koella, 1986).
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The age or size at which most species mature is not fixed, but is described by a

norm of reaction that is given by a well-defined curve in age and size space (Stearns

and Koella, 1986). In their definition of reaction norms, Stearns and Koella (1986)

assume that an organism matures once its growth trajectory hits this reaction norm

curve. The reaction norm thus characterizes, under the assumption that variation in

size-at-age reflects environmental variability, the phenotypic plasticity in maturation

the organism exhibits in response to growth conditions.

The combinations of ages and sizes at which maturation occurs strongly

influence an individual’s expected reproductive success. The resulting evolution of

the reaction norm for age and size at maturation is determined by environmental

conditions such as size-dependent mortality rates (Heino and Kaitala, 1999) and

resource availability (Siems and Sikes, 1998). Since fecundity and the viability of

eggs and larvae are often positively related to maternal size (Murawski et al., 2001),

there is a trade-off between current and future reproduction (Heino and Kaitala, 1999)

as well as a trade-off between reproduction and growth within a season (Reznick,

1983): allocation to reproduction within a given season will thus decrease growth rate

and future fecundity. In general, ecological settings with low survival and growth rate

among potentially reproducing individuals, favour high reproductive effort at early

ages (Hutchings, 1993; Reznick et al., 1990; Reznick et al., 1997). Therefore, removal

of large individuals from a population by selective fishing is expected to select for

genotypes with a lower age and size at maturation. Compared with the implications of

size-selective mortality rates, the implications of resource availability for life-history

characteristics are as yet less well understood.

In the North Sea plaice stock, the continued high levels of fishing mortality

and the selective removal of larger and adult fish (Rijnsdorp and Millner, 1996) are



Grift et al.: Trends in reaction norms for maturation in plaice 5

thus expected to be partially responsible for the significant decrease throughout the

20th century observed in the age and length at maturation. The age at which 50 % of

the females were mature (A50) has decreased by two years between the early (1904-

1911) and late (1960-1990) 20th century, whereas for age group 4 the length at which

50 % of the females were mature (L50) has decreased by 5.8 cm (16 %) in the same

period. Statistical analysis suggested that phenotypic plasticity could explain about

2.7 cm of this decrease (Rijnsdorp, 1993a). On that basis, Rijnsdorp (1993a) proposed

that the unaccounted remaining 3.1 cm reflect fisheries-induced evolution. This

proposition was supported by the finding that selection differentials calculated for this

stock showed that, given the current fishing mortality (Figure 1), a reduced length at

maturation would lead to increased fitness (Rijnsdorp, 1993c). If this interpretation of

an evolutionary change in age and length at maturation is correct, one must expect

that a further decrease in the age and length at maturation will have occurred within

the period 1960-1990 and potentially thereafter.

In this paper we follow up on the earlier work by disentangling phenotypic and

evolutionary changes in age and length at maturation in North Sea plaice. This

strategy allows for a refined test of the hypothesis that the observed decrease in age

and length at maturation is partly caused by fisheries-induced adaptive change. To

disentangle plasticity in the maturation process from evolution, Heino et al. (2002b)

introduced the probabilistic reaction-norm method to characterize the probability of

maturing given a certain age and size. In contrast both to observed ages and sizes at

maturation and to maturity ogives, probabilistic reaction norms are independent of

changes in growth and/or survival (Heino et al. 2002b; the method is further explained

in the Materials and Methods section), a feature that is of crucial importance when

disentangling plastic and genetic responses. Up to date, the probabilistic reaction-
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norm method has been applied to Northeast Arctic cod (Heino et al., 2002b) and

Georges Bank cod (Barot et al., 2002). Here we apply the new method to females of

41 cohorts (1955-1995) of North Sea plaice and analyse trends in growth rates and

age and length at maturation.

MATERIALS AND METHODS

North Sea plaice

Plaice has been a main target species of the mixed demersal fisheries in the North Sea

since the start of the industrial revolution in the second half of the 19th century

(Rijnsdorp and Millner, 1996). In 2000, landings of plaice by Dutch vessels amounted

to roughly 50,000 tons, representing an economic value of about €100,000,000. As a

result of intensive exploitation, mortality rates imposed by fishing have been high

(Figure 1), exceeding the natural mortality rate by a factor of two to four. Moreover,

size-selective fishing mortality changed from a dome-shaped curve in the 1930s to a

flatter curve from the 1950s onwards (Figure 1; Rijnsdorp & Millner 1996), probably

due to a decrease in the proportion of untrawlable areas following the introduction of

heavier gear. Superimposed on changes in fishing mortality, water temperature and

food availability increased, leading to accelerated growth of plaice smaller than 30 cm

(Rijnsdorp and Van Leeuwen, 1992).

Data collection

Data on female plaice were collected in the Dutch market-sampling programme that

has been carried out since 1957. Since the Dutch fleet catches on average 43 % of the

total landings of plaice from the North Sea (from 1993-2000; ICES 2002), and covers

the major distribution area of plaice in the southern and central North Sea (Rijnsdorp
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et al., 1998), these data are considered representative of the entire population and are

reliable for analysing maturation of female plaice (Rijnsdorp, 1989). Collection of

market samples is stratified according to geographical areas and to the four market-

size categories used in the Netherlands (27-34 cm, 34-38 cm, 38-41 cm, and >41 cm).

Of each area and each category, 20 plaice individuals were sampled at random on a

monthly basis. In addition to the date of landing and the position of the catch, length

(mm), weight (g), sex, maturity stage (1-7), and age (years, January 1 as birthday)

were determined. Complementing the market samples, otoliths were collected through

research surveys.

The age of fish was determined from the pattern of growth zones in the

otoliths under the standard assumption that each zone corresponds to one year. A

subset of otoliths was used to calculate yearly length increments of individual

females. Yearly increments were estimated from the back-calculated length-at-age.

The length-at-age was estimated by relating the proportion of the distance between

growth zones relative to the total size of the otolith, to the length of the fish when it

was caught. Evidence for the validity of the methods for ageing and for estimating

length increments is given by Rijnsdorp et al. (Rijnsdorp et al., 1990), including a

discussion on their precision and accuracy.

Data selection

Maturity ogives describe the fraction of mature fish of a particular age and/or size

class in a given population. To assess these ogives for North Sea plaice, a selection

from the market-sampling data was made. Only data of cohorts from 1955 and

onwards were used, since this cohort was the first that occurred in the sampling

programme from age 2 onwards. Landings were sampled throughout the year but in
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this study only data collected in the first quarter of each year were selected, since only

in this period maturity stages of female plaice can be identified well. Sample locations

were restricted to the southeastern North Sea (51°-56°N and east of 2°E, and 51°-

53.5°N and 1°-2°E). Data of females of ages 2-6 of 0-60 cm total length were

selected, since younger female plaice are not being caught commercially and since at

age 7 all females were mature. After these selections, data on the length, age, and

maturity status of 18,996 females were available (Table 1). For the analysis of yearly

length increments, all data available from the back-calculations were used. In total,

back-calculated lengths of 2429 females were used (Table 1). The otoliths considered

all originated from the southeastern North Sea.

Analysis of age and length at maturity

The fraction of mature fish of a particular age or length (maturity ogives) were

modelled using logistic regression, with the proportion mature as the dependent

variable and cohort and age (Equation 1) or cohort and length (Equation 2) as

independent variables. The linear predictor was linked to the fraction of mature fish

(o) using a logit link function, logit(o)=ln [o/(1-o)]:

logit(o)  Cohort + Age + Cohort  Age   , (1)

logit(o)  Cohort + Length + Cohort  Length   , (2)

where age and length are variates and cohort is a factor. The descriptive quantities A50

and L50 refer to the age and length, respectively, at which the estimated fraction of

mature fish reaches 50 %. To investigate trends in A50 and L50, similar models were

used in which cohort was treated as a variate.
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The reaction-norm method

A reaction norm is the full set of phenotypes that a given genotype will express in

interaction with the full set of environments in which it can survive (Stearns, 1992).

Specifically, the reaction norm for age and size at maturation describes how

variability in growth conditions, reflected by variations in size-at-age, influences

maturation. The probabilistic reaction norm for maturation is defined as the

probability that fish mature at a certain age and size during a given time interval

(Heino et al., 2002b). This method has two major benefits. First, it treats the

maturation process as a probabilistic process, whereas previous theoretical studies

simplified the maturation process as being deterministic. If maturation were

deterministic, maturation would occur with certainty once juvenile growth trajectories

intersect the reaction norm for age and size at maturation. However, since maturation

is a relatively complex physiological process, it is also influenced by factors such as

resource availability and body reserves, which, in turn, are affected by the local

environmental and individual experiences. Because of this individual-level variation

maturation must usually be considered probabilistically: at one and the same age and

size, some fish may mature while others do not. A second important advantage of the

method is that it cleanly separates changes in growth and survival from a description

of the maturation process; previous empirical studies could not conclusively

disentangle these aspects (Rijnsdorp, 1993a; Rochet et al., 2000; Rowell, 1993).

Maturity ogives do not distinguish between first-time spawners and repeat

spawners and are influenced by maturation probabilities but also by mortality rates

and growth rates (Heino et al., 2002a). This is because the proportion of mature fish is

affected by fish that have newly matured (maturation), losses of fish that had

previously matured (mortality) and by transitions of fish from one size class to
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another (growth). By contrast, the maturation reaction norm focuses on the maturation

process itself and thus is not affected by mortality and growth. A fish can only mature

once, so that life after maturation does not influence the maturation reaction norm.

Moreover, since the maturation reaction norm describes maturation probabilities

conditional on individuals attaining a certain age and size while not yet being mature,

any changes in the probability of attaining a certain age and size leave the reaction

norm unaffected (Heino et al., 2002a).

To estimate the probability to mature, age and size distributions of immature

and maturing fish are required (Heino et al., 2002b). For some species (such as cod)

first-time and repeat spawners can be distinguished based on differential growth zones

in the otoliths. For plaice, however, such a distinction is infeasible and the probability

to mature at a certain age and size needs to be estimated with a method based on

ogives and growth rates. This method has been developed by Barot et al. (2002) and

will be applied here. It is based on the fact that the probability p(a, s) of maturing at a

certain age a and size s can be expressed through two values, o(a, s) and o(a-1, s- s),

taken from the maturity ogive o:

p(a, s) = [o(a,s) - o(a-1, s- s)] / [1 - o(a-1, s- s)]   , (3)

where a-1 is the age previous to the one for which we estimate the maturation

probability and s- s is the length at that previous age, s being the length gained

between age a-1 and age a. The rationale for Equation (3) is that the probability to

mature is given by the number of fish that have matured divided by the number of fish

that could have matured (Barot et al., 2002). Notice that p is here defined as a

backward-looking or retrospective probability: it measures the likelihood of

individuals at a given age to have matured with the previous year of their lives. (Using

an alternative assignment convention, one could define p at a given age as the
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forward-looking probability of maturing within the next year after reaching the

considered age.)

The simplicity of Equation (3) relies on two important assumptions: (1) mature

and immature individuals of a certain age and size have similar growth rates and (2)

they have similar mortality rates. Of course, these assumptions are not expected to be

fulfilled accurately in most natural populations. However, Barot et al. (2002) tested

the sensitivity of the estimation method to these assumptions and thereby confirmed

that the method is robust to their relaxation. More complicated versions of Equation

(3) that do not depend on the two simplifying assumptions can be derived (Barot et

al., 2002), but the resultant marginal gain in accuracy does not seem to warrant the

substantial increase in complexity. The estimation method based on Equation (3) thus

only requires ogives and growth rates for each cohort as a basis for estimating the

probabilistic maturation reaction norm.

Estimation of probabilistic maturation reaction norms

Estimation of the maturation probability for each cohort and age group comprised of

three steps: (1) estimation of ogives, (2) estimation of growth rates, and (3) estimation

of the probability to mature. This procedure is illustrated in Figure 2. Two further

steps then consisted of: (4) estimation of confidence limits around the contours of

reaction norms using a bootstrap method, and (5) testing the significance of trends in

the probability of maturing. Below, we describe all five steps in more detail.

(1) Estimation of ogives. Since the maturity status is a binary response variable

(individuals are either mature or immature) the ogive was estimated using logistic

regression. We investigated whether the model was linear in the logit scale for the

continuous variables using the method of fractional polynomials (Royston and
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Altman, 1994). Inclusion of non-linear terms increased the fraction of explained

deviance by only 0.007; therefore, we only used linear terms in the models. The

proportion of mature fish was described as a function of cohort, age, and length. The

linear predictor was linked to the fraction of mature fish (o) through a logit link

function. This predictor was modelled as follows:

logit(o)  Cohort + Age + Length + Cohort  Age + Cohort  Length + Age  Length   , (4)

where cohort is a factor and age and length are continuous variables. The interaction

between age and length allows for the length at which plaice mature to vary with age.

(2) Estimation of length increments. For each cohort and age, the mean length

was determined from the back-calculated lengths based on the otolith measurements.

The yearly length increments ( s) were then estimated as the differences in mean

length between two consecutive ages of a cohort. We assumed that length increments

were similar for all individuals within an age group of a cohort.

(3) Estimation of the probability of maturing. With the parameters obtained

from Equation (4) and with the length increments obtained from the otolith-based

back-calculations, the probability of maturing for each cohort, age group, and length

could be estimated by Equation (3). Reaction norm midpoints (LP50, the length at

which the probability of maturing is 50 %) were calculated by determining the lengths

that lead to probabilities of maturing of 50 %.

(4) Estimation of confidence limits. Since estimates of the probabilities for

maturing are based on several successive steps, the direct calculation of confidence

limits for reaction norms is not possible (Barot et al., 2002); a bootstrap method was

used instead (Manly, 1997). For this method, a new dataset was created by randomly

sampling original data (observations of individual fish) with replacement. The data

sampling was stratified by age and cohort. With the re-sampled data the reaction norm
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midpoints were calculated by the procedure described above, steps 1-3. The dataset

was re-sampled 1000 times and the confidence limits of the reaction norm midpoints

were estimated as the 2.5 and 97.5 percentiles of the distribution of the 1000

midpoints of each age and cohort (Manly, 1997).

(5) Analysis of trends in the probability of maturing. For each age group, the

effect of cohort on the midpoints of the reaction norm (LP50) was analysed using a

linear model with cohort as a variate:

LP50  Cohort   . (5)

In this model, the estimated reaction norm midpoints were weighted with the inverse

of the variance of each midpoint. The variance estimates were obtained from the

bootstrapping method.

Effect of temperature on maturation reaction norms

The effect of water temperature in the years preceding maturation on the probabilistic

maturation reaction norms was analysed using a logistic model. In this model, the

probability p of maturing, estimated in steps 1-3, was modelled by length, cohort, and

water temperature. Yearly average temperatures for the second and third quarter were

calculated from daily readings at a fixed time of day at Den Helder after correction for

the tidal phase. Two temperatures were included in this model, describing the average

water temperatures two and three years prior to the year for which the probability of

maturation was calculated. Since the temperatures showed a significant trend over the

study period (an average increase of 0.02°C per year) this trend was removed from the

temperature data. For each age group, the effect of length, cohort, and the two

resulting temperature residuals, denoted RT-2 and RT-3, was then analysed:

logit(p)  Length + Cohort + RT-2 + RT-3   . (6)
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The temperature residual RT-1 was not included in the model since previous analysis

(Rijnsdorp, 1993b) had shown that the temperature in the very year in which

maturation takes place is not expected to influence the probability at which that

maturation process occurs.

RESULTS

Growth rates at ages 1, 2, and 3 significantly increased in 1955-1995 whereas growth

rates in age groups 5 and 6 decreased, although only the decrease for age 5 was

statistically significant (Figure 3). No trend in growth rates at age 4 was observed

(p=0.25). The increase in growth rates was on average 0.03-0.04 cm year-2, whereas

the decrease at age 5 was 0.01 cm year-2. Although growth rates at age 2 increased

over the whole period on average, these rates showed a clear temporal structure, with

dips around 1965 and 1985 and peaks around 1974 and 1995 (Figure 3).

Both age and length at 50 % maturity showed a significant decline, although

this trend was stronger for A50 than for L50 (Figure 4). On average, A50 decreased from

4.1 years in 1955 to 2.9 years in 1995, whereas L50 decreased from 32.0 cm to 30.9

cm. Both showed a similar temporal structure with peaks around 1966 and 1985 and a

dip around 1974.

We found that the maturation reaction norms of plaice have negative slopes

such that the length at which plaice attains a certain probability to mature decreases

with age: at the same length, old females have a higher probability to mature than

young ones (Figure 5). The probabilistic reaction norms are rather narrow: the

average distance between LP25 and LP75 varies between 5.4 and 9.1 cm across age

groups. The width of the reaction norms decreases slightly with age. Over the whole

period and for all ages, the length at which fish had a certain probability to mature
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decreased, whereas the average length-at-age increased (Figure 5). Probabilities to

mature at a given length thus strongly increased for all ages. For example, from 1955-

1964 the length LP50 at which the probability to mature at age 4 reaches 50 % (34.4

cm) lies well above the mean length at that age (29.7 cm). By contrast, thirty years

later, from 1985-1994, LP50 at age 4 (30.1 cm) had come to lie under the mean length

(32.7 cm).

The increased probabilities to mature at a given length are clearly reflected in

the significant (p<0.005) downward trend in LP50 from 1955-1995 for all ages (Figure

6); LP50 decreased about 4 cm at ages 3, 4, and 5, and about 5 cm at ages 2 and 6.

Apart from the downward trend, LP50 showed considerable variation among cohorts.

This variation was largest at age 2. No clear temporal structure was visible, except

perhaps at age 3, at which a small peak in LP50 occurred around 1985 (Figure 6).

The variation of reaction norm midpoints among years could to a large extent

be explained by the water temperature in previous years (Figure 7). For all ages, the

probability of maturing at a given length increased significantly with an increase of

temperature two and three years earlier. At age 2, for example, LP50 decreased by 2.2

cm when the water temperature in the second and third quarters two years earlier was

1 °C higher (Figure 7).

DISCUSSION

The significant downward trend in probabilistic reaction norms over cohorts of 1955-

1995 strongly supports the hypothesis that fisheries-induced evolution has changed

the maturation process in North Sea plaice towards maturation at earlier age and

length. In addition to the observed change in the reaction norm, growth has

accelerated during the study period. Through the phenotypic plasticity described by
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the maturation reaction norm, the increased growth rates have led to an even earlier

age at maturation (Figure 8). This corroborates previous conclusions by Rijnsdorp

(1993a) based on changes in maturity observed between the early and late 20th

century.

The probabilistic reaction-norm approach suggests a picture in which short-

term fluctuations originating from plastic responses are superimposed on long-term

trends resulting from genetic responses. The age at 50 % maturity (A50) exhibits,

beyond the significant downward trend, a temporal fine structure that rather faithfully

mirrors temporal changes in the growth rates at ages 1, 2, and 3 (Figure 9). By

contrast, the reaction norm midpoints (LP50) only show a downward trend, together

with some short-term fluctuations. These fluctuations were partly explained by short-

term variations in water temperature (high water temperatures are likely to favour

earlier maturation either directly, via physiological effects of temperature, or

indirectly, by indicating favourable environmental conditions). These findings are in

line with the results of Bromley (2000) who suggests that the higher water

temperature in the southern North Sea causes maturation at earlier ages and smaller

lengths of plaice than in the northern North Sea. Our result that water temperature

influences the probability to mature two to three years later corroborates the results of

Rijnsdorp (1993a) that the maturation process of plaice takes three years: high growth

rates three and two years prior to sampling were associated with higher fractions of

mature plaice (Rijnsdorp, 1993b).

It remains unclear to which extent the increase of growth rates is due to

phenotypic plasticity or a result of evolution, but the actual cause has no implications

for our analysis and conclusions: probabilistic reaction norms are not sensitive to

long-term changes in growth rates. Although growth rates can be partly genotypically
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determined (Conover and Munch, 2002; Imsland and Jonassen, 2001), it is unlikely

that the short-term (decadal) fluctuations in growth rates we observed are a result of

evolution (Rijnsdorp, 1993a). Yet, in addition to such short-term variation in growth

rates, the intensive size-selective fishing could well have induced a longer-term

evolutionary process selecting for lower growth rates (Conover and Munch, 2002;

Kirkpatrick, 1993; Ricker, 1981). Phenotypically, however, observed growth rates of

plaice up to age 3 have increased, so that selection for low growth rates would have to

have been over-compensated by much increased food abundance. Since the

probabilistic reaction-norm method largely filters changes in growth rate from the

process of maturation, such effects would not influence our results. Only when

pleiotropy occurs (i.e., when genes coding for maturation partially coincide with those

coding for growth) would evolving growth mask evolving maturation.

Despite the relatively short period over which we could investigate the

potential evolutionary response of plaice to fishing, there is no basis for assuming that

evolution of life-history characteristics could not be detected within such a period. If

we consider a generation time of 5-6 years, the 41 cohorts studied comprise 6 to 8

generations. Since the heritability of various life-history traits in fish are estimated at

around 0.2-0.3, such a number of generations would indeed permit a significant

response of these traits to selection (Roff, 1991), especially in view of the high

selection differential imposed by fishing. Experiments in guppies (Poecilia reticulata)

showed that a change in the pattern and rate of size-selective mortality caused major

evolution of life-history characteristics in as few as 18 generations (Reznick et al.,

1990; Reznick et al., 1997). In Atlantic silverside (Menidia menidia), the growth rate

of the study population evolved within just four generations in an experimental set-up

in which fish were harvested size-selectively (Conover and Munch, 2002). The
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selection differential for the length at maturation of female plaice was estimated at 2.1

cm, and the fitness profiles indicate that a further decrease in the length at maturation

would still increase individual fitness (Rijnsdorp, 1993c).

Our results are probably influenced by violations of the two assumptions made

to estimate the reaction norms (similar growth rates and mortality rates of mature and

immature fish of the same age), but we believe that the resulting biases do not

influence the interpretation of the results: as Barot et al. (2002) have shown, the

method applied here is very robust against violations of the assumptions. In plaice,

growth rates of mature and immature females differ significantly (Rijnsdorp, 1993b),

but it is difficult to estimate differences in mortality rates of mature and immature

females. Since mature females remain on the spawning grounds for longer periods,

where fishing is intense, they probably face higher mortality. The assumption that

growth rate is length-independent is difficult to falsify since actual growth within an

age group of a cohort is not completely dependent on fish length, but is also

determined by the growth history of the fish and the moment of maturation

(Rijnsdorp, 1993b). The pooling of maturity data over geographical regions may have

introduced slight errors in the estimation of ogives, since age and length at maturation

of plaice show a slight longitudinal trend from south to north (Bromley, 2000;

Rijnsdorp, 1989). We think, however, that these regional differences have no effect on

our conclusion regarding evolutionary change in the stock, since the plaice stock

within our study area can be considered as being genetically homegeneous (Hoarau et

al., 2002).

The fact that we have revealed strong indications for fisheries-induced

evolution in North Sea plaice may have implications for the sustainable exploitation

of and potential yield from this stock (Browman, 2000; Pauly et al., 2002). First,
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fisheries-induced evolution is likely to decrease potential yield (Stokes and Law,

2000), and, second, finding management strategies for reversing the decreasing trend

in age and length at maturation will be exceedingly difficult. As mentioned earlier,

genetic changes are not reversible over the short term (Reznick, 1993) since they

occur on the time scale of generations. Moreover, at low fishing pressures, fitness

profiles are almost flat, indicating a weak selection for later maturation (Law, 2000;

Law and Grey, 1989; Rowell, 1993). This pronounced asymmetry of selection

pressures is of particular concern: mitigating measures, such as a decrease in fishing

effort or an alteration of the exploitation curve, would probably only have effects over

the long term. Moreover, when fishing mortality is suddenly relaxed, the surviving

genotypes in the stock may be those that exhibit reduced fitness under such a new

situation (Conover, 2000). In general, earlier maturation leads to retarded growth rates

and could thus imply a lower biomass per age group. Spawning stock biomass may,

however, increase, since more fish are mature. However, an increased spawning stock

biomass does not necessarily lead to higher recruitment, since the effective spawning

potential of a stock depends on its demographic composition (Murawski et al., 2001):

when fecundity or viability of eggs and larvae are positively correlated with maternal

size, earlier-spawning females contribute less to reproduction.

Since our results clearly indicate the presence of fishery-induced evolutionary

change in North Sea plaice, the resulting long-term implications for the potential yield

of this stock deserve careful evaluation. The management of North Sea plaice should

not remain unaffected.
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Tables

Table 1. Numbers of female plaice of cohorts 1955-1995 of which data were used in the

analysis.

Length, age and maturity data Back-calculated

lengths

Total Age 2 Age 3 Age 4 Age 5 Age 6 Total

Total number 18996 457 4288 4956 4795 4500 2429

Average per cohort 463 11 105 121 117 110 59

Minimum per cohort 45 0 1 6 4 7 4

Maximum per cohort 1479 94 488 441 417 447 257
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Table 2. Results of logistic regression for the maturity ogives (fraction of mature fish) as a

function of length, age and cohort, based on 18,996 observations for cohorts 1955-1995, ages

2-6 (Equation 4).

Source Deviance R2

(cumulative)

d.f. χ2 P

Intercept 23111

Length 14105 0.39 1 9006 <0.0001

Age 13772 0.40 1 332.6 <0.0001

Cohort 13257 0.43 40 515.6 <0.0001

Length x age 13213 0.43 1 44.2 <0.0001

Length x cohort 13028 0.44 40 185.0 <0.0001

Age x cohort 12883 0.44 40 144.3 <0.0001
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Figure legends

Figure 1. Trends in fishing mortality in North Sea plaice (averaged over ages 2-10, panel a)

and in the age-specific exploitation pattern (averaged over intervals of 10 years, panel b).

Data from ICES (2002). For comparison, the natural mortality rate of North Sea plaice is

estimated at 0.1 yr-1.

Figure 2. Illustration of how the probability of maturing is calculated. For a given age a, and

based on the observed length-dependent fraction of mature fish (open circles) the maturity

ogive (thin continuous curve) is estimated by logistic regression of the fraction of mature fish

on length s. With the parameters obtained from this regression, the fraction of mature fish in

the preceding year (i.e., at age a-1 and size s- s) is estimated (thin dashed curve). From these

two fractions, the length-dependent probability of maturing (thick curve) is obtained through

Equation (3). The length LP50 at which this probability reaches 50 % is also shown (dotted

lines). Data of cohort 1970, age 4.

Figure 3. Trends in growth rates (lines) of ages 1, 2, 3, and 5. For these four ages the slopes

of the regression lines were significantly different from 0 (linear model with cohort as a

variate and age as a factor, including interaction between cohort and age; p<0.005; R2=0.48;

11 d.f.; 12,725 observations). For each age and cohort, open circles and error bars represent

arithmetic means and standard errors of the growth rate. All data originate from the annual

length increments of individual fish inferred from otolith measurements.

Figure 4. Trends in the age (A50) and length (L50) at which 50 % of fish are mature in each

cohort. Data from logistic models with cohort either as a factor (open and filled circles;

R2=0.34 and 0.42 for age and length at maturation, respectively) or as a variate (dashed and
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continuous lines; R2=0.30 and 0.40, respectively). In both cases, the decline of A50 and L50

with time (cohort) is significant (p<0.0001).

Figure 5. Maturation reaction norms and growth curves. The lengths at which the probability

of maturing reaches 10, 50, and 90 % (LP10, LP50, and LP90) are shown as continuous curves.

Distributions of growth trajectories are depicted in terms of arithmetic mean length-at-age

together with 10 and 90 % percentiles (Length, p10, and p90). All values are averages over 10-

year periods.

Figure 6. Reaction norm midpoints LP50 (filled circles) and 95 % confidence limits (error

bars) for ages 2-6 of all cohorts. Trends in midpoints from the linear model in Equation (5)

are shown by thick continuous lines. Notice that the scales of vertical axes vary with age.

Figure 7. Effect of variation in water temperature on reaction norm midpoints. The lines

illustrate the effect of temperature (over the observed range of temperature residuals) on the

change in the reaction norm midpoint LP50. Data for cohort 1990.

Figure 8. Reaction norm midpoints and growth curves for the cohorts of 1960 and 1990.

From 1960 to 1990, the reaction norm has shifted downwards, while size-at-age has

increased. For the cohort of 1990, growth curves thus hit the reaction norm at a lower age and

a smaller length, leading to earlier maturation at smaller length. The graph illustrates that an

increase in growth rate affects the age and length at maturation, but not the maturation

reaction norm.
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Figure 9. Trends in the North Sea plaice stock from 1955 to 1995. (a) Maturation reaction

norm midpoints LP50 for three age groups. (b) Length L50 and age A50 at 50 % maturity. (c)

Growth rates for five age groups.
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