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ABSTRACT 

Current measurements along a section between Norway and Bear Island and results from a 
three-dimensional numerical model are presented. The results show that the water exchange 
between the Nordic Seas and the Barents Sea is highly variable on time scales of a few days. 
The general picture is dominated by frequent and large fluctuations in the current velocities, 
and an almost complete reversal of the current through parts the section may occur during 1-2 
days. 

The structure of the current shows substantial and complex variations. The flow may occur in 
distinct, relatively narrow (50-100 km) cores of inflow and outflow, or in wider (150-200 km) 
areas of inflow and outflow. Due to the vertical homogeneity of the currents, the variability 
are expected to be a result of the variability in the sea surface elevation. The variability in the 
sea-level is dominated by rapid changing (in both time and space) atmospheric conditions 
(wind and pressure). 

Estimates of volume transports between 71~ and 73°45'N give daily mean flux.es between 16 
Sv into and 13 Sv out of the Barents Sea. During two subsequent days the absolute volume 
flux may change by almost 10 Sv. 



Introduction 

The main inflow of Atlantic water (A W) to the Barents Sea takes place through the Barents 

Sea Opening (BSO) in the western part of the ocean (Figure 1). The current structure across 

the section as deduced from the hydrography indicate a rather stable inflow of A W in the 

southern part of the section and outflow further north. TIlls circulation scheme was confinned 

by time series from a 2-month current measurement programme presented by Blindheim 

(1989). However, more recent publications such as Haugan (1999), who analysed data from 

vessel mounted Acoustic Doppler Current Profiler (ADCP), fOlmd the inflow to take place in 

two cores with a return flow between. Ingvaldsen et al. (1999) analysed a i-year time series 

from an array of moorings across the BSO with emphasis on describing the monthly to 

seasonal variability. Their results showed large fluctuations in the inflow, both in time and 

space, and suggested that the flow through the section may occur as a wide Atlantic 1nf]ow, as 

an outflow all the way south to 72~, or as inflow and outflow in nearby cells. 

The mean current across the BSO is dominated by density driven currents and the remotely 

forced North Atlantic Current (NAC). Superposed this mean field is barotropic currents 

forced by sea-level changes and currents forced by the local atmospheric wind field, as well 

as several other processes. The variability in the Atlantic inflow may be considerable (Loeng 

et al., 1997; Haugan, 1999; Ingvaldsen et al., 1999). On monthly basis the transport trough the 

BSO fluctuates over a range of almost 10 Sv (1 Sv=106 m3s·1)(Ingvaldsen et al., 1999). The 

inflow is highly variable on daily time scales (Haugan, 1999), and the variability on time 

scales from day to year is clearly linked to the atmospheric field (Loeng et al., 1997). 

Although the net effect of the atmospheric forcing on the transport is modest, fluctuations due 

to the local wind have shown to be of the same magnitude as the mean transport (Adlandsvik 

and Loeng, 1991). Variability in the barotropic currents forced by sea-level are also expected 

to be important on short time scales. McClimans et al. (1999) found current fluctuations in 

the NAC on a 5 day time scale to be correlated to within 15% of the coastal sea-level 

fluctuations 300 km away. However, the relation failed at higher time resolutions due to 

(among other things) atmospheric variability. 

This paper presents a 16-month time series from an array of moorings across the BSO and 

results from a three-dimensional numerical model. Parts of this material has been presented in 
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Figure 1. Map ofthe Barents Sea, indicating the positions of the current meter moorings 

Ingvaldsen et al. (1999), but then with focus towards describing the monthly to seasonal 

variability. This study aims at giving a brief description of the short time variability, that is 

variability on daily to fortnightly time scales, and to present a hypothesis con.sidering the 

physical phenomena which controls the variability. 

Material and methods 

The data material consists of current measurements from 5 moorings with all together 19 

Aanderaa current meters RCM7 (Aanderaa Instrument, 1987) across the BSO in the period 

August 97 to December 1998 (Table 1). Data were recorded every 20 minutes, but were 

decimated to I-hour sampled series. To fill in the gaps in the time series (se Table 1) simple 

linear interpolation of the velocities from the instrument above and/or below Was performed. 

This should be an adequate method since the velocity are predominantly ~~otropic but may 

have strong lateral velocity-gradients. The data were lowpass filtered using an order 4 

Butterworth filter (Roberts and Roberts~ 1978). 

The volume flux was estimated by dividing the section between 71 0 15'N and 73°45'N into 

rectangles, each current meter assigned a rectangle surrounding it. The transport within each 

rectangle was estimated from the east-west current component (i.e. the cl.l.t'!ent component 

normal to the section). The inflowing Coastal Current along the Norwegian coast and the 
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currents on the slope of the Svalbard Bank are not included in the transport calculations, as no 

current measurements exists from these areas. 

Numerical simulations of currents to be compared with the observations were performed with 

NORWECOM (Skogen and S0iland, 1998). NORWECOM is a 3D, primitive equation, 

sigma-coordinate coastal ocean model based on the Princeton Ocean Model (Blurnberg and 

Mellor, 1987). The model domain covers the Nordic Seas, the Barents Sea and parts of the 

Arctic Ocean, and is discretized on a 20 km horizontal polar stereographic grid. In the 

vertical, 23 sigma layers are used, with high resolution in the Ekrnan layer to avoid aliasing 

(Asplin, 1999). The model forcing includes initial and boundary conditions from The 

Norwegian Meteorological Institute (DNMI)-Institute of Marine Research (IMR) diagnostic 

climatology (Engedahl, et al., 1998), realistic meteorological forcing from the hindcast 

archive of DNMI (Eide et aI., 1985), monthly mean river runoff and tidal forcing. The model 

has been validated for the Nordic and Barents Sea (Asplin et al., 1998). 

Mooring Location Depth of Bottom Observation period 
instrument depth 

1 71°31.0'N,19°46.2'E 50m 227 m 28/09/97 -31112198 
125m 28/09/97-05/03/98 and 28/08/98-31/12/98 
212m 28/09/97 -31/ 12198 

2 71 058.9'N,19"37.5'E 50m 309 m 22/08/97-31/12198 
125 m --""-
225 m 22/08/97·04/03/98 and 28/08/98-31/12198 
294 m -""-

3 72°30. TN, 19"33.2'E 50m 388 m 22/08/97 ·28/08/98 
125m -"-
225 m 22/08197-31112198 
373 m -"-

4 72v59.7'N, 19Q 33.0' E 50m 419m 22/08/97-31/12198 
125 m -"--

! " , 
225 m 22/08/97 -28/08198 
400 m 22108/97 -11/09/97 and 05/03198-28/08/98 

5 73°29.9'N, 19°19.4'E 50 III 480m 22/08/97-16/10/97and 05/03/98-31/12/98 
125 m 22/08/97-31/12198 
225 m -"-
465 III -"---

Table 1. Details of t~e cnrrent meter moorings. 
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Results 

The current components nonnal to the section between Bear Island and Norway reveal large 

short time fluctuations in both current speed and lateral structure (e.g. in January 1998 as 

shown in Figs. 2 and 3). A complete current reversal may take place, at least in parts of the 

section, within a few days (e.g. Figs. 2 and 3 at the deepest part of the channel in January 25-

27). The flow may occur as two distinct, narrow (50-70 km), cores of inflow and outflow, or 

in a medium wide (-100 km) inflow core and with outflow to the north. There may also be a 

wider outflow or inflow covering and area of width 150-200 km. The flow seems to adopt 

certain different structures, and there may be a shift between these structures within days. The 

consistence between the observations and the numerical model is mostly good As already 

shown in Asplin et al. (1998) the model inclines to underestimate the outflow. 

To further illustrate current fluctuations, the nonnal component at 225 m depth are plotted 

against time in Figs. 4 and 5. As the currents in the BSO by several authors (e.g. Blindheim, 

1989; Haugan, 1999; Ingvaldsen et al., 1999) have been shown to be predominantly 

barotropic, the currents at this depth are representative for the water column. A thorough 

examination show that both the observations and the model indicate shifts of the flow 

between a structure with two or more relatively narrow inflow cores with return flow between 

them (cell-structure), a structure with one broader inflow core, or a structure with inflow or 

outflow over a wider area. The cores of inflow and outflow seem to be in relatively fixed 

positions (although with some discrepancy between the observations and the model). When 

the structure of two inflow cores are present, the time series generally imply one core located 

between 71 CW and 72~ and the other at approximately 73~. The model results imply that 

the southern cores are wider than the northern core, although this is not confIrmed by the 

current measurements. In the situation with one broader inflow core, this is typically located 

between 72°30'N and 73~. Both the observations and the model show that strong inflow may 

take place as far north as 73°30'N. 

The sea surface elevation from the numerical simulations (Fig.6) reveal high variability on the 

same time scales as the currents. Moreover, a thorough comparison with the current (Figs. 4 

and 5) indicates a relation between high net inflow across the section and high sea surface 

elevation in the southern parts of the section. 
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Figure 2. Vertical sections of dally mean currents (mls) 
across the BSO as observed with the current meters. The 
positions of the instruments are indicated by •• 
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Figure 3. Vertical sections of daily mean currents (m/s) 
across the BSO as obtained from the numerical model. 
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Figure 4. Time series of daily mean currents 
(m/s) at 225 m depth across the BSO as 
observed with the current meters. 
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Figure 5. Time series of daily mean curren ts 
(m/s) at 225 m depth across the BSO as 
obtained by the numerical model 
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Figure 6. Time series of daily mean sea-level (m) 
across the BSO as obtained by the numerical 
model. 



The daily mean volume transport is fluctuating between 16 Sv into and 13 Sv out of the 

Barents Sea (Fig.7). During two subsequent days the absolute volume flux may change by 

almost 10 Sv. Although this is not shown, a preliminary time series analysis of the transports 

reveal short time fluctuations on time scales of 55, 64 and 83 hours, 7 and 14 days. 

High variability in time and space are also evident in the atmospheric wind field (Fig. 8). A 

preliminary time series analysis of the east-west wind component reveals short time 

fluctuations on the same time scales as the currents (55. 64 and 83 hours, 7 and 14 days). Fig. 

8 also illustrate the spatial variations in sea surface elevation, and that strong westerly winds 

give an accumulation of water in the southeastern parts of the BSO. 

Discussion 

The exchange across the BSO seems to fluctuate between different structures. Both current 

measurements and model results show that the exchange trough the section may take place in 

a wide core located in the area 720 30' -73'N with outflow further north. This is consistent with 

the picture deduced from the hydrographic characteristics in the area, and also by current 

measurement from a 2-month time series presented by Blindheim (1989). 
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Figure 7. Daily mean volume flux through the BSO as estimated from the current measurements. Upper 
panel sbows total flux,lower panel shows volume flux separated into inflow (positive values) and outtlow 
(negative values). 
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Figure 8. Daily mean wind from DNMI hindcast archive (arrows) and sea-level as obtained from the 
numerical model (isolines). 

The results also showed convincing evidence that the exchange through the section at times 

takes place in two cores of Atlantic inflow with a return flow in between (Fig.2 and 3, January 

21). One core seems to be centred in the area between n045'N and 73~, the other 

somewhere between 71 ~ and 72~. These results are in close agreement with Haugan (1999) 

who found two cores of Atlantic inflow sited close to the mentioned positions, and a return 

flow between them. Moreover, as pointed out by Blindheim (1989), the presence of such a 

semi-pennanent countercurrent are suggested in the many hydrographic mappings across the 

section. The lateral location of the cores are subject to uncertainties due to possible 

insufficient lateral resolution in both current measurements and numerical grid. As these cores 

seems to be 50-70 km wide, the array of moorings with a mutual distance of 50 km are not 

able to resolve these features with high accuracy. The numerical model has a horizontal grid 

size of 20 km, which makes it more suitable for studying the cell-structure, although a finer 

grid resolution would make it more reliable. Future plans include decreasing the grid size to 4 

km for the BSO. The separation of inflow in two cores with return flow between are likely to 
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be related to bottom topography_ This relation may then be investigated by sensitivity tests 

due to small changes in model topography. 

At times both current measurements and model results show inflow over an area of width 

150-200 km, a situation also observed by Haugan (1999). This phenomena is not only a short 

time feature; it might be present for a whole month (Ingvaldsen et al., 1999). 

The variability in the local atmospheric fields in the BSO is large (Fig.8), and fluctuations in 

transport due to the local wind have shown to be of the same magnitude as the mean transport 

(Adlandsvik, 1989; Loeng et al., 1997). This is confrrmed by the preliminary time series 

analysis which revealed short time fluctuations on the same time scales for volume transport 

and wind-field (55,64 and 83 hours, 7 and 14 days, unpublished results). For the cycles on the 

tidal periods (14 and 7 days), the fluctuations in the current field are obviously partly forced 

by the tides. Also the sea-level reveal strong variability both in time and space (Fig.6 and 8). 

Using a simple geostrophic model, McClimans et al. (1999) showed that fluctuations in 

coastal sea-level may be traced in the NAC 300 km away, even on a 5 day time scale. Based 

on this it seems reasonable to expect the short time variability in the currents across the BSO 

to be forced by a combination or interaction of fluctuations in the local wind field and 

fluctuations in sea surface elevation. The results from January 21-27 are 

used to illustrate this (Fig.2, 3 and 8). During periods with strong westerly or easterly winds 

(Fig. 8, January 21 and 27) the flow is cell-structured with two cores of inflow and a return 

flow between (Fig. 2 and 3). During periods with calm winds there might be a structure with 

wide outflow if the sea-level east in the area is raised prior to the wind-cease (January 23), or 

there might be a wider inflow core and outflow in the northern parts if the sea-level is not 

raised (January 25). Note that du.e to the remote forcing of the NAC a higher water level in 

southern parts of the section is likely to be present even with no wind forcing. The effect of 

the wind on the current structure is also important on seasonal time scales (Ingvaldsen et al., 

1999). During winter the strong, highly fluctuating winds produce a mean current structure 

with distinct cores and strong lateral velocity gradients. During summer the winds are weaker 

and the mean current structure is dominated by inflow over a wider area and lower horizontal 

shear (Ingvaldsen et aI., 1999). This feature is also evident from the daily mean currents as 

presented in Fig. 4 and 5. 
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The results may be summarised as follow: 

• The short time variability in the Atlantic inflow to the Barents Sea is controlled by an 

interaction between the local atmospheric fields and the sea surface elevation. Wave 

motions or other processes might also be important. 

• The flow in central parts of the section may occur in two distinct, relatively narrow (50-70 

km) inflow cores located between 7lo30'N and 72~ and near 72°45·N-73~. Between 

the inflow cores it is a return flow. This structure seems to be initiated by strong, highly 

fluctuating winds typically for late autumn and winter. 

• The flow in central parts of the section may occur in a wider (-100 km) inflow core 

somewhere near 72°30'N-73~. This might be the situation when the inflow is dominated 

by the remote forcing of the NAC without local wind and sea-level interference. 

• The flow in central parts of the section may occur as an outflow or inflow covering an 

area of width 150-200 km. These patterns are most likely caused by horizontal pressure 

gradients caused by a change in sea-level either by accumulation of water or by an 

atmospheric low or high. 

Based on these results we construct the following hypothesis for further investigation: 

The short time variability in the Atlantic inflow to the Barents Sea is controlled by an 

interaction between the local atmospheric fields and the sea sUlface elevation. Dominated by 

the remote forcing of the NA C, the inflow occur as a medium wide core. During strong, highly 

fluctuating winds the flow occur in distinct cores of inflow and return flow between. In 

periods with strong gradients in sea-level between the Norwegian Sea and the Barents Sea, 

the flow occur as an inflow or outflow covering a wide area. 
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