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Northern oceans are in a state of rapid transition. Still, our knowledge of the likely effects of climate change and ocean acidification on key
species in the food web, functionally important habitats and the structure of Arctic and sub-Arctic ecosystems is limited and based mainly on
short-term laboratory studies on single species. This review discusses how tropical and temperate natural analogues of carbonate chemistry
drivers, such as CO2 vents, have been used to further our knowledge of the sensitivity of biological systems to predicted climate change, and
thus assess the capacity of different species to show long-term acclimation and adaptation to elevated levels of pCO2. Natural analogues have
also provided the means to scale-up from single-species responses to community and ecosystem level responses. However, to date the appli-
cation of such approaches is limited in high latitude systems. A range of Arctic and sub-Arctic sites, including CO2 vents, methane cold seeps,
estuaries, up-welling areas, and polar fronts, that encompass gradients of pH, carbonate saturation state, and alkalinity, are suggested for
future high latitude, in-situ ocean acidification research. It is recommended that combinations of monitoring of the chemical oceanography,
observational, and experimental (in situ and laboratory) studies of organisms around these natural analogues be used to attain better predic-
tions of the impacts of ocean acidification and climate change on high latitude species and ecosystems.
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Introduction
Rising levels of CO2 in the atmosphere are causing worldwide

modification of seawater carbonate chemistry, with gradual

reductions in pH and carbonate ion (CO2
3
�) availability, in a pro-

cess known as ocean acidification (OA) (Caldeira and Wickett,

2003; IPCC, 2014). The Arctic Ocean is particularly sensitive to

OA, already having a naturally low pH and CaCO3 saturation

caused by the large freshwater content, which may increase due to

warming and associated ocean and tundra ice melt and increased

river runoff (Chierici and Fransson, 2009; Chierici et al., 2016).

The relatively cold water in these regions also causes a high solu-

bility of CO2, which could exacerbate OA in the future. Increased

ice melt and river runoff not only effects the solubility of CO2 via

alterations in salinity, but depending on the geology of the run-

offs terrestrial catchment can also inference totlal alkalinity

(McGrath et al., 2016). The northern Norwegian Sea is one region

where a large part of the anthropogenic CO2 has been absorbed

during cooling of the warmer Atlantic water transported north

along the Norwegian coast (Olsen et al., 2006). This has resulted

in decreased pH and calcium carbonate (CaCO3) saturation, as

well as shoaling of the saturation horizon. In fact, recent observa-

tions show that the pH decrease in the Norwegian Sea is occuring

at one of the highest rates globally (Chierici et al., 2017; Jones

et al., 2018). The Arctic is one of the first regions being affected

by a rapid expansion in carbonate undersaturation (Olafsson

et al., 2009; AMAP, 2013; Qi et al., 2017) and is experiencing one

of the most rapid shifts in biogeographic boundaries on the

planet due to rapid warming coupled with ice melt and s decrease

in alkalinity. Whilst rapid adaptation and borealization of the

benthic flora are expected (Brodie et al., 2014), some benthic ani-

mals in the region may have limited physiological plasticity which

can reduce their chances of survival (Rastrick and Whiteley, 2011,

2013; Calosi et al., 2017).

Ocean acidification in Arctic and sub-Arctic seas may have neg-

ative effects on pelagic species such as the copepod Calanus glacialis

(Thor et al., 2017) and the shell-bearing pteropod Limacina heli-

cina (Bednar�sek et al., 2017) that constitute the main prey items

for a variety of larger zooplankton, juvenile fish, baleen whales, and

seabirds. Acidified seawater has also been suggested to impact cor-

alline algae (Brodie et al., 2014) and cold-water corals (Jackson

et al., 2014), which form extensive biogenic habitats around north-

ern Norway. To date our best predictions of habitat change in the

North Atlantic are that warming will depleted kelp forests in the

south and that ocean acidification will compromise maerl reefs in

the north (Brodie et al., 2014). However, these predictions are

based on a range of published laboratory experiments on signal

species in isolation and so lack an understanding of the complex

effects of interactions between species that can only be studied in

naturally assembled systems. Such habitat change is expected to

impact nursery and brood stock areas for commercially important

molluscs and fish (Branch et al., 2013; Sunday et al., 2017). It is

predicted that cephalopods and crustaceans will be mostly unaf-

fected by elevated pCO2 levels expected by the end of the century,

in contrast to shelled molluscs will be negatively affected (Branch

et al., 2013). However, again these predictions are based on studies

that cannot comprehend how the responses of these key species to

elevated pCO2 may be modulated by and in turn modulate wider

community level change.

Although a number of studies have shown adult fish to be rela-

tively resistant to elevated pCO2, they many suffer neurological

impairment (Milazzo et al., 2016). A recent study showed in-

creased mortality in Atlantic cod larvae exposed to elevated

pCO2, potentially resulting in reduced recruitment to the stock

(Stiasny et al., 2016). Our current understanding of key processes

driving the responses of northern commercially important species

and ecosystems to climate change is limited. In addition, the

majority of studies conducted so far have been laboratory, short-

term, rapid perturbation experiments on isolated elements of

ecosystems (Agnalt et al., 2013; Andersen et al., 2013; Bednar�sek

et al., 2017). Most studies have used set stable (but unrealistic)

pCO2 levels and focus on the responses of organisms that are sep-

arated from their natural suite of competitors, predators, para-

sites and facilitators, and experiment conducted are often too

short-term to reveal how organisms may adapt/acclimatise. Thus,

it is difficult to extrapolate from individual level responses studies

to larger ecological scales. Population-level effects, have to date

been studied by applying laboratory rates (Stiasny et al., 2016) or

with integrated models for effects of ocean warming and acidifi-

cation (Koenigstein et al., 2018). However, it is extremely difficult

to validate such modals in a natural context.

One approach to study ecosystems’ responses to future pre-

dicted chronic increases in mean pCO2, as well as associated

increases in acute fluctuations in carbonate chemistry due to

freshwater run off, is to use natural analogues. Such analogues for

future predicted OA have included so far volcanic vent sites

(Hall-Spencer et al., 2008; Kroeker et al., 2011, 2013), up-welling

of deep CO2 rich water (Manzello et al., 2014), and temperate sys-

tems which present a mosaic of alkalinity and pH conditions

(Thomsen et al., 2010).

These natural analogues provide an opportunity to simulta-

neously investigate changes in community structure (Hall-

Spencer et al., 2008; Kroeker et al., 2011, 2013) and the capacity

for physiological adaptation/acclimatisation of species in response

to elevated pCO2 and low CO2
3
� concentration (Calosi et al.,

2013a; Harvey et al., 2016). In addition, broader evolutionary

responses to past and future pCO2 changes can be addressed

(Garilli et al., 2015). They have also been used to investigate the

importance of natural variability in carbonate chemistry on the

mechanisms that set or limit the distribution of species (Small

et al., 2015) and to investigate the effect of multiple stressors on

the ecological performance and distribution of species in natu-

rally fluctuating environments (Thomsen et al., 2010; Kroeker

et al., 2016). However, to date studies utilising natural analogues

are limited to temperate and tropical systems.

Recent studies have identified how shifting boundaries of

water and ice in a high-latitude glacial fjord create mosaics of sea-

water total alkalinity and pH conditions (Fransson et al., 2015,

2016), which could be used as natural analogues to investigate the

effects of climate change and OA on the physiology, ecology, and

distribution of flora and fauna in northern ecosystems. However,

to date, despite the potential for natural OA analogues at higher

latitudes, such studies are limited to the Baltic (Thomsen et al.,

2010). Consequently, the aim of this review is to explores the

possible use of natural analogues for investigating the effects of

future changes in carbonate chemistry on northern species and

ecosystems. Herein, we discuss: (i) the advantages and challenges

of using natural analogues to investigate physiological, ecological,

and evolutionary effects of climate change and OA, drawing on

temperate and tropical studies highlighting the arctic as an

under-studied region; (ii) challenges of using natural analogues
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in more studied temperate and tropical regions, moving from

studies of individual to multiple carbonate chemistry drivers;

(iii) how such analogue approaches could be modified for use in

Arctic and sub-Arctic ecosystems given the present understanding

of chemical oceanography in this region; and (iv) what key target

habitats and species in northern ecosystems could be studied us-

ing such analogues.

The advantages and challenges of using natural
analogues to investigate physiological, ecological,
and evolutionary effects of climate change
Our knowledge of the biological effects occurring under antici-

pated changes of ocean chemistry is primarily informed by labo-

ratory experiments. Such studies are informative, as they enable

us to identify the effect of one or a few variables on many

processes such as reproduction, development, physiology, and be-

haviour of different organisms. However, most laboratory studies

are carried out on a single generation of species in isolation and

during short-term exposure to stress, neglecting many processes

involving species in the wild, such as intra- and interspecific

interactions and trans-generational adaptation, or nutrition

supply and fluctuations in environmental parameters (Barry

et al., 2010). Research using natural analogues allows the investi-

gation of the chronic exposure to elevated levels pCO2 in natural

populations, thus providing a means by which to scale-up from

physiological to ecological processes with further extrapolation to

evolutionary processes by which OA could structure and modify

the community and ecosystem levels.

A shift in community structure and composition favouring

algal assemblages over reef forming species, for example, is con-

sistently documented for chronically exposed benthic species

along natural pCO2 gradients (Sunday et al., 2017). However,

CO2 seep sites used in such studies are not perfect analogues of

future change. A challenge being that within volcanic seep gra-

dients variability in carbonate chemistry is often more rapid and

of a higher amplitude than is expected due to the effects of gradu-

ally rising atmospheric levels of CO2 (Kerrison et al., 2011;

Kroeker et al., 2011). This high rate of change in seawater chemis-

try is known to be especially detrimental to coralline algae, for

example, which are less sensitive to gradual change (Kamenos

et al., 2013). Patterns in community structure across natural CO2

gradients are likely driven by a combination of direct physiologi-

cal effects on habitat forming species (such as, elevated costs

of maintaining homeostats and calcification) and indirect effects

involving changes in the energy available in feed, competition,

predation, and habitat structure. The natural distribution of eco-

system engineers, such as grazing sea urchins across volcanic

pCO2 gradients in Italy, is suggested to be controlled by the physi-

ological capacity to maintain acid-base homeostasis (Calosi et al.,

2013b; Small et al., 2015). These species-specific responses will

depend on both the physiological limits and energetic costs of the

specific mechanisms employed (Small et al., 2015). Changes in

the energetic costs of maintaining homeostasis across pCO2 gra-

dients can lead to energetic trade-offs that impact growth and

reproduction affecting populations (Harvey et al., 2016). This

demonstrates how natural analogue studies can be used to scale

from direct physiological impacts at the individual level to popu-

lation level responses that may have implications at the commu-

nity level within naturally assembled systems. Fleshy non-reef

forming macroalgae, for example, show marked increases under

naturally elevated pCO2 levels and appear capable of exploiting

pCO2 via photosynthesis (Cornwall et al., 2017a). This allows

seaweed to out-compete calcifying reef species (e.g. corals and

vermetids), whose performance is lowered by dissolution and

increased energetic costs associated with calcification (Milazzo

et al., 2014). In addition to this, key groups (e.g. crustose coral-

line algae) that trigger the recruitment of reef forming species,

can be out-competed or cannot survive (Diaz-Pulido et al., 2011;

Milazzo et al., 2014). Overall such responses lead to ecosystem

shifts from calcareous reefs to algal-dominated habitats (Diaz-

Pulido et al., 2011).

Carbon dioxide seep research carried out in temperate,

sub-tropical, and tropical regions has revealed that responses of

benthic habitats vary regionally. Reduction in species diversity of

corals, but not in total cover of corals, has been cobserved in

Papua New Guinea and Palau (Fabricius et al., 2011; Barkley et al.,

2015), while a shift from hard to soft corals has been documented

in Japan (Inoue et al., 2013) and from corals to macroalgae in

Northern Mariana Islands (Enochs et al., 2015). Hall-Spencer et al.

(2008) and Linares et al. (2015) describe a transition from commu-

nities with abundant calcareous organisms to communities lacking

scleractinian corals and a significant reduction in coralline algae off

CO2 vents in the Mediterranean Sea.

A common feature shared by biological systems chronically

exposed to elevated CO2, and demonstrated uniquely by the use

of natural analogues, is the general loss of habitat complexity and

the associated diversity. Decreasing pH conditions also leads to

ecological shifts, such as changes in competitive dominance and

habitat provisioning (Sunday et al., 2017). For instance, when

kelp/macroalgae and seagrass habitats shift to low-relief turf-algal

habitats off CO2 seeps in New Zealand and Italy, this causes loss

of fish predators and increase in prey fish species, even though

their antipredator responses were compromised (Nagelkerken

et al., 2016). However, such patterns of response are species-

specific (Cattano et al., 2017).

In addition to facilitating the investigation of the interaction

between individual, population, and community responses to

chronic changes in carbonate chemistry within naturally assem-

bled systems, natural analogues provide a suitable test bed for

studies of adaptation to many different environmental drivers.

While lab studies of adaptation require multi-generation incuba-

tion periods, which is impractical in longer lived species and spe-

cies with complex life history patterns, the real strength of natural

analogous approaches is the possibility of tests on populations

pre-adapted through many generations. Thus, natural analogous

may be specifically used to test the potential for a species’ adapta-

tion to future environmental changes, and how such adaptation

may potentially rescue species from local or global extinction.

Evolutionary rescue from environmental changes may be facili-

tated by mutation, evolutionary selection, or migration (Bell and

Collins, 2008; Bell and Gonzalez, 2009). However, in long-lived

multicellular organisms, mutations progress at rates much lower

than what would be needed to facilitate adaptation to present-day

environmental changes. This said, genetically based phenotypic

variation throughout a species’ distribution range provides a con-

stant supply of physiological alternatives or new possibilities

upon which selection can operate to facilitate adaptation to the

new set of conditions that occur (Foo et al., 2012; Munday et al.,

2013; Reusch, 2014; Sunday et al., 2014; Calosi et al., 2016).

Therefore, adaptation from selection in extant genetic diversity,

as well as migration among locally adapted populations may

Analogues of climate change in Northern ecosystems 2301
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effectively decrease the risk of extinction in the face of climate

change and OA. Both of these processes can be tested using natu-

ral analogues, given certain conditions. The main prerequisite for

differential adaptation among natural analogues is that popula-

tions should be genetically isolated. In addition, rates of selection

should not be matched by the rate of gene flow among popula-

tions (Kawecki and Ebert, 2004; Savolainen et al., 2013).

Therefore, a potential challenge in using natural gradients is to es-

tablish possible connectivity patterns between experimental

populations/sub-populations. Many benthic organisms prolifer-

ate in the larval stages and establishing models of larval dispersal

may be important (Cowen et al., 2007). Genetic isolation may be

obtained at a distance of 2–5 times the larval dispersal range

(Palumbi, 2003). However, genetic differences may be compro-

mised with the migration of only a few individuals per generation

(Slatkin, 1993; Cowen and Sponaugle, 2009). Consequently, dif-

ferences in physiological responses of individuals across natural

analogues should be accompanied by an understanding of the

phylogenetic relationship between populations/sub-populations

(Hill et al., 2001; Calosi et al., 2013a, b) or if posable the allelic

heterogeneity in genes related to the physiological processes.

In addressing these challenges analogue selection is critical with

many seep systems presently used showing localised steep gra-

dients in carbonate chemistry over distances of 10 s to 100 s of

meters, allowing organisms to move in or recruit from outside.

This may hinder genetic adaptation (Calosi et al., 2013a, b;

Harvey et al., 2016; Turner et al., 2016) and cause short-term

physiological shocks to organisms that are suddenly exposed to

hypercapnia (Small et al., 2015). Despite this in benthic animals,

adaptation to OA has been recently demonstrated. For instance,

the polychaete Platynereis dumerilii has been shown to adapt to

chronic and elevated levels of pCO2. Populations occupying CO2

vent sites on the Italian coast are physiologically and genetically

different from nearby populations that experience low pCO2

(Calosi et al., 2013a). However, no adaptation to high CO2 condi-

tions was found in the calcifying spirorbid worm Simplaria sp.

following a putative multi-year exposure to high OA conditions

(Turner et al., 2016). Thus ability to adapt to OA conditions does

not appear ubiquitous in marine metazoans (Calosi et al., 2016).

Using natural analogues to testing adaptation in planktonic spe-

cies may be a specific challenge as low genetic differentiation and

efficient dispersal of all life stages may hinder local adaption.

However, recent studies have shown pelagic copepods to be dis-

persed in distinct populations locally with little genetic inter-

change around the Northern hemisphere (Nelson et al., 2009;

Unal and Bucklin, 2010; Yebra et al., 2011; but see Weydmann

et al., 2016), although some species have large oceanic distribu-

tions (Wassmann et al., 2015) Moreover large population sizes of

planktonic organisms, as opposed to less abundant longer-lived

benthic organisms, can promote effective selection with an in-

creased potential for local adaptation (Charlesworth, 2009;

Peijnenburg and Goetze, 2013).

Reciprocal transplant tests between locations characterized by

different environmental regimes should be employed to ascertain

that differences in phenotypes among locations are not caused

by phenotypic plasticity but occur as a result of adaptation

(Niewiarowski and Roosenburg, 1993). Transplant individuals,

once transferred to the new environment, should show the same

phenotype as individuals found in the environment. Any deviation

from this outcome signals that differences stem from either adapta-

tion or transgenerational effects caused by for instance reversible

epigenetic or post-transcriptional changes (Bonduriansky et al.,

2012). However, whilst evidence for phenotypic differences are es-

sential, so is the analyses of allelic differences between populations.

This will further ascertain that observed differences are indeed ge-

netically based (Calosi et al., 2013a; Pespeni et al., 2013; De Wit

et al., 2016). Obviously most of genetic variation involved in adap-

tation to environmental changes lies within expressed sequences

(Jones et al., 2012). Reverse transcription sequencing and tran-

scriptomic treatment are powerful tools to assess the connection

between physiological differences and allelic changes in expressed

genes. Aligning allelic differences to observed differences in tar-

geted physiological processes can be used for a hypothesis-testing

strategy to detect cellular targets of adaptation to ocean acidifica-

tion (Thor and Dupont, 2015; De Wit et al., 2016). This novel

approach seems promising for future studies of effects of environ-

mental change in ecologically important non-model organisms.

Use of natural analogues to explore both
individual and multiple stressors
Hall-Spencer et al. (2008) initiated the use of volcanic CO2 seeps

as analogues for future OA off the Island of Ischia in the

Mediterranean. More recently, similar volcanic sites have been in-

vestigated, for example, in Papua New Guinea (Lamare et al.,

2016), in the subtropical North East Atlantic reefs (La Palma

Island) (Hernández et al., 2016), in the temperate Pacific Ocean

in Japan (Shikine Island) (Agostini et al., 2015), and Bay of

Plenty, New Zealand (Burrell et al., 2015). A natural CO2 seep

was also found in Salt Dome Juist in the North Sea (McGinnis

et al., 2011), although OA studies have not yet been conducted

there. Most OA research using such sites has focused on sessile

benthos to retain greater control over exposure elevated pCO2

conditions. Organisms in the water column can be exposed to

abrupt changes in seawater carbonate chemistry as they move to-

wards or away from the gas vents (Kerrison et al., 2011; Kroeker

et al., 2011). That said, experiments and observations in the water

column around CO2 seeps have been useful in demonstrating

shifts in naturally assembled plankton communities and greater

sensitivity of calcifying plankton even if their exposure may be

transitory (Johnson et al., 2013; Ziveri et al., 2014). For example,

large diatoms tend to grow well at sites with elevated pCO2 with a

significant increase in chlorophyll concentrations and diatom

abundance observed, however cyanobacteria were reportedly

uninfected (Johnson et al., 2013). In contrast coccolithophores

show a decrease in cell concentrations and diversity as calcite sat-

uration decreased from 6.4 to <1, with malformed Emiliania

huxleyi observed at the highest pCO2 levels (Ziveri et al., 2014).

Such studies are not a perfect representation of future pelagic

systems due to migration in and out of the vent system. However,

they facilitate a greater understanding of how plankton commu-

nities that are critical to marine primary production and

biogeochemical cycling naturally assemble under elevated pCO2

conditions in a way not posable using laboratory experiments. In

temperate and tropical conditions invertebrate recruitment to the

benthos is severely disrupted in the elevated pCO2 conditions

found at volcanic seeps, although these observations may overes-

timate the impact of OA since drifting larvae from normal

seawater conditions are suddenly exposed to waters characterised

by elevated pCO2 (Cigliano et al., 2010; Allen et al., 2016). More

realistic, perhaps, are observed impacts of elevated pCO2 on

pelagic organisms that spend long periods in areas with naturally
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acidified conditions. The reproductive behaviour of nesting fish is

affected at CO2 seeps (Milazzo et al., 2016). Zooplankton and fish

that use coral habitat are also much less abundant in elevated

pCO2 conditions, which may be because elevated pCO2 reduces

coral reef complexity (Smith et al., 2016).

The steep gradients in pH and carbonate saturation that occur

next to volcanic seeps consistently have marked effects on the

abundance and distribution of sessile calcified organisms. Studies

show how most coralline algae are highly susceptible to these nat-

urally acidified conditions as their high-Mg calcite skeletons are

easily corroded or damaged (Kamenos et al., 2013; Martin and

Hall-Spencer, 2017). Although some species are less sensitive,

very few survive where aragonite saturation levels fall below 1 for

even brief periods of time (Martin et al., 2008; Fabricius et al.,

2015), and in these acidified conditions they are easily outcom-

peted by fleshy algae (Kamenos et al., 2016). The sensitivity of

calcified organisms to low pH conditions depends on how well

they are able to protect their skeletons or shells. Vent studies have

shown that some corals, for example, can calcify and grow well in

low pH conditions, if they have enough food, as their skeletons

are covered in protective tissue (Rodolfo-Metalpa et al., 2011,

2015). The same is true of certain molluscs, whilst others grow in

a dwarf form to more easily meet the metabolic costs of hyper-

capnia (Garilli et al., 2015). OA is in itself a multiple stressor,

with the effects or low carbonate saturation, low pH, and in-

creased DIC working together to shift the outcome of competi-

tion within marine communities, often to the benefit of weed-like

or r-selected species such as turf algae (Connell and Russell,

2010) and uncalcified polychatetes (Gambi et al., 2016).

Whilst a great deal has been learnt from CO2 seeps worldwide

about the likely long-term ecological effects of OA, these systems

are not perfect analogues for the future. For example, acidifica-

tion is happening alongside local or regional warming. One way

to address this is to compare CO2 seep systems in different ther-

mal regimes and regions to reveal whether related organisms

show consistent responses to elevated CO2 despite differences in

temperature (Johnson et al., 2012). Another approach is to take

advantage of marine heat waves to assess the combined stress of

high CO2 and elevated seawater temperature (Rodolfo-Metalpa

et al., 2010, 2011). Confounding factors may also be present at

CO2 seeps, so a great deal of care is needed to tease apart the

effects of multiple stressors such as low oxygen or elevated metal

toxicity (Vizzini et al., 2013). Consequently, seep sites are selected

to reduce confounding factors and focus only on changes in

pCO2, with a major challenge being how to develop analogue

studies from investigating single to multiple carbonate chemistry

drivers.

Despite challenges, data collected at CO2 seeps currently pro-

vide us with the best window we have into the future for assessing

the risks of acidification to marine communities, habitats, and

ecosystems. However other analogues for future conditions are

available that retain the advantages of seep systems, i.e. chronic

exposure of entire marine communities to low carbonate satura-

tion and high DIC, but lack the disadvantages of rapid variations

in carbonate saturation, steep gradients in pH and DIC. These

analogues may also lack potentially confounding factors such as

hypoxia or H2S toxicity and the influx of organisms that are ex-

posed to a sudden increase in CO2 levels as they recruit, swim, or

drift through these open systems.

Sites where the biology affects the CO2 of the environment

could be used similarly to the seep sites. Due to carbonate

production on coral reefs, some atolls, lagoons, and barrier reefs

can exhibit consistently higher surface pCO2 values than those in

offshore waters (Suzuki and Kawahata, 2004). Sea grass beds,

however, can reduce CO2 levels causing increases in pH and

aragonite saturation (Unsworth et al., 2012). There are also natu-

ral CO2 gradients formed in areas of large-scale seaweed culture

(for example in China). These systems typically experience large

temporal changes in carbonate chemistry due to water movement

and diurnal photosynthesis patterns. These temporal shifts are

even more pronounced in the intertidal environments, for exam-

ple in tide pools, where pCO2 can reach 1 800 matm due to the

respiration of the inhabitants (Andersson et al., 2013). Similarly,

mangrove environments in Bermuda have been shown to experi-

ence large fluctuations in carbonate chemistry parameters (pH,

pCO2, and Xa) over daily cycles (e.g. due to groundwater input)

with pCO2 levels varying from 500 to 4 200 matm (Andersson

et al., 2013). It is still important to characterise these habitats be-

cause of the effects that varying carbonate parameters can have

on organisms. However, these large daily fluctuations may make

it difficult to disentangle the effects of singular factors (e.g. salin-

ity or temperature) as they may covary.

Carbonate chemistry gradients can produce a mosaic pattern

where species and communities may be adapted to diverse condi-

tions, putatively, over multiple generations. This could allow for

the study of the effects of multiple stressors, and allow work on

natural analogues to move forward and encompass multiple driv-

ers of climate change. Naturally overlapping carbonate chemistry

gradients have been described in marine habitats throughout the

world. One of the most common areas for them to occur in is

coastal regions and estuaries, where several interacting biotic and

abiotic stressors are occurring within the environment. Large es-

tuaries may have limited gene flow between populations allowing

for the investigation of the capacity for adaption. There are sev-

eral examples of mosaics identified in estuarine environments

globally. One such system of interacting gradients (total alkalin-

ity, DIC, and salinity) has been identified around the coast of

Ireland. Due to the underlying limestone bedrock of river catch-

ment areas, runoff to coastal and estuarine areas can have high

total alkalinity (TA) values (2 864 mmol Kg�1 TA at salinity

15.86, Shannon plumes) creating these TA gradients, which

expand outwards from the rivers and estuaries (McGrath et al.,

2016). Interacting gradients of salinity, with O2, DIC, and pH,

have been highlighted in the Strait of Georgia (British Columbia,

Canada). The water masses connecting the semi-enclosed estuary

of the Fraser river to the outer shelf of the Pacific Ocean are

subject to the effects of large-scale upwelling and downwelling on

the outer coast leading to different trends in pH and aragonite

saturation in the tributaries (Haro and Juan de Fuca) feeding the

Strait of Georgia as well as overlapping gradients (Ianson et al.,

2016). The use of these dynamic coastal environments may offer

insight into the long-term effects and adaptation of organisms to

changing oceanic conditions. Unlike the CO2 seep systems

these estuarine habitats cover a greater spatial range and, thus,

carbonate chemistry gradients are likely to be less steep possibly

limiting gene flow among populations to a rate lower than selec-

tion, facilitating adaptation (Kawecki and Ebert, 2004; Savolainen

et al., 2013).

To date there has been limited research using mosaics to look

at the chronic and/or acute effects of carbonate chemistry drivers

on organismal performance and fitness. One such study examined

the effect of salinity and pH gradients on the spatio-temporal
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variation in communities of phytoplankton in Sungai Brunei and

Brunei bay estuarine system which identified the highest algal

densities occurring at the highest pH (pH 7.8) and highest salinity

(salinity 27) and the number of taxa present decreased with de-

creasing pH (Majewska et al., 2017). A similar salinity and pH

gradient located in the same estuary (Sungai Brunei estuary) has

also been used to determine correlations between shell dissolution

in the gastropod Thais gradate and carbonate chemistry drivers

(pH, salinity, calcium concentration). At decreased pH (6.83 6

0.39), lower calcium and low salinity (13.50 6 5.49), individuals

exhibited higher levels of shell erosion and smaller standardised

shell length compared to individuals acclimatised to higher pH

(8.02 6 0.15) and salinity (27.17 6 3.0). These estuarine scale

gradients can be subject to temporal changes based on daily cycles

(e.g. salinity, temperature) although these are usually not as pro-

nounced as smaller scale habitats such as tide pools and

mangroves.

There are however larger-scale mosaics, which offer the oppor-

tunity to study the effects of changing carbonate chemistry at

continental scales. For example, at the continental shelf upwelling

on the western cost on North America from central Canada in

northern Mexico, where although seasonal upwelling of low pH

water is a natural phenomenon the extent of the affected area is

increasing with OA (Feely et al., 2008).One such mosaic has been

identified in the California current system where, due to constant

upwelling, a spatial mosaic of carbonate chemistry is formed.

This large (1 280 km of coastline) environmental mosaic of over-

lapping temperature, carbonate chemistry, and chlorophyll-a

gradients has been used to investigate how multiple interacting

stressors associated with global change impact the growth and

predation vulnerability of the California blue mussel Mytilus

californianus (Kroeker et al., 2016). This study demonstrated that

dynamic environments with frequent exposure to low pH seawa-

ter and consistent food showed highest growth rate and lowest

predation vulnerability. Whereas, growth was limited in areas

with frequent low pH and less consistent food availability and

with extremes in low tide body temperature (Kroeker et al.,

2016). Other potential sites for large-scale mosaics can be found

in the eastern Pacific Ocean and the Arabian sea where overlap-

ping gradients in temperature, oxygen, and carbonate chemistry

have be used to assess the relative inference of these climate

change associated drivers on macrofaunal diversity and evenness

(Sperling et al., 2016). In this study oxygen levels explain most of

the variation in species diversity, while, carbonate chemistry was

the best explanatory variable in the Arabian sea it explains less of

the variation in the Pacific.

Chemical oceanography and possible natural
analogues in Arctic and sub-Arctic ecosystems
The potential is large for investigating natural analogues of multi-

ple carbonate chemistry drivers to better understand the possible

effects of climate change on the physiological, ecological, and

evolutionary capacity of individuals and communities. However,

to date such sites have been exclusively identified in temperate

and tropical seas, despite the importance and possibly greater

sensitivity of sub-Arctic and Arctic regions to OA. Potential sub-

Arctic volcanic CO2 seep sites may be found in Iceland. Other

possible study sites may be found at varying depths around Jan

Mayen in vent fields between the Greenland and Norwegian Seas,

and off the west coast of Spitsbergen. The consequence of OA on

ecosystems and biogeochemical cycling in this area is unknown.

The increased acidity due to CO2, associated with corrosive

volcanic input and increased Arctic water masses, and potential

vulnerability of key species, calls for the investigation of pH and

other carbonate chemistry variables, as well as vulnerable species

and processes (Fauchald et al., 2014). Other gradients in carbon-

ate chemistry may be associated with large stocks of methane

hydrate that exist in the sub-Arctic and the Arctic. Warming of

seawater can destabilize methane hydrate and release methane

(CH4) to the water column. A recent study demonstrated that the

majority of this CH4 is oxidized in the water column to CO2

without escaping to the atmosphere (Myhre et al., 2016). Release

of CH4 from the sediment and subsequent oxidation to CO2 in

the water column were modelled and attributed to prolonged OA

(Boudreau et al., 2015). Methane cold seep sites are found exten-

sively in the polar oceans, for example, East Siberian Shelf

(Shakhova et al., 2017), off Svalbard (Myhre et al., 2016), Baffin

Island Shelf (Punshon et al., 2014), and the Barents Sea (Hong

et al., 2017; Serov et al., 2017). Although, cold seeps may provide

sites for studying natural gradients in carbonate chemistry in po-

lar oceans investigations of the chemical oceanography, including

confounding effects of CH4, and the biology of such sites are in

their infancy and their depth and remoteness makes them logisti-

cally difficul. Other mosaics in carbonate chemistry drivers that

may drive plankton communities can be found marginal ice zone

of the Arctic ocean (Lewis et al., 2013; Barber et al., 2015; Jule

et al., 2018). Coastal regions in high-latitude oceans are influ-

enced by freshwater such as rivers, glaciers, and sea ice melt. Each

freshwater source has different carbonate chemistry and affects

local acidification states (Chierici and Fransson, 2009). In the

Hudson Bay (Canada), the rivers flowing into the western bay

have higher alkalinity than those in the eastern bay due to the dif-

ference in watershed geology. Watershed of the western rivers is

composed of lime stones, while that of eastern rivers is basaltic.

Consequently, carbonate saturation states and pH in the western

bay is higher than those in the eastern bay (Azetsu-Scott et al.,

2014). Similar gradients of pH, carbonate saturation state, and al-

kalinity are observed in the Spitsbergen/Svalbard fjord system in

different years due to drainage of meltwater containing calcareous

minerals from the bedrock (Fransson et al., 2015, 2016). These

heterogeneous chemical environments can be studied in detail to-

gether with individual species and ecosystem responses. In addi-

tion to freshwater runoff from glacial melt water in Arctic fjords,

there can also be upwelling near the glacier fronts affecting the

biogeochemical gradients and ecosystem (Straneo et al., 2012;

Lydersen et al., 2014; Meire et al., 2015). Chemical gradients are

also observed in polar fronts where warm, Atlantic water meets

cold, polar water, such as in the Barents Sea and Fram Strait

(Chierici et al., 2016). To use naturally occurring gradients as

analogues to study effects of climate change and OA to marine

ecosystems, we also need to clarify how the sites represent the

future marine environments beyond the carbonate system. For

example, some sites may provide pH gradients with an extreme

dissolved oxygen range, or pH may fluctuate outside that pre-

dicted for OA. Also, pH variation can be attributed to other

factors than the carbonate system, such as H2S at volcanic seeps.

Variable responses by organisms and ecosystems in chosen sites

may be the results of multiple environmental drivers such as,

nutrients, salinity, temperature, dissolved oxygen, and the TA

of terrestrial runoff from glaciers and rivers. To address these

questions, it is necessary to understand temporal and spatial
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variability of carbonate chemistry, controlling mechanisms of OA

and chemical compositions of seawater such as heavy metals,

nutrients, hydrogen sulfide and methane. Although many con-

founding factors associated with chemical composition can be

controlled by monitoring, modelling, and careful site selection,

factors such as salinity, TA, and temperature may be more vari-

able particular in coastal environments.

Target habitats and species
In all ecosystems, there are some species or taxonomic groups

that play a disproportionately important functional role, e.g. as

prey, as habitat engineers or in the recycling of nutrients. If such

species suddenly increase or decrease in abundance, due to

changes in the abiotic environment, the community structure

might change or even regime shifts ecosystems may occur in the

ecosystem (Kortsch et al., 2012; Fossheim et al., 2015). Polar

ocean ecosystems in general are characterized by having pathways

of energy flow from lower to higher trophic levels dominated by a

small number of species (Murphy et al., 2016), e.g. the copepod

C. glacialis and the shell-bearing pteropod L. helicina constitute

the main food source for a large variety of large zooplankton,

juvenile fish, baleen whales, and birds in northern ecosystems

(Last, 1980; Lowry, 1993; Karnovsky et al., 2003; Hop and

Gjøsæter, 2013).

Shell-bearing pteropods are generally thought to be extremely

sensitive to reduced pH because they exert little control over the

pH and carbonate chemistry of their calcifying fluid (Ries, 2012;

Manno et al., 2017). Indeed, shell dissolution has been observed

in some ocean areas where aragonite saturation state is around

1 (Bednar�sek et al., 2012). However, recent studies from the

California Current Ecosystem (that naturally experiences under-

saturated waters with respect to aragonite due to seasonal up-

welling) have shown that L. helicina individuals that originate

from areas with a naturally lower aragonite saturation state ex-

hibit a higher survival rate when compared to individuals from

areas with a higher aragonite saturation state when exposed to

high pCO2 waters in laboratory (Bednar�sek et al., 2017).

Similarly, different responses to OA were observed in three geo-

graphically separated populations of C. glacialis (Thor et al.,

2017). Copepodids collected from Kongsfjorden and Billefjorden

(Svalbard) showed severe reductions in ingestion and an in-

creased metabolic cost when exposed to high pCO2 waters in lab-

oratory whereas no effects were observed in copepodids collected

from Disko Bay (west Greenland). In addition, northern popula-

tions of the gastropod Littorina littorea showed no ability to mod-

ulate their metabolic rates in response to the exposure to OA

conditions. In addition, they showed the greatest shift in metabo-

lomic profiles and shell dissolution (Calosi et al., 2017). This may

suggest that northern populations of warm-adapted species are

not be able to deal with low pH regimes typical of subpolar and

polar environment.

Gradients in pH, carbonate saturation state, and alkalinity oc-

cur in several Svalbard/Spitsbergen fjord systems where pteropods

and copepods could be studied (Fransson et al., 2015, 2016).

However as pelagic organisms can be exposed to abrupt changes

in seawater carbonate chemistry as they move across smaller scale

natural gradients (Kroeker et al., 2011), larger scale open-ocean

gradients in carbonate chemistry, such as in the Barents Sea and

Fram Strait polar fronts (Chierici et al., 2016) may be more suit-

able as natural laboratories to investigate the sensitivity of

different zooplankton populations to OA, compared to smaller

special gradients. Polar coastal ecosystems support extensive bio-

genic habitats in the form of coralline algae beds and cold-water

coral gardens and reefs. Coralline algae and cold-water corals are

considered ecosystem engineers as they play a prominent role in

the polar carbonate cycle and act as habitats for thousands of

other benthic species (Freiwald and Henrich, 1994; Teichert,

2014; Henry and Roberts, 2017). It is expected that any changes

in the secondary production of these benthic habitat-building

taxa would have scaling effects on polar food webs. Studies assess-

ing the effects of OA on them are therefore of utmost interest for

both fisheries and environmental management. In some Arctic

fjords (in both northern Norway and Greenland), cold-water

corals have been observed where chemical gradients can be inves-

tigated. Extensive cold-water corals reefs and coral gardens occur

in northern Norway, Iceland, western Greenland, and eastern

Canada (Buhl-Mortensen et al., 2015). Coralline algae beds have

been described from the euphotic zone in the fjords of northern

Norway and Svalbard (Brodie et al., 2014; Teichert and Freiwald,

2014), eastern and western Greenland (Jørgensbye and Halfar,

2017), and eastern Canada (Halfar et al., 2013). Laboratory stud-

ies have yielded contrasting results regarding coralline algae and

cold-water coral performance under elevated temperature and

pCO2 (Ragazzola et al., 2013; Büscher et al., 2017 and references

therein). Several factors, such as seasonality, food availability, and

species-specific traits, have been proposed to explain the discrep-

ancy between studies. What is clear is that many coralline algae

and cold-water coral species have the ability to upregulate pH at

the site of calcification and thus continue to grow even in corro-

sive water (McCulloch et al., 2012; Cornwall et al., 2017b):

however, often at a reduced rate. Furthermore, the dissolution of

the unprotected skeleton (forming the main part of the coralline

algae beds and cold-water coral reefs) is always faster under cor-

rosive conditions. Short-term laboratory studies, however, cannot

test the ability of these species, which have very slow growth and

long generation times, to acclimate and/or adapt to ocean warm-

ing and acidification. Many of the sites with coral or coralline al-

gae show mosaics in carbonate chemistry, temperature and food

availability (driven by up-welling and glacial melt) and could

hence be used to assess the long-term ability of these species to

acclimate/adapt to higher CO2 and temperature. It is plausible

that, similarly to pteropods and copepods, geographically sepa-

rated populations might respond differently to exposure to high

CO2 waters. However, such future studies would require long-

term data on carbonate chemistry, temperature, and perhaps

even ecological parameters such as food availability/seston con-

certation and quality. Although at specific locations there is a

growing understanding of natural spatial and temporal gradients

in carbonate chemistry for example Hudson Bay (Azetsu-Scott

et al., 2014) and Kongsfjorden (Fransson et al., 2015) an increased

monitoring and modelling efforts will be required. In general, the

Arctic Ocean and adjacent seas (Barents Sea and Norwegian Sea)

are little investigated with regard to carbonate chemistry. The

longest, northernmost time series study site is located in the

Iceland Sea (Olafsson et al., 2009). On other sites such as

Svalbard fjords, Fram Strait, and the Barents Sea repeat measure-

ments along hydrography sections was initiated in 2011.

Biological and physical parameters have been sampled systemati-

cally in the Barents Sea since the 1950’s through the Institute of

Marine Research (Norway) ecosystem surveys, The Fram Strait

has annual cruises with carbonate chemistry since 2011 and in
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recent years also pteropod collection. There are also several

moorings with proposed plans to extend the sensor systems to in-

clude carbonate chemistry for data collection throughout the

year. However, in the Arctic Ocean, data still relies on research

projects and distributed biological observatories (DBO) such as

in the Chukchi Sea. DBO’s which may be extended to include

more parts of the Arctic Ocean.

Conclusions
High latitude oceans are particularly sensitive to climate change,

due to naturally low pH and CaCO3 saturation caused by chang-

ing freshwater content, and high solubility of CO2 due to rela-

tively low temperatures (Chierici and Fransson, 2009; AMAP,

2013; Chierici et al., 2016). However, despite the northern oceans

being in a state of rapid transition, little is known about the possi-

ble effects of predicted OA on ecologically important species and

communities. What is known mainly comes from relatively

short-term laboratory incubations to isolated carbonate chemis-

try drivers (i.e. pCO2, salinity, or temperature independently).

These studies give little opportunity to investigate either the bidi-

rectional interactions between responses at the individual, popu-

lation, and community levels, or the possible capacity for

transgenerational adaptation of species to climate change drivers.

However, in a number of tropical and temperate ecosystems these

questions have been successfully addressed by using natural gra-

dients in carbonate chemistry as analogues for predicted OA,

where species have potentially adapted/acclimatised over multiple

generations within naturally assembled communities. Despite the

clear potential for using such analogues also at high latitudes, this

remains to be investigated.

To date such studies in tropical and temperate ecosystems

have mostly focused on volcanic CO2 vent sites that are often

carefully selected to avoid confounding factors such as H2S, heavy

metals, salinity, or temperature. Potential Arctic volcanic CO2

vent sites are reported in the Jan Mayen vent fields and off the

west coast of Spitsbergen. Furthermore, methane cold seeps are

found extensively in northern oceans. However, the chemical

oceanography, including possible confounding effects of meth-

ane, H2S, or heavy metals needs further investigation. The depth

and remoteness of these sites also makes them logistically de-

manding. The research value of CO2 vent sites studied to date is

their relatively simple experimental design with relatively short

gradients and limited confounding drivers. However, this can

also be a limitation due to increased gene flow across shorter gra-

dients making it difficult to investigate adaptive capacity, and a

lack of opportunity to study the interaction of multiple drivers.

Consequently, a number of recent studies has investigated larger

scale sites such as areas of coastal upwelling and estuaries where

gradients in carbonate chemistry (e.g. salinity, total alkalinity,

pCO2, and temperature) intersect to produce an environmental

mosaic. This has the potential to allow work on natural analogues

to move forward and encompass multiple climate change drivers.

At high latitudes, such mosaics occur at different scales from

coastal regions and fjords influenced by fluctuations in tempera-

ture, salinity, and total alkalinity of freshwater (e.g. rivers, gla-

ciers, and sea ice melt) to polar fronts where warm, Atlantic water

meets cold, Arctic water: e.g. Barents Sea and Fram Strait.

Although beyond the scope here, it should be noted that similar

mosaics in carbonate chemistry drivers have been described in

the Southern Ocean. With seasonal wintertime minimum in car-

bonate ion concentration south of the Antarctic Polar Front,

which is predicted to lead to aragonite undersaturation when at-

mospheric CO2 levels reach above 450 ppm (McNeil and Matear,

2008). In the Ross sea surface pH varies from (7.890–8.033) with

the highest values in Terra Nova Bay and Ross Sea polynyas.

Intrusion of the Circumpolar Deep Water can also lead to low

pH values (7.969 6 0.025) in the Ross Sea shelf area (Rivaro

et al., 2014). Such natural fluctuations in carbonate saturation

have been shown to inference the shell dissolution in the

Southern Ocean pteropod L. helicina Antarctica (Bednar�sek et al.,

2012).

It is important that appropriate analogue sites are selected

to investigate particular key species, habitats, or processes. For

example, smaller scale analogues within fjords may be used to

investigate the effects of multiple interacting drivers on key ben-

thic biogenic habitats (e.g. coralline algae and cold-water corals)

scaling between individual physiological effects and community

level responses. Larger-scale gradients in big fjords and coastal

upwelling areas are more suitable for species with a higher mobil-

ity. Larger analogues allow for target populations to be more ge-

netically isolated and are therefore more suitable for investigating

the capacity for local and regional adaptation. When investigating

ecologically important pelagic organisms (e.g. zooplankton) that

can be exposed to abrupt changes in seawater carbonate chemis-

try as they move across smaller scale natural gradients, lager-scale

open-ocean analogues may have some advantage: e.g. gradients in

carbonate chemistry across polar fonts in the Barents Sea and

Fram Strait. However, as the scale of gradients increases it

becomes more difficult to understand the role of individual

confounding drivers, which are often connected and correlated.

Although many confounding factors can be controlled for by

using appropriate monitoring and modelling to inform site selec-

tion, some carbonate chemistry drivers in more complex systems

are likely to co-vary. Consequently, as we move toward a more re-

alistic understanding of multiple carbonate drivers in the field, it

is not suggested that such studies replace laboratory incubations

but rather that both methods complement each other with natu-

ral analogues used to validate responses observed in the labora-

tory and laboratory incubations used to disentangle cofounding

drivers observed in natural systems. It is clear, that if used and

selected appropriately to fit the question, and combined with

monitoring and modelling of the chemical oceanography, natural

analogues will be a powerful tool to achieve a better understand-

ing of the possible effects of climate change on high latitude spe-

cies, communities, and ecosystems.
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Baggini, C., Patti, F. P., Jeffree, R. et al. 2011. Coral and mollusc
resistance to ocean acidification adversely affected by warming.
Nature Climate Change, 1: 308–312.

Rodolfo-Metalpa, R., Montagna, P., Aliani, S., Borghini, M., Canese,
S., Hall-Spencer, J. M., Foggo, A. et al. 2015. Calcification is not
the Achilles’ heel of cold-water corals in an acidifying ocean.
Global Change Biology, 21: 2238–2248.

Savolainen, O., Lascoux, M., and Merila, J. 2013. Ecological genomics
of local adaptation. Nature Reviews Genetics, 14: 807–820.

Serov, P., Vadakkepuliyambatta, S., Mienert, J., Patton, H., Portnov,
A., Silyakova, A., Panieri, G. et al. 2017. Postglacial response of
Arctic Ocean gas hydrates to climatic amelioration. Proceedings
of the National Academy of Sciences, 114: 6215–6220.

Shakhova, N., Semiletov, I., Gustafsson, O., Sergienko, V.,
Lobkovsky, L., Dudarev, O., Tumskoy, V. et al. 2017. Current
rates and mechanisms of subsea permafrost degradation in the
East Siberian Arctic Shelf. Nature Communications, 8: 15872.

Slatkin, M. 1993. Isolation by distance in equilibrium and nonequili-
brium populations. Evolution, 47: 264–279.

Small, D. P., Milazzo, M., Bertolini, C., Graham, H., Hauton, C.,
Hall-Spencer, J. M., and Rastrick, S. P. S. 2015. Temporal fluctua-
tions in seawater pCO2 may be as important as mean differences
when determining physiological sensitivity in natural systems.
ICES Journal of Marine Science, 73: 604–612.

Smith, J. N., De’ath, G., Richter, C., Cornils, A., Hall-Spencer, J. M.,
and Fabricius, K. E. 2016. Ocean acidification reduces demersal
zooplankton that reside in tropical coral reefs. Nature Climate
Change, 6: 1124–1129.

Sperling, E. A., Frieder, C. A., and Levin, L. A. 2016. Biodiversity
response to natural gradients of multiple stressors on
continental margins. Proceedings of the Royal Society B, 283:
20160637.

Stiasny, M. H., Mittermayer, F. H., Sswat, M., Voss, R., Jutfelt, F.,
Chierici, M., Puvanendran, V. et al. 2016. Ocean acidification
effects on Atlantic cod larval survival and recruitment to the
fished population. PLoS One, 11: e0155448.

Straneo, F., Sutherland, D. A., Holland, D., Gladish, C., Hamilton, G.
S., Johnson, H. L., Rignot, E. et al. 2012. Characteristics of ocean
waters reaching Greenland’s glaciers. Annals of Glaciology, 53:
202–210.

Sunday, J. M., Calosi, P., Dupont, S., Munday, P. L., Stillman, J. H.,
and Reusch, T. B. H. 2014. Evolution in an acidifying ocean.
Trends in Ecology and Evolution, 29: 117–125.

Sunday, J. M., Fabricius, K. E., Kroeker, K. J., Anderson, K. M.,
Brown, N. E., Barry, J. P., Connell, S. D. et al. 2017. Ocean acidifi-
cation can mediate biodiversity shifts by changing biogenic habi-
tat. Nature Climate Change, 7: 81–85.

Suzuki, A., and Kawahata, H. 2004. Reef water CO2 systems and car-
bon production of coral reefs: topographic control of system-level
performance. Global Environmental Change in the Ocean and on
Land, ed M Shiyomi et al., 229–248.

Teichert, S. 2014. Hollow rhodoliths increase Svalbard’s shelf biodi-
versity. Scientific Reports, 4: 6972.

Teichert, S., and Freiwald, A. 2014. Polar coralline algal
CaCO3-production rates correspond to intensity and duration of
the solar radiation. Biogeosciences, 11: 833–842.

Thomsen, J., Gutowska, M. A., Saphörster, J., Heinemann, A.,
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