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Abstract: Models for fluctuations in size of fish stocks must include parameters that describe expected dynamics, as
well as stochastic influences. In addition, reliable population projections also require assessments about the uncertain-
ties in estimates of vital parameters. Here we develop an age-structured model of population dynamics based on catch-
at-age data and indices of abundance in which the natural and fishing mortality are separated in a Bayesian state–space
model. Markov chain Monte Carlo methods are used to fit the model to the data. The model is fitted to a data set of
19 years for Northeast Arctic cod (Gadus morhua). By simulations of the fitted model we show that the model cap-
tures the dynamical pattern of natural mortality adequately, whereas the absolute size of natural mortality is difficult to
estimate. Access to long time series of high-quality data are necessary for obtaining precise estimates of all the param-
eters in the model, but some parameters cannot be estimated without including some prior information. Nevertheless,
our model demonstrates that temporal variability in natural mortality strongly affects perceived variability in stock
sizes. Thus, using estimation procedures that neglect temporal fluctuations in natural mortality may therefore give
biased estimates of fluctuations in fish stock sizes.

Résumé : Les modèles fluctuation de la taille des stocks de poissons doivent inclure des paramètres qui décrivent la
dynamique attendue ainsi que les influences stochastiques. De plus, des projections fiables de la population nécessitent
une évaluation des incertitudes dans les estimations des paramètres vitaux. Nous mettons au point un modèle de la
dynamique de la population structuré en fonction de l’âge qui est basé sur les données de captures en fonction de l’âge
et les indices d’abondance dans lequel la mortalité naturelle et la mortalité due à la pêche sont séparées dans un
modèle état–espace bayésien. Des méthodes de Monte Carlo par chaîne de Markov servent à ajuster le modèle aux
données. Nous ajustons le modèle à une matrice de données récoltées sur 19 années chez la morue (Gadus morhua)
du nord-est de l’Arctique. Par simulations du modèle ajusté, nous montrons que le modèle capture adéquatement le pa-
tron dynamique de la mortalité naturelle, bien que la taille absolue de la mortalité naturelle soit difficile à estimer. Il
est nécessaire d’avoir accès à de longues séries chronologiques de données de haute qualité pour obtenir des estima-
tions précises de tous les paramètres du modèle, mais certains paramètres ne peuvent être estimés sans l’inclusion
de renseignements a priori. Néanmoins, notre modèle démontre que la variabilité temporelle de la mortalité naturelle
affecte fortement la variabilité perçue des tailles des stocks. Ainsi, l’utilisation de procédures qui négligent les fluctua-
tions temporelles de la mortalité naturelle peut donner des estimations erronées des fluctuations dans les tailles des
stocks de poissons.

[Traduit par la Rédaction] Aanes et al. 1142

Introduction

A sustainable management strategy of commercial fish
stocks is dependent on understanding how harvesting may
influence future stock sizes. This requires that we are able to
estimate parameters such as density and causes of mortality
with sufficient precision. Accordingly, we must also estimate

the stochastic influences on the population dynamics, in
most cases arising from stochastic variation in the environ-
ment (Lande et al. 2003). It is important to separate the en-
vironmental noise from the stochasticity that is caused by
uncertainties in parameter estimates and errors in estimates
of stock size (Freckleton et al. 2006). Developing population
models of some credibility requires that both types of sto-
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chastic influences are properly assessed when making pre-
dictions that form the basis for management decisions
(Walters and Martell 2004).

Catch-at-age data probably represent the most important
data source for assessment of fish stock size (see reviews in,
e.g., Megrey (1989), Quinn and Deriso (1999), and Millar
and Meyer (2000)). Recent analyses of catch-at-age data
have been refined to consider process and measurement
errors using traditional frequentist techniques (e.g.,
Gudmundsson 1994; Schnute and Richards 1995; Richards
and Schnute 1998), as well as Bayesian methods (e.g.,
Schnute 1994; Punt and Hilborn 1997; Millar and Meyer
2000). Information about the precision in the data is neces-
sary for obtaining unbiased estimates of population parame-
ters (de Valpine and Hastings 2002; Dennis et al. 2006; and
Freckleton et al. 2006, and references therein). Furthermore,
whatever the statistical approach used, separating natural
fluctuations in mortality from mortality due to fishing is cru-
cial for obtaining reliable estimates of stock size and detect-
ing changes in harvest rates (Walters and Martell 2004).

It is commonly assumed that natural mortality of adults is
known and constant (e.g., Hilborn and Walters 1992; Quinn
and Deriso 1999; International Council for the Exploration
of the Sea (ICES) 2005). Even if wrong values of natural
mortality are chosen and if fluctuations in total mortality are
dominated by fishing mortality, estimates of stock size, al-
though potentially seriously biased, may still capture the
temporal dynamics in the stock. Methods for estimating nat-
ural mortality based on capture–recapture analyses of tagged
individuals (Seber 1982; Quinn and Deriso 1999) are often
of limited use for marine fish populations because of high
costs involved in the necessary sampling (e.g., tagging of
fish). Most of the applied methods are based on samples of
stomach contents and estimation of additional mortality by
predation of other species in a multispecies context (ICES
2005) or, as for the Northeast Arctic cod, by cannibalism
(ICES 2004).

The stochastic processes in the population dynamics along
with the uncertainty in the available data for assessing fish
stocks emphasises the need of probabilistic approaches for
quantifying the risks concerning status of stock and manage-
ment decisions. One model class capable of addressing nu-
merous sources of variability is the state–space framework,
i.e., the available data (the estimates of catch at age and indi-
ces) are noisy observations from a hidden dynamical system
(the population). For instance, Gudmundsson (1994) models
the fishing mortality as a stochastic process where natural
mortality is assumed known and constant, whereas Lewy
and Nielsen (2003) assume that stock survival (the sum of
natural and fishing mortality) for a given mortality rate is a
stochastic process. The variability in fishing mortality is thus
confounded with the variability in natural mortality (Lewy
and Nielsen 2003). In the models of Schnute and Richards
(1995) and Millar and Meyer (2000), natural mortality is
considered unknown, but the stochastic variations in natural
mortality are not separated from the variations in fishing
mortality.

In this paper we present a model in a state–space frame-
work. The model is age-structured, and both natural and
fishing mortality are considered as stochastic processes with
unknown parameters. The model takes into account that the

input data are uncertain. We use a Bayesian approach and
Markov chain Monte Carlo methods to fit the model to the
data (see Clark 2005). Starting with a complex model, we
show how model complexity must be reduced (e.g., Ludwig
and Walters 1989; Richards and Schnute 1998) to obtain re-
liable estimates of population sizes, as well as population
dynamical parameters. The model is fitted to data for North-
east Arctic cod (Gadus morhua) in the Barents Sea, and the
fit is evaluated by simulations and compared with existing
estimates for this stock.

Model

Fish stock dynamics are typically nonlinear and high-
dimensional because of age structure and age-specific dy-
namical processes. These factors complicate traditional use
of maximum likelihood for fitting state–space models to
data. Linear models can be fitted using the Kalman filter and
maximum likelihood when the errors are normally distrib-
uted (Schnute and Richards 1995). Methods for handling
nonlinearity do exist, and Gudmundsson (1994) applied the
extended Kalman filter to approximate the nonlinear likeli-
hood function. Similarly, de Valpine and Hilborn (2005) and
Dennis et al. (2006) fit nonlinear state–space models by a
maximum likelihood approach, but without taking into ac-
count age structure. The Bayesian approach represents an al-
ternative to the frequentist approach and has been applied
increasingly within fisheries in the last decades (e.g.,
Patterson 1999; Millar and Meyer 2000; Lewy and Nielsen
2003). The Bayesian approach relies on evaluation of the
posterior probability distribution P(��Y) of the set of pa-
rameters � given data Y, prior distribution P(�) of the pa-
rameters, and a likelihood function P(Y��). By applying
Bayes theorem, the posterior distribution connects the prior
distribution and the likelihood function through P(��Y) ∝
P(Y��)P(�). For nonlinear and high-dimensional models,
analytical evaluation of the posterior has been difficult.
However, the last decade’s development in computer power
and numerical algorithms for sampling from the posterior,
so-called Markov chain Monte Carlo (MCMC) methods
(e.g., Gilks and Wild 1992; Tierney 1998; Gelman et al.
2004), has made the framework more tractable, e.g.,
nonlinearity does not offer any additional complexity as the
distributions are evaluated numerically, and fitting complex
and nonlinear models has become easier owing to the gener-
ality of the methods.

A stochastic age-structured model is developed that con-
siders mortality as a stochastic process, decomposed into
mortality caused by reported catches and natural mortality. It
should be emphasised that the natural mortality must be
interpreted with some care, because it also includes any un-
observed fishery-induced mortality, e.g., possible discards
and unreported catches (ICES (2004) and Zeller and Pauly
(2005) and references therein). Random components de-
scribing the variability in each of the components are explic-
itly formulated.

Our approach is based on obtaining information of the
hidden population dynamical process, described by the state
model, from an observation model (for a similar approach,
see Clark (2005), Clark and Bjørnstad (2004), and Sæther et
al. (2007)). The observations are connected to the population
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processes through models including error terms, allowing
them to be uncertain. It is important to notice that this error
in principle can not be interpreted as sampling error alone as
it incorporates any deviation caused by misspecification of
the functional relationship related to the true dynamical pro-
cesses (see, for example, Lewy and Nielsen (2003) for a dis-
cussion).

The population dynamical model
The population size at age a in the beginning of year y,

Na,y , is connected to the population size of the same cohort
the next year through

(1) N N Za y a y a y+ + = −1 1, , ,exp( )

for 1mina a A y Y≤ ≤ ≤ ≤,

where Za,y is the mortality rate for age a in year y such that
exp(–Za,y) is the proportion of the cohort surviving from one
year to the next. The minimum and maximum ages consid-
ered are amin and A, respectively, and the years are indexed
from 1 to Y, i.e., from the first to the last year considered.
The mortality at age a in year y is the sum of mortality
caused by fishing (Fa,y) and by natural causes (Ma,y), and
thus Za,y = Fa,y + Ma,y.

We assume that the natural mortality at age a in year y is
log-normally distributed with mean ma. The variability in the
natural mortality is decomposed into two factors: one com-
ponent operating equally on all ages within year y to account
for the temporal fluctuating environmental conditions influ-
encing all ages (Uy) and the other operating independent of
age and year to account for the remaining variability in natu-
ral mortality (Va,y). More specifically,

(2) log( ), ,M m U Va y a y a y= + +

where the Uys and Va,ys are iid normally distributed with zero
means and variances σξ

2 and σM
2 , respectively. This means

that the covariance between the log natural mortalities at dif-
ferent ages is σξ

2, and thus the correlation in log natural mor-
tality between different ages within the year is

rM M= +σ σ σξ ξ
2 2 2/( )

The log fishing mortality at age a in year y is modelled as
a separable model with random noise (Gudmundsson 1994):

(3) log( ), ,F f e Wa y a y a y= + +

where the age-specific effect (fa) is known as the log selec-
tivity of the fishing fleet, the year-specific effect (ey) indi-
cates the log effort of the fishing fleet (e.g., Quinn and
Deriso 1999), and the Wa,ys are iid normally distributed with
zero mean and variance σF

2 . Notice that the eys are parame-
ters in the model and not known effort data from the fishing
fleet. The selectivity at age is a measure of the mean relative
proportion caught by the fishing fleet at age. Above a certain
age, A*, this quantity is set constant (when the fish is fully
recruited into the fishery), fa = fA for a ≥ A*. We notice that
the separable model may not be applicable to all types of
data if, e.g., gradual changes in the structure of the fishing
fleet cause systematic changes in the selectivity. The effort
of the fishing fleet is not likely to show abrupt changes with
time, but rather slow fluctuations caused by gradual changes

in behaviour, development, and regulations of the fishing
fleet. Accordingly, we model the effort as a random walk
following a normal distribution, i.e.,

(4) e e Ty y y= +−1

where Ty is normally distributed with zero mean and vari-
ance σE

2 . We fix the effort for the first year to 0 (ey = 0) for
identifiability (for a similar approach, see Gudmundsson
1994). If the changes in the effort employed by the fishing
fleet are small from year to year, then the variance in the
random walk (σE

2 ) is also small. For example, consider the
special case in which there is no temporal variability in the
effort, i.e., σE

2 0= , then the effort is constant and fixed over
the time period such that the mean log fishing mortality per
age group also is constant.

The model was initialised with the recruits Na ymin , (for y =
1, …, Y) and the initial values (Na,1 for a = amin + 1, …, A) that
are parameters to be estimated (see also Gudmundsson
1994; Millar and Meyer 2000). A model for the recruitment
could be integrated into this model and the parameters esti-
mated simultaneously, for example, as a stock–recruitment
relationship (Lewy and Nielsen 2003) or as a time series
model (Schnute and Richards 1995), but such approaches
are not considered in this paper.

The observations
The observations related to the population processes con-

sidered in this paper are the catch at age and the indices of
abundance at age. The observed catches at age a in year y
(Ca,y) are related to the population and fishing processes
through

(5) C
F

F M
N F Ma y

a y

a y a y
a y a y a y a y,

,

, ,
, , , ,( exp( ))=

+
− − −1 λ

where λa y, is a stochastic variable with mean 1, so that mean
catch at age equals the well-known deterministic relationship
between the population and catch (e.g., Quinn and Deriso
1999). Here λa y, represents random deviation between ob-
served catches and true catches that is caused by sampling er-
ror and misspecification of the functional relationship (for a
similar approach, see Lewy and Nielsen 2003). We assume
that the catches are lognormally distributed and that the ob-
servations are independent between years and ages. More
specifically, we assume λ ε σa y a y

C
C, ,exp( )= − 0.5 2 , where εa y

C
, is

iid with zero mean and variance σC
2 , so that E(λa y, ) = 1 for

any value of σC
2 . The choice of a lognormal distribution for

the catches implies that we assume a constant error coefficient
of variation (ECV) for all ages given by ECV = 12exp( )σC − .

An alternative approach would have been to use multinomial
distributions for the proportions at age (Quinn and Deriso
1999, p. 335). However, analyses of sampling error in catch-
at-age data do not support multinomial distributions (S.
Aanes, unpublished data).

The second source of data considered here are the indices
from the research surveys. Let δ be the proportion of the
year passed until the time of the survey. Then the population
size at the time of the survey is N N Za y a y a y, , ,exp( )( )I = −δ . The
estimated survey index at age a in year y (Ia,y) is assumed to
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follow a lognormal distribution with mean proportional to
the abundance at the time of the survey:

(6) I q Na y a a y
I

a y
I

, ,
( )

,exp( )= ε

for 1mina a A y YI I( ) ( ),≤ ≤ ≤ ≤

where qa is an age-specific proportionality constant, the
“catchability” of the survey, and εa y

I
, is a normally distrib-

uted random variable with zero mean and variance σI
2, al-

lowing for errors in the observations. The error term is
assumed to be independent between ages and years. The
mean of the error for the catch-at-age data was adjusted to 1
to obtain the deterministic relationship for mean catch at
age, while the term of the error term for the indices is
exp( )0.5 2σI . For the abundance indices, such an adjustment
will only affect the value of qa and is therefore not necessary
to formulate explicitly.

Data sources

In this paper we use data for Northeast Arctic cod for the
time period 1985–2003. We use the annual estimates of total
catch at age as reported by ICES (2004) for ages 3–15 years
in addition to an age-specific survey index based on a Nor-
wegian survey in the Barents Sea covering the feeding
grounds (ages 3–9 years).

The catch at age is estimated by combining biological
samples with the reported landings given by the manage-
ment authorities (e.g., Aanes and Pennington 2003; Hirst et
al. 2004, 2005). Because of the heterogeneous fishery for
many fish stocks, possibly including a variety of fleet groups
and fishing over large areas, the sampling schemes become
rather complex. Accordingly, Aanes and Pennington (2003)
and Hirst et al. (2004) found that the uncertainties in the es-
timates of the Norwegian catch at age for Northeast Arctic
cod were relatively large, despite intensive sampling, with
ECV typically ranging from 5% to 40%, where the least pre-
cise estimates typically are for oldest fish with the lowest
catches. Because of this we choose to estimate two variance
components for these data: one for the catches including
ages comprising the major part of the catches (σC1

2 ), i.e., for
ages 3–10, and one for the for catches including the ages ac-
counting for the remaining catches (σC2

2 ), i.e., for the ages
11–15.

The survey in the Barents Sea has been conducted annu-
ally in February since 1981 and covers the demersal fishes
in the Barents Sea, which includes the feeding grounds and
mainly the immature part of the Northeast Arctic cod stock
(Jakobsen et al. 1997). In the routine assessments, a swept
area estimate is used (ICES 2004), i.e., the estimate is inte-
grated to an absolute estimate for the surveyed area
(Jakobsen et al. 1997). Because the surveyed area may vary
from year to year, we chose to use the mean catch per
trawled distance as an index of abundance instead of the
reported swept area index (see Appendix A) to minimize the
potential effect of year-to-year variations in surveyed area.
We considered cod that were 3–9 years old.

Estimation of parameters

Catch-at-age data do not, in general, contain information
about natural mortality, although it can estimate the total
mortality (Za,y) under certain conditions (see, e.g., Quinn and
Deriso 1999, p. 318). Indices of abundance can estimate the
age-specific total mortality if the relative differences in age-
specific catchability are known (substituting the mean value,
eq. 6, into eq. 1 and solving with respect to Za,y yields

Z N Na y a y a y, , ,log( / )= + +1 1

= + + +log([ ( )]/[ ( )]), ,q E I q E Ia a y a a y1 1 1

If the relative differences in catchabilities are unknown, then
the estimates of total mortality from surveys will be con-
founded with estimates of catchabilities. With a similar argu-
ment for the age-specific total mortalities, the age-specific
catchabilities in the surveys could be estimated. If there is a
lack of knowledge of either of the two, then the prospects of
estimating age-specific natural mortality is poor without any
additional information or, alternatively, using strong prior in-
formation on the parameters.

The set of parameters to be estimated is (Namin 1, ,..., Na Ymin , ,
Namin 1,1,+ ,..., NA,1,mamin

,..., mA, σM
2 , σξ

2, famin
,..., fA*, σF

2 , σE
2 ) for

the population dynamical process, σC1
2 and σC2

2 for the ob-
served catches, and (q qa A II I

min

2
( ) ( ) ,, ,� σ ) for the abundance in-

dices from the survey. We chose vague prior distributions for
most parameters, whereas the prior distributions for the pa-
rameters describing the natural mortality and the variance in
the random walk (eq. 4) were chosen more informatively
(see Appendix B for details).

To sample from the posteriors, we used the software pack-
age WinBUGS (Spiegelhalter et al. 1996) that uses MCMC
methods to simulate the conditional distributions. Because
this is an iterative simulation procedure that does not sample
from the correct posteriors until convergence is reached, a
certain number of iterates must be discarded before keeping
the samples (“burn-in”). A variety of methods for assessing
the convergence do exist (see, for example, Gelman et al.
2004), whereas we have examined this by starting three par-
allel Markov chains, with different (overdispersed) starting
points, and applied the scale reduction factor (Gelman et al.
2004) together with visual inspections of the chains. The
scale reduction factor measures the variability within and be-
tween the sequences and declines to 1 as the number of iter-
ations approaches infinity. It is recommended that this factor
should be smaller than 1.1 for all parameters for accepting
convergence. Because samples from Markov chains per defi-
nition depend on earlier samples in the sequence, i.e., they
are autocorrelated, it is necessary to run the Markov chains
for a sufficiently long time to cover the entire posterior dis-
tribution. To reduce the number of iterations necessary to
capture the entire distribution, it is therefore useful to thin
the sequence by keeping only every kth iterate after conver-
gence is obtained.

As expected, fitting the full model was not successful,
which was evident from the lack of convergence of the
Markov chains for the parameters, such that we were not
able to estimate the posterior distributions of the parameters
without using more informative priors on the age-specific
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mortalities. With the modification that natural mortality for
ages above the maximum age available in the surveys
(9 years) was equal to that below this age, that is, Ma,y =
M9,y for a ≥ 9, the full model was fitted successfully regard-
ing convergence of the parameters. However, the age-
specific component of the natural mortality (ma) and the age-
specific selection in the fishing mortality (fa) were highly cor-
related (close to 1), indicating that the model was
overparameterised. Fitting the model to simulated data sets
(see next section) confirmed the problems in separating
those parameters. The correlations between fa and the age-
specific catchability in the surveys (qa) and ma and qa were
also rather high. To overcome problems with identifiability
of the parameters, natural mortality was set as known and
constant 0.2 for ages 10 years or older. For ages below
10 years old, the mean log natural mortality was set as con-
stant, that is, ma = m for 3 ≤ a ≤ 9.

For each Markov chain, we found that a burn-in of 20 000
iterates ensured convergence, and by keeping 334 samples of
each parameter with a thinning of 60, yielding a total of
1002 samples per parameter, the posterior distributions was
sufficiently well approximated, i.e., the percentiles in the
distributions were stable. The total number of samples per
parameter was then 120 120.

Simulation from the model

To evaluate the model fit and parameter estimates, we
simulated both the population process and observations us-
ing the estimated parameters, analogous to ordinary para-
metric bootstrapping, forming replicates of both the
population process and data. Each replicate of population
and observations was obtained as follows. The population
process was simulated with the same numbers of ages as the
original data. It is necessary to generate the recruits each
year. The model does not include a model for the recruits,
which are considered as parameters. However, a stock–
recruitment relationship is implicitly given as the spawning
stock size can be estimated using the proportion mature at
age. In this way we model the stock–recruitment relationship
as the Ricker function, i.e.,

N S Sa y y a y a a y
s

min min min, ,exp( ) exp( )= −− −α β ε

where α and β are positive parameters, Sy is the spawning
stock size in year y, and the εa y

s
, s are iid normally distributed

with zero mean and variance σS
2 . The function was fitted to

the posterior samples of the spawning stock size and the cor-
responding posterior samples of the recruits 3 years later us-
ing maximum likelihood. Each posterior sample of spawning
stock size is estimated by the sum of the estimated number
of mature individuals in each age group. We used the aver-
age of the annual estimates of proportion mature at age re-
ported by ICES (2004) for the time period 1985–2003 to
estimate the number of mature individuals, i.e., the propor-
tions are constant for each age. The number of recruits was
simulated by sampling at random from the residuals of the
fit. To start the simulation process, it is necessary to initial-
ise the process by setting the spawning stock size in some
years in order to generate all initial values (see The popula-
tion dynamical model), and we chose the initialisation pe-

riod equal to the maximum age, i.e., the number of years
needed for the process to generate the spawning stock itself.
We used the average estimated spawning stock size as the
initial value for the initialisation period.

The fishing and natural mortalities were simulated by
their specified stochastic processes (eqs. 2–4) using the
parameter estimates obtained by fitting the model to the
data. We notice that even though we set the natural mortality
as constant at 0.2 for the ages not included in the survey data
when fitting the model to the observations, we simulate nat-
ural mortality according to its process (eq. 2) for all ages in
the population. The random walk, modelling the log fishing
effort (eq. 4), is not a stationary process and may thus pro-
duce unrealistically low or high fishing mortality rates over
longer periods of time. To avoid this, we kept the fishing ef-
fort constant at 0 during the initialisation period and simu-
lated as a random walk thereafter according to eq. 4.

Corresponding observations were then generated by simu-
lating from the observation models (eqs. 5 and 6). The di-
mensions of simulated data sets are kept the same as those
of the original data sets.

Results

The correlation among posterior samples of some of the
parameters is shown (Fig. 1). The fas are positively corre-
lated with the qas, decreasing with age and difference in age
(the largest correlation is 0.88 for age 3), whereas both are
negatively correlated with m, also with an absolute value
that decreases with age (Fig. 1). Both m and σM

2 and m and
σξ

2 are negatively correlated (–0.31 and –0.58, respectively).
The correlation between the other parameters is weaker.

Estimating stock size and natural mortality
The estimates of the total population sizes for the time pe-

riod 1985–2003 are shown (Fig. 2). The estimates showed
rather large temporal fluctuations, with a mean ranging from
more than five billion individuals in 1986 to below one bil-
lion in 1990. The estimated mean total population sizes are
higher, on average, than those obtained by the Arctic Fish-
eries Working Group (AWFG; Fig. 2). Although the patterns
in the temporal fluctuations were similar, the range of varia-
tion was smaller in the AFWG series (CV = 0.26) than in
the corresponding mean for estimated population size (CV =
0.42). The annual variation in ECV in the estimates of the
total population size ranged from 20% to 40% (i.e., the stan-
dard deviation of the posterior divided by the mean over the
time series), but each posterior trajectory of total stock size
was very similar (the average correlation among all pairs of
samples of total stock size trajectories is 0.90)

The estimated mean annual natural mortality rate for the
ages 3–9 years also showed large temporal fluctuations,
from below 0.2 to above 0.7, and is on average 0.36, al-
though the estimates were rather imprecise (Fig. 3a). The
component accounting for the majority of the fluctuations in
natural mortality was caused by year-to-year variability, giv-
ing a high correlation within years (between 0.5 and 0.9; Ta-
ble 1) for ages 3–9 years.
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Age-specific dynamics
The ages 5–10 years comprised the major proportion of

the total annual landings of cod in the Barents Sea (ICES
2004). The mean annual fishing mortality for ages 5–
10 years shows the same temporal dynamics as the one from
the AFWG (ICES 2004) (Fig. 3b). The temporal variability
in these estimates is slightly smaller than that from the esti-
mates from the AFWG. The estimated variance component
for the process for the fishing mortality σF

2 (in eq. 3) is small
(Table 1); thus, the deviation from the additive model for the
log fishing mortality is rather small. Also the estimated ef-
fort employed by the fishing fleet changes relatively little
from year to year, shown by a low estimate of the variance
in the random walk for the log fishing effort (σE

2 in eq. 4;
Table 1).

The estimates of the variances for the input data corre-
spond to an ECV of approximately 40% for the indices from
the Barents Sea, 30% for the catch at age (ages below
11 years), and above 100% for catch at age for fish older
than 11 years. Thus, the data for ages below 11 years seem
relatively precise, whereas the catch data for older fish are

very imprecise, i.e., contain little information about the fluc-
tuations in abundance for these ages.

Stock size and recruitment
The relationship between spawning stock size and recruit-

ment was fitted by the Ricker recruitment function. Large
variation was found around the estimated stock–recruitment
relationship (Fig. 4) because of the variability in the fitted
values. The fit was used in the simulations to generate re-
cruits given the spawning stock and did reproduce both the
average abundance of the total stock and the estimated tem-
poral fluctuations for the Northeast Arctic cod.

Simulations of fluctuations in stock size
By simulations it is evident that the fitted model estimates

the total stock size very well (Fig. 5a), although the large
stock sizes are slightly overestimated and small stock sizes
are underestimated. By tracing the age-specific stock size,
the model underestimated the actual number of recruits by
an average of 15% (not shown). The magnitude of the bias
decreased with age, resulting in overestimating the number
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Fig. 1. Pairwise plots of parameter estimates for log selectivity in fishing mortality for ages 3 and 10 ( �f3 and �f10, respectively), log
catchability in the survey for ages 3 and 9 ( �q3 and �q9, respectively), log mean natural mortality (m), and the variance components in
natural mortality (�σM

2 and �σξ
2). The corresponding linear correlation coefficient is given in the lower diagonal.



of fish in the oldest age class by about 15%. This is in
agreement with Fig. 5a because a large total stock is domi-
nated by young fish. Each replicate of process and corre-
sponding data yields a correlation between the simulated
time series of total population size and the corresponding es-
timated total population size. The mean correlation was 0.93
(95% credibility set is (0.79, 0.99)) (slightly higher than the
correlation between the estimated and corresponding simu-
lated total stock size independent of age as shown in
Fig. 5a), showing that a high degree of the temporal fluctua-
tions is captured by the model. The mean of the mean an-
nual log natural mortality and the year-to-year variability
(σξ

2) were underestimated (Table 1; Fig. 5b). Accordingly,
the fluctuation in natural mortality was underestimated, re-
sulting in overestimation of small values with a bias that de-
creases to underestimate large values of natural mortality
(Fig. 5b). The variance component σM

2 in natural mortality
was overestimated, and because the unconditional mean is
given by exp( ( ))− + +m M0.5 2 2σ σξ , the mean of the natural
mortality rate was underestimated by 20%. The level of
fishing mortality independent of age was also very well esti-
mated by the model with little bias (Fig. 5c). The age-
specific fishing mortality was overestimated but the bias
decreased with age (not shown). The relative bias for the
mean fishing mortality for the ages 5–10 was about 10%.

The simulations showed that the 95% credibility sets for
the estimated natural mortality and fishing mortality across
ages and years both had an estimated coverage of 96.4%.
Similarly, the estimated coverage for the estimated popula-
tion sizes across ages and years was 95%.

We examined the ability of the model to estimate fluctua-
tions in natural mortality outside the range of the estimated

parameters for Northeast Arctic cod. In all cases we set the
natural mortality within a year constant across ages, and all
variability is due to temporal fluctuations. We considered
five different scenarios: (i) constant natural mortality, but at
different levels, (ii) linear increase in natural mortality over
time, (iii) linear decrease in natural mortality, (iv) cyclic
variations in natural mortality over time, and (v) stochastic
variations in M independent between years according to a
uniform distribution U(a, b) for different a and b. All other
population processes and corresponding observations were
simulated as previously described.

In general, the results are in agreement with the previous
simulations. We found that small values of natural mortality
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Fig. 2. The estimated total population size (× 10–9) of Northeast
Arctic cod (Gadus morhua) age 3 years and older for the years
1985–2004 (solid line). The uncertainties in the estimates are
shown by the 50% (dotted lines) and 95% (broken lines) credi-
bility sets. The bold broken line represents the estimates from
the Arctic Fisheries Working Group (ICES 2004).

Fig. 3. The estimated annual mortality rates for the Northeast
Arctic cod (Gadus morhua) stock for the years 1985–2003.
(a) The estimated mean natural mortality rate for ages 3–9 years
(solid line). The uncertainties in the estimates are shown by the
50% (dotted lines) and 95% (broken lines) credibility sets.
(b) The estimated mean fishing mortality rate for ages 5–
10 years (solid line). The uncertainties in the estimates are
shown by the 50% (dotted lines) and 95% (dashed lines) credi-
bility sets. The bold broken line represents the estimates given
by the Arctic Fisheries Working Group (ICES 2004).



were overestimated, whereas large Ms were underestimated,
and vice versa. Thus, there is a consistent relationship be-
tween bias in M and bias in stock size. The relationship be-
tween bias in M and F is less consistent, although there
seem to be a tendency for a negative relationship between
the two, i.e., if M is underestimated, then F is overestimated.
If considering the estimated temporal fluctuations compared
with the simulated fluctuations rather than the absolute dif-

ferences, we find that in all instances the estimated fluctua-
tions in abundance are highly correlated with the simulated
fluctuations (Table 2). The estimated expected correlation in
the different scenarios ranges from 0.90 to 0.99, in which
the correlation decreases with increasing variability in M. If
the variability in temporal variations is sufficiently high, the
estimated temporal variability is in close agreement with the
simulated variability, although the variability is underesti-
mated. The fluctuations in fishing mortality are in general
better captured than the fluctuations in the natural mortality
(higher correlations), and also here the temporal variability
is underestimated, although to a lesser degree than that of
the natural mortality.

Discussion

In this paper we have shown that it is possible to separate
some elements of the stochastic natural and fisheries mortal-
ity by using catch-at-age data and survey indices. The major
finding is that we can estimate the temporal dynamics in nat-
ural mortality, but that it is difficult to estimate the absolute
value of this parameter. Also, fluctuations in stock size of
Arctic cod in the Barents Sea were found to be closely re-
lated to temporal variation in natural mortality. Not surpris-
ingly, the assessment of fish stock size would hence strongly
benefit from more precise knowledge about the natural mor-
tality.

It was not possible to estimate all parameters in the model
without using any information in the prior distribution for
some of the parameters (e.g., uniform prior distribution over a
wide range). More specifically, the parameters most difficult
to estimate were the variances in log natural mortality (σM

2 )
and log fishing mortality (σF

2 ). We therefore had to carefully
select appropriate prior distributions restricting the values to
a realistic range. This was also the case for the mean log
natural mortality (m), although to a lesser extent than the
former. We notice that the posterior distributions of the
parameters do not reproduce the respective prior distribu-

© 2007 NRC Canada

Aanes et al. 1137

Parameter Mean Median
2.5%
percentile

97.5%
percentile

Mean relative
bias (%)

m –1.216 –1.171 –1.983 –0.689 –40.0
σM

2 0.097 0.086 0.045 0.212 48.7
σξ

2 0.311 0.266 0.103 0.825 –31.6
rM 0.734 0.747 0.455 0.911 –23.3
σI

2 0.143 0.141 0.101 0.194 11.5
σC1

2 0.073 0.072 0.050 0.106 33.8
σC2

2 0.758 0.749 0.547 1.032 –6.5
σF

2 0.039 0.038 0.025 0.057 40.9
σE

2 0.035 0.031 0.014 0.077 –6.4

Note: Mean log natural mortality, m; variance in log natural mortality, σM
2 ; covariance in log natural

mortality, σξ
2; correlation within year in log natural mortality, rM; variance in log index from the Barents

Sea, σI
2; variance in log catch at age for ages 3–10 years, σC1

2 ; variance in log catch at age for ages
11–15 years, σC2

2 ; variance in log fishing mortality, σF
2 ; and variance in the random walk for the log ef-

fort in fishing mortality, σE
2 . The estimated relative bias (in percent) for the parameters is shown in the

rightmost column and is based on refitting the models to 100 replicates of simulated data (see Fig. 5).

Table 1. Estimated population parameters for the model fitted to Northeast Arctic cod (see
text): the mean, median, and 2.5% and 97.5% percentiles from the posterior distributions
and the mean relative bias.

Fig. 4. The estimated mean recruitment (× 10–9) of 3-year-old
Northeast Arctic cod (Gadus morhua) as a function of the esti-
mated spawning stock three years earlier. The relationship is esti-
mated by fitting the Ricker function to the posterior samples of
the spawning stock and recruits. The solid line shows the resulting
mean, and the dotted and broken lines are the corresponding 50%
and 95% credibility sets for the mean recruitment, respectively.



tions, and thus, there is some information in the data for
those parameters, although the signal is weak (particularly
for σM

2 ). This suggests that later studies should explore the
strength of the signal for these parameters to derive appro-
priate priors beyond the method we have chosen to derive
these priors. The other parameters in the model were not
sensitive to the choice of prior distribution provided that the
distribution was restricted to reasonable intervals. One of the
strengths of the Bayesian approach is that it makes it possi-
ble to reflect our prior knowledge by a distribution, instead
of setting unknown parameters in a model as constants. In
situations in which some parameters in a model depend on

the prior distribution, the sensitivity of the exact choice of
prior distribution should be investigated (e.g., mean, vari-
ance, and type of distribution). Such detailed and systematic
analysis is not done here and should be subject for further
study. However, preliminary results suggest that the esti-
mated temporal dynamics is not sensitive to other choices of
reasonably chosen prior distributions but may cause changes
in the estimated mean log natural mortality, which again af-
fects the perceived absolute population size.

By using data from the Northeast Arctic cod stock, we
have shown that this model type can estimate the fluctua-
tions in population size, as well as separate the stochastic
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Fig. 5. Comparisons of the simulated population process using the parameter estimates obtained by fitting the model to data for Northeast
Arctic cod (Gadus morhua) with the estimates found by refitting the model to the corresponding simulated data for (a) annual total popu-
lation size (N), (b) mean annual natural mortality ages 3–9 years (M), and (c) annual mean fishing mortality for ages 5–10 years (F). The
solid lines are nonparametric fits of the data points to display the trend, the broken lines are the one-to-one mapping to illustrate deviation
from the actual values, and the respective correlations (r) are shown in the figures. The results are based on refitting the model to 100
replicates of data sets. Each point represent an annual estimated mean versus the corresponding simulated mean, and each simulated data
set is of length 19 years, thus each figure includes 1900 points.

Scenario for natural mortality cor( � , )N N cor( � , )M M cor( �, )F F
CV
CV

( � )
( )
N

N

CV
CV

( � )
( )
M

M

CV
CV

( � )
( )
F

F

Ma,y � M = 0.01 0.98 — 0.93 1.04 — 0.98

Ma,y � M = 0.2 0.98 — 0.94 1.01 — 0.89

Ma,y � M = 0.5 0.95 — 0.94 0.97 — 0.78

Ma,y � M = 0.7 0.98 — 0.92 1.02 — 0.68

Ma,y � M = 1.0 0.99 — 0.91 0.97 — 0.64

Ma,y = My = (1/18)(y – 1) 0.95 0.84 0.72 1.13 0.85 0.91

Ma,y = My = (1/18)(19 – y) 0.98 0.84 0.89 0.93 0.84 0.96

Ma,y = My = 0.5(sin(πy/4) + 1) 0.90 0.91 0.81 1.16 0.69 0.90

Ma,y = My = 0.25(sin(πy/8) + 1) 0.92 0.79 0.88 1.04 0.67 1.08

Ma,y = My ~ U(0,1) 0.93 0.72 0.90 0.96 0.55 0.82

Ma,y = My ~ U(0,0.5) 0.93 0.49 0.92 0.98 0.31 0.93

Ma,y = My ~ U(0.1,0.3) 0.97 0.17 0.94 1.03 0.38 0.91

Note: Scenarios considered: constant natural mortality at different levels (rows 1–5); systematic increase in natural mortality from
0 to 1 over 19 years (row 6); systematic decrease in natural mortality from 1 to 0 over 19 years (row 7); cyclic variations at differ-
ent levels and with different periods (rows 8 and 9); stochastic variations in natural mortality independent between years according
to a uniform distribution U(a,b) for different a and b (rows 10–12). The other processes and data were simulated as for the North-
east Arctic cod case, and the same model was fitted to all simulated data sets (see text). The mean correlation and ratio CV was es-
timated as the average over 20 replicates of simulated process and data and the corresponding estimated process.

Table 2. Estimated mean correlation between temporal dynamics in estimated and simulated total stock size
(cor( �N , N)), natural mortality (cor( �M , M)), and average annual fishing mortality for ages 5–10 years (cor( �F, F)) and
estimated mean ratio of coefficient of variation (CV) of fluctuations in estimated to simulated CV of total stock size
(CV( �N)/CV(N)), natural mortality (CV( �M)/CV(M)), and fishing mortality CV( �F)/CV(F) for different scenarios of
simulated natural mortality.



components in mortality provided that we accept to use
some prior information about some specific parameters. The
precision in the estimates of total stock size (ECV is 20%–
40%) appeared comparable to reported figures based on sim-
ilar methods (Lewy and Nielsen 2003). Assuming that the
natural mortality was a known constant or, analogously,
choosing highly informative prior distributions for these pa-
rameters resulted in a dynamical pattern more closely related
to the estimates provided by the AFWG. Obviously, the esti-
mates will be less uncertain (ECV between 5% and 20%) if
one assumes that the natural mortality is known. However,
the samples from the posterior distribution of stock size –
time series were highly correlated (the average correlation
among all pairs of samples of stock size trajectories is 0.90),
i.e., the dynamical pattern is nearly identical, but the abso-
lute stock size differs. This indicates that the estimates are
uncertain as a result of the same factor. Thus, the uncer-
tainty in the estimated temporal fluctuations is lower than it
appears in Fig. 2. Accordingly, there was a high correlation
between the estimated abundance and the corresponding
simulated data. Thus, gathering data for more precise esti-
mates of natural mortality will greatly improve the precision
in the estimates of the stock size.

The estimates of stock sizes and fishing mortalities are
comparable with existing estimates provided by existing
methods (ICES 2004), although this method shows different
levels of variability. The estimates provided by the AFWG in
2004 for the population size and fishing mortality are in
some years outside the estimated 95% credibility sets, but
because these estimates do not provide any level of uncer-
tainty, it is difficult to judge whether they are significantly
different or not.

Our simulations revealed that our method gave poor esti-
mates of the level of natural mortality that resulted in uncer-
tain estimates of the total population size. This indicates that
information about natural mortality obtained from other
sources such as capture–recapture studies must be included
in the model to obtain reliable estimates of total population
size. Another possibility is to use a more strict Bayesian ap-
proach to put stronger constraints on the variation in the
prior distributions of the natural mortality (m). Our method
gives different estimates of total population size than by as-
suming a constant natural mortality of 0.2 with an additional
mortality caused by cannibalism as employed by the AFWG
(ICES 2004) for the cod. The resulting temporal dynamics in
natural mortality is in poor agreement with the estimates
found here, and we estimate higher natural mortality (mean
of 0.36) with larger temporal fluctuations. This is the main
reason for estimating the stock size to a higher level with
larger temporal variability than the official estimates. Fortu-
nately, our method seems to estimate annual fluctuations in
the natural mortality quite well, enabling estimation of tem-
poral fluctuations in stock size quite well. The high correla-
tion between ages within year in natural mortality suggests
that the major component causing fluctuations in this mor-
tality is year-to-year variability. Empirical evidence from a
variety of taxa suggests that temporal variation in life history
traits with high sensitivities (Caswell 2001), such as adult
survival rates in relatively long-lived species such as the
Arctic cod, should be small (Pfister 1998; Sæther and Bakke
2000; Gaillard and Yoccoz 2003). Our findings of a large

variability in natural mortality between years then may be
primarily caused by discarding and black landings (ICES
(2005), Myers et al. (1997), and Zeller and Pauly (2005) and
references therein), or alternatively it may be caused by vari-
ability in rates of predation by sea mammals.

Another problem was to obtain reliable estimates of the
variance in natural mortality (σM

2 ) because of a negative rela-
tionship (r = –0.31) between σM

2 and m. This may be caused
by variation in m that will induce fluctuations in age struc-
ture that will give autocorrelations in the process (Lande et
al. 2006) and hence affect the estimates of σM

2 .
In comparing the estimated precision levels in the catch

data and the indices from the survey, it is apparent that,
within this model, the catch data for the ages 3–10 years are
only slightly more precise than those of the survey, whereas
the catch data for the ages 11–15 years were very imprecise.
This shows that the parameter estimates rely mainly on the
data for ages up to 10 years and little on the ages above.
Hence, leaving out the data for the oldest fish would proba-
bly not result in significant changes for the estimates. The
estimated precision levels of the input data contain both
sampling error and process error and are confounded within
this model. If the sampling error is known beforehand, then
subject to some assumptions, the total error is the sum of
sampling and process error (Lewy and Nielsen 2003). In the
present paper, the sampling error (not shown) for the Norwe-
gian catches were, on average, larger than the process error
for all catches (estimated by modelling the sampling
schemes; see Aanes and Pennington (2003) and Hirst et al.
(2004, 2005)). However, because of the lack of data from
other than Norwegian catches, we can not exclude the possi-
bility that process error may be of more significant impor-
tance than the error related to sampling (see Lewy and
Nielsen (2003) for an example on North Sea plaice).

We assumed that the errors in the input data were inde-
pendent and identically distributed across ages and years.
The effect of violating this assumption is not examined, but
in general, this could cause biases in the estimates, with a
magnitude depending on the magnitude of correlation at age
within year and the relative differences in precision between
ages. The magnitude of this potential problem could be ex-
plored as in Myers and Cadigan (1995a; 1995b), who al-
lowed the survey indices to be correlated within years and
quantified by simulations similar to what is done in this
paper, or alternatively one could try to estimate the entire
covariance matrix. Estimating the entire covariance matrix
would probably lead to overparameterisation of the model,
and it would therefore be advantageous to parameterise the
covariance matrices with as few parameters as possible to
avoid this problem. Lillegård et al. (2005) examined the pro-
cess noise for the spawning stock of the Norwegian spring
spawning herring and found only a very small temporal cor-
relation, which was mainly generated by a small temporal
correlation in temperature.

The model was able to reproduce simulated data. Al-
though some parameter estimates were biased, the estimates
of the most important figures — the total stock size, natural
mortality, and fishing mortality — were very accurate with
relatively small biases. The reported biases for stock size
and fishing mortality agree with the estimated biases found
by Lewy and Nielsen (2003), and the estimated coverage of
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the credibility sets was close to the true probability. For sim-
ulation purposes, we fitted the stock–recruitment function to
the posterior estimates of spawning stock size and recruits.
The fit showed large variability around the mean, which
could have been caused by factors such as process error and
(or) environmental noise (Mann and Drinkwater (1994),
Ottersen et al. (2001), and Myers (2002) and references
therein). The fitted function is, however, in agreement with
other fits (e.g., Myers et al. 1996, 1997).
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Appendix A. Survey indices.

Appendix B. Prior distributions.

The prior distributions for the parameters in the model described in Model are chosen as follows.
For the log recruits (log(Na ymin , ), y = 1,...,Y), the log initial values (log(Na,1), a = a min ,..., A), the log catchabilities in the

surveys (log(qa), a = a I
min
( ) ,..., A(I)), and the log fishing selectivity (log(fa), a = amin ,..., A*), we chose normally distributed pri-

ors with variance 1000, and means 10, 10, –5, and –1.5, respectively. The mean in the distributions are arbitrarily chosen, and
the posterior distribution does not depend on these choices.

The estimates of fishing mortality given in ICES (2005) shows age-specific temporal variation in fishing mortality corre-
sponding to a coefficient of variation of slightly above 0.2 for the time period and age groups considered in this paper. This
corresponds to the variance in the lognormal distribution being ≈0.04. Therefore, we parameterise the inverse gamma for the
variance in the random walk modelling the fishing effort σE

2 such that the mean is 0.04 and variance is 0.01, and consequently
95% of the probability mass of the prior distribution is between ≈0 and 0.17 (see Figs. B1a and B1b).
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Age

Year 3 4 5 6 7 8 9

1985 27.04 19.74 3.33 1.46 0.54 0.10 0.01
1986 130.37 29.68 11.83 1.72 0.23 0.02 0.01
1987 43.91 68.32 9.56 3.13 0.31 0.11 0.00
1988 19.79 10.37 24.36 3.08 0.60 0.07 0.01
1989 4.90 9.51 5.48 13.74 1.42 0.17 0.02
1990 2.95 4.25 4.96 3.15 4.09 0.29 0.04
1991 3.60 2.65 2.35 2.20 1.23 1.27 0.06
1992 25.84 10.19 3.44 2.34 1.40 0.73 0.52
1992 29.12 18.56 8.48 1.83 0.91 0.49 0.26
1994 23.81 30.99 14.30 4.93 0.94 0.22 0.12
1995 18.91 17.00 20.14 6.20 1.47 0.22 0.05
1996 10.06 10.11 11.95 11.09 2.63 0.31 0.04
1997 18.10 6.83 8.07 7.19 3.89 0.71 0.13
1998 43.83 28.42 6.32 4.37 2.84 1.33 0.19
1999 21.98 23.16 10.34 2.33 1.13 0.49 0.11
2000 17.03 9.25 8.54 2.51 0.41 0.18 0.09
2001 14.01 14.66 7.57 3.76 0.85 0.10 0.05
2002 7.28 10.80 9.91 4.49 1.50 0.23 0.03
2003 23.35 10.57 10.86 8.65 2.40 0.59 0.12

Note: The data are stratified according to the actual spatial survey de-
sign the given year. The catches before 1989 are adjusted according to the
change from Bobbins to Rockhopper gear using established correction fac-
tors (Godø and Sunnanå 1992).

Table A1. Stratified average catch in numbers per towed distance
for ages 3–9 for the annual survey in February for demersal
fishes in the Barents Sea (Jakobsen et al. 1997) for the years
1985–2003.
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The prior for the random variability in fishing mortality (σF
2 ) is chosen the same as for the variance components in natu-

ral mortality (see rationale below).
The variance in natural mortality rarely exceeds 0.04 (Sæther et al., unpublished). Because the natural mortality is modelled

as a lognormally distributed process, i.e., Ma,y ~ LN(µ, σ2), the variance of M is given by (E(M))2 (eσ2
1− ). Then, given that

E(M) = 0.2, the variance of the mortality rate is constrained to 0.04 > 0.22 (eσ2
1− ) ~ σ2 < log(2). To achieve this, we chose to

parameterise the inverse gamma for both components in natural mortality, σξ
2 and σM

2 , such that the mean is 0.172 with vari-
ance 0.017. Then for each component, 95% of the probability mass of the prior distribution is in the interval (0.05, 0.5) (see
Figs. B1c and B1d). This choice results in prior distribution of median M with 95% probability mass in the interval
(0.03, 1.42).

The priors for the variance for the error distribution for the input data, σC1
2 , σC2

2 , and σI
2, were parameterised such that both

the mean and standard deviation are 0.5, and consequently 95% of the probability mass of the error distribution is in the inter-
val (0.02, 2) (see Figs. B1e and B1f ).
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Fig. B1. Prior distribution is gamma for the inverse variance or equivalently inverse gamma for the variance. (a and b) The prior dis-
tribution of the variance in the random walk modelling the year to year changes of log fishing mortality (σE

2 ); (c and d) the random
variation in fishing mortality (σF

2 ) and the variance components for the natural mortality (σξ
2 and σM

2 ); (e and f) the prior for the vari-
ance in the error distributions for the input data (σC1

2 , σC2
2 , and σI

2).


