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Abstract

Marine fisheries in coastal ecosystems in many areas of the world have historically removed
large-bodied individuals, potentially impairing ecosystem functioning and the long-term
sustainability of fish populations. Reporting on size-based indicators that link to food-
web structure can contribute to ecosystem-based management, but the application of
these indicators over large (cross-ecosystem) geographical scales has been limited to
either fisheries-dependent catch data or diver-based methods restricted to shallow waters
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footprint provide key refuges for larger marine fishes,
irrespective of ecosystem and species identity.
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(<20 m) that can misrepresent the abundance of large-bodied fished species. We obtained
data on the body-size structure of 82 recreationally or commercially targeted marine dem-
ersal teleosts from 2904 deployments of baited remote underwater stereo-video (stereo-
BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of
the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e.,
a proxy of human impacts) were the strongest predictors of the probability of occurrence
of large fishes and the abundance of fishes above the minimum legal size of capture. No-
take marine reserves had a positive effect on the abundance of fishes above legal size,
although the effect varied across species groups. In contrast, sublegal fishes were best pre-
dicted by gradients in sea surface temperature (mean and variance). In areas of low human
impact, large fishes were about three times more likely to be encountered and fishes of legal
size were approximately five times more abundant. For conspicuous species groups with
contrasting habitat, environmental, and biogeographic affinities, abundance of legal-size
fishes typically declined as human impact increased. Our large-scale quantitative analyses
highlight the combined importance of seascape complexity, regions with low human foot-
print, and no-take marine reserves in protecting large-bodied fishes across a broad range
of species and ecosystem configurations.

KEYWORDS

baited remote underwater stereo-video, ecosystem functioning, environmental reporting, fishing, human gravity,
no-take marine reserves , funcionamiento ambiental, gravedad humana, pesca, reporte ambiental, reservas de
protección total, video estéreo subacuático remoto con cebo

Resumen

Las pesquerías marinas de los ecosistemas costeros en muchas áreas del mundo históri-
camente han removido a individuos de gran tamaño, potencialmente perjudicando el fun-
cionamiento ambiental y la sostenibilidad a largo plazo de las poblaciones de peces. Los
reportes sobre los indicadores basados en el tamaño que se vinculan con la estructura de la
red alimenticia pueden contribuir al manejo basado en el ecosistema, aunque la aplicación
de estos indicadores a grandes (inter-ecosistemas) escalas geográficas ha estado limitada a
datos de captura dependientes de las pesquerías o métodos basados en el buceo restringi-
dos a aguas someras (<20 m), lo cual puede representar erróneamente la abundancia de
peces de gran tamaño capturados para la pesca. Obtuvimos los datos de la estructura del
tamaño corporal de 82 teleósteos marinos demersales focalizados por razones recreativas o
comerciales tomados de 2,904 despliegues de video estéreo subacuático remoto con cebo
(stereo-BRUV, en inglés). El muestreo se realizó hasta los 50 metros de profundidad y
abarcó aproximadamente 10,000 km del talud continental de Australia. El relieve marino,
la profundidad del agua y la gravedad humana (es decir, un indicador de los impactos
humanos) fueron los pronosticadores más sólidos de la probabilidad de incidencia de los
peces de gran tamaño y de la abundancia de peces por encima del tamaño legal mínimo de
captura. Las reservas marinas de protección total tienen un efecto positivo sobre la abun-
dancia de los peces que están por encima del tamaño legal, aunque el efecto varió según
el grupo de especies. Como contraste, los peces de tamaño sublegal fueron pronosticados
de mejor manera usando gradientes de la temperatura de la superficie marina (media y var-
ianza). En las áreas con un impacto humano reducido, los peces de gran tamaño corporal
tenían hasta tres veces mayor probabilidad de aparecer y los peces de tamaño legal eran
aproximadamente cinco veces más abundantes. Para los grupos de especies conspicuas
con afinidades contrastantes de hábitat, ambiente y biogeografía, la abundancia de peces
de tamaño legal normalmente declinó conforme aumentó el impacto humano. Nuestros
análisis cuantitativos a gran escala resaltan la importancia conjunta que tienen la compleji-
dad marina, las regiones con una huella humana reducida y las reservas marinas de protec-
ción total para la protección de los peces de gran tamaño corporal en una extensa gama de
especies y configuraciones ecosistémicas.
Efectos de la Huella Humana y los Factores Biofísicos sobre la Estructura del Tamaño
Corporal de Especies Marinas Capturadas para la Pesca
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INTRODUCTION

Globally, the overexploitation of some coastal ecosystems has
resulted in the widespread decline of larger-bodied fish (Jackson
et al. 2001; Olden et al. 2007) that likely play a key role in ecosys-
tem function (Dulvy et al. 2004; Fisher et al. 2010) and popula-
tion replenishment (Barneche et al. 2018). Regional examples
of appropriate fisheries and conservation governance, including
ecologically representative networks of no-take marine reserves
(NTMRs) and management tools, such as catch limits (MacNeil
et al. 2020), can serve as a blueprint for achieving stock sus-
tainability and marine biodiversity conservation targets (Duarte
et al. 2020). In this context, quantitative syntheses that encom-
pass multiple biogeographic regions, capturing broad-scale vari-
ations in environmental conditions, ecosystem structure, and
species composition are critical to disentangle anthropogenic,
habitat, and environmental determinants of the abundance and
size distribution of fishes (Cinner et al. 2018; Jouffray et al.
2019). Ultimately, this information can be used to optimize
ecosystem functions and services for human well-being under
different social-ecological contexts (Cinner et al. 2020).

In commercially exploited fishes, numerous size-based indi-
cators have been developed in recent decades to track the
response of populations and communities to changes in man-
agement and environmental conditions (Bianchi et al. 2000; Shin
et al. 2005). More recently, these indicators are being measured
with nondestructive methods that can be broadly applicable to
multispecies assemblages and ecosystem types, across both tem-
perate (Fulton et al. 2005) and tropical regions (e.g., Wilson
et al. 2010; Nash et al. 2016; Robinson et al. 2017). However,
studies that test the robustness of these indicators over large
geographical scales, capturing transitions in ecosystem structure
from tropical to temperate waters, have been limited and relied
on the use of underwater visual census techniques (UVCs) (e.g.,
Stuart-Smith et al. 2017; Heather et al. 2020). Although global
in extent, UVCs are limited in depth (usually <20 m) and can
potentially underrepresent the diversity and abundance of large-
bodied fished species (Willis & Babcock 2000; Rojo et al. 2021).
Further, some targeted fish display behavioral changes to the
diver’s presence along gradients of human footprints (Lindfield
et al. 2014), including those associated with depth (Andradi-
Brown et al. 2018).

The advent of baited remote underwater stereo-video
(stereo-BRUV) has proven valuable to overcome the limita-
tions of diver-based censuses in sampling large roving species
across broad depth ranges (Langlois et al. 2020). Agonistic
behavioral interactions around the bait may bias abundance and
size-frequency distribution estimates (Dunlop et al. 2015); how-
ever, the use of large horizontal fields of view provides a rep-
resentative sample of the broader fish assemblage, including
predatory and prey species (Cundy et al. 2017; Coghlan et al.
2017), and provides length-frequency distributions comparable
to fisheries-dependent surveys (Langlois et al. 2015). Prior to
the current study, the large-scale representative syntheses of fish
assemblage data from stereo-BRUVs were limited to studies

focusing on sharks and pelagic predatory species (Letessier et al.
2019; MacNeil et al. 2020). However, demersal marine teleosts
encompass a diverse taxonomic group with high social, eco-
nomic, and ecological importance, representing about one-third
of the global reconstructed marine fisheries catch (FAO 2016)
and playing key roles in marine trophodynamics (Frank et al.
2015).

We investigated the potential drivers of body-size structure
of 82 species of marine demersal teleosts that are of impor-
tance to commercial, recreational, or both fisheries around Aus-
tralia, a continent with a record of strong fisheries management
(Alder et al. 2010) and one of the most complex and exten-
sive networks of NTMRs worldwide (Boonzaier & Pauly 2016).
We compiled length and abundance information from a unique,
large-scale (approximately 10,000 km of coastline) synthesis of
stereo-BRUV data encompassing a section of the continental
shelf of Australia (1–50 m depth) (Figure 1). The diverse bio-
geographic distributions, contrasting life-history strategies, and
fisheries productivity of these species (Appendix S1) enabled us
to test the role of human footprints in shaping body-size struc-
ture of fished species. Information-theoretic approaches were
used to assess the relative influence of habitat, environmen-
tal, and anthropogenic factors for predicting the probability of
occurrence of fishes above the 90th percentile of the observed
body size distribution for a given species (i.e., large), as well as
the relative abundance of fishes above (i.e., legal) and below (i.e.,
sublegal) the minimum legal size (MLS) of capture.

METHODS

Data syntheses

We collected quantitative data on the body-size structure of
recreational and commercially fished species (marine teleosts)
from a synthesis of stereo-BRUV data across Australia
(Figure 1; Appendix S2). The compilation of individual data sets
was enabled through a central repository of image-annotation
data (GlobalArchive; https://globalarchive.org/). The full data
set consisted of single and stereo-BRUV deployments (2004–
2017) and covering six administrative states and five marine
ecoregions. Survey data were collected and analyzed with stan-
dard operating procedures (Langlois et al. 2020) and were
mostly comparable in terms of bait type (pilchards), method of
recording abundance (maximum number of individuals present
in the field of view for each species at one time [MaxN] [Priede
et al. 1994]), taxonomic resolution (species level), and soak time
(60 min; only approximately 6% of samples had 30 min) (details
in Harvey et al. [2021]). To improve the comparability of the
data set, we excluded samples that did not include length infor-
mation for all target species present (i.e., mono BRUVs), tar-
geted offshore oceanic regions, targeted depths beyond the
50-m isobath, and were not conducted during daylight hours
(0900–1700). Small-scale variations in the stereo-BRUV setup
(sample separation, bait quantity, and soak time) were accounted

https://globalarchive.org/
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FIGURE 1 Locations of baited remote underwater stereo-video (stereo-BRUV) deployments (i.e., samples, n = 2904) across Australian neritic (1–50 m)
continental shelf systems (green, samples in no-take marine reserves [NTMRs] boundaries, n = 541; red, samples outside NTMR boundaries, n = 2363; light blue,
temperate waters; orange, tropical waters)

for by including CampaignID (i.e., a unique sampling event in
time and space carried out by a particular research group) as a
random factor in the statistical models (Appendix S3). Although
MaxN has been criticized for its hyperstability (Schobernd et al.
2014) (i.e., counts remain stable despite changes in true popula-
tion abundances), this typically occurs at relatively large MaxN
values (>20), which are rare for targeted species that typically
occur in low numbers (mean maximum MaxN 7.85 [SD 8.14]
across species in our data set). Recent empirical analyses have
also shown that MaxN scales linearly with metrics that quan-
tify abundance across the entire length of the deployment (e.g.,
mean count), providing an unbiased estimate of abundance
(MacNeil et al. 2020). Where temporal sampling had occurred,
we retained the year closest to 2011 (Appendix S4), correspond-
ing to the year the population density grid was available. The
temporal coverage of samples we used spanned from 2006 to
2017, and samples were spread across seasons in temperate
and tropical waters, although the distribution was unbalanced
(Appendix S5). The inclusion of CampaignID as a random fac-
tor in the analyses enabled us to account for this spatial and
temporal variation (Appendix S4).

Body-size structure of fished species

We only considered fished species managed through state-
specific MLS regulations to better understand anthropogenic
and environmental drivers of body-size structure in fished

species. These included 82 demersal marine teleosts in 18 fam-
ilies (Appendix S1). For each stereo-BRUV deployment, we
aggregated (i.e., summed) individuals of a species at the time
of the species’ MaxN that were above the 90th percentile of
the observed body distribution (i.e., large), as well as those
that were above (i.e., legal) and below (i.e., sublegal) the state
and region-specific MLS. The aggregated abundance (summed
MaxN across species) for each size class was then used as a size-
based indicator. Large fishes were rare in the samples, and we
converted abundance data to presence or absence and used this
as an indicator of fishing impacts in the probability of occur-
rence of the largest, and more vulnerable, size class. The large
fishes were still included in the legal-size fishes (i.e., not mutu-
ally exclusive) to retain abundance records of the largest individ-
uals. Although this metric cannot adequately capture changes
across the full spectrum of individual body sizes in a com-
munity (e.g., slope of the size spectra [Heather et al. 2020]),
it provides a robust approach to assess abundance trends for
size classes with different vulnerabilities to fisheries exploita-
tion. Similar indicators have been proposed elsewhere to
assess the ecological status of shallow reef ecosystems (Stuart-
Smith et al. 2017) and fisheries potential of global coral reefs
(Cinner et al. 2020). Because some species are not managed
through MLS regulations in all states, we used the median MLS
across states as a conservative threshold for defining legal and
sublegal fishes. This was a necessary trade-off to capture inter-
regional differences in life-history parameters, as well as social
considerations, that determine the legal-size of capture, while
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preserving the majority of fished species contributing to the data
across regions.

We tested whether assemblage-level models were representa-
tive of community-level responses to human footprints by parti-
tioning our analysis for regional groups of conspicuous species.
For each representative tropical and temperate family in the data
set, we selected either the most conspicuous targeted species
or grouped species with similar habitat preferences and sus-
pected levels of fisheries exploitation at the genus level. The lat-
ter was a necessary trade-off due to the large amount of 0s for
some species across their biogeographic extent of occurrence.
This resulted in seven regional species groups, including key tar-
geted species for Australian commercial and recreational fish-
eries (Flood et al. 2014), but also iconic species for multispecies
coral reef fisheries and temperate families with high ecological
and socioeconomic importance in other regions (Appendix S6);
thus, our results can be broadly applicable in a global context.
We only included samples that were within the biogeographic
extent of occurrence of each species group in the data set to
down weight the importance of known biogeographic drivers
(Appendix S7).

Biophysical and anthropogenic covariates

We extracted 19 biophysical and anthropogenic covariates that
influence fish abundance and size structure at varying spatial
scales. At macroecological scales (100s–1000s km), we sourced
data on sea surface temperature (SST) and productivity (Fisher
et al. 2010; Langlois et al. 2012). We initially sourced several cli-
matological metrics (mean, minimum, maximum, and range) for
each predictor: SST (degrees Celsius), nitrate (micromole per
liter), phosphate (micromole per liter), and net primary pro-
ductivity (NPP) (milligrams carbon per square meter per day).
We retained the mean when they were highly collinear (r >0.8)
(Appendix S8). We additionally sourced values of temperature at
bottom depth from the CSIRO Atlas of Regional Seas (Huang
et al. 2011) to test for potential mismatches with satellite-derived
measurements that might influence species distributions and
body size throughout the water column (up to 50 m deep).
Across Australia, these two metrics were strongly correlated
(r = 0.99, p < 0.001) (Appendix S9), albeit some states displayed
greater dispersion around the global relationship due to their
higher vertical stratification (Langlois et al. 2012). We used geo-
morphological descriptors of seabed topography as proxies of
within-region (10s–100s of km) habitat availability and structure
(Boström et al. 2011). Sample depth was measured in situ from
the stereo-BRUVs deployments. Covariates were sourced from
the Australian marine physical environmental data set (Geo-
science Australia, Huang et al. 2011) and the marine socioen-
vironmental covariates data set (Yeager et al. 2017).

We derived indirect potential proxies of human footprints
from national and global socioeconomic products, including
proximity to boat ramps, human population, human grav-
ity (defined below), and management status (i.e., fished vs.
NTMRs) (Appendix S10). Human population was derived from
the LandScan 2011 population density grid by summing values

around a 50-km radius of each stereo-BRUV deployment. Other
human population metrics (i.e., census data from the Australian
Bureau of Statistics) were considered, but the LandScan 2011
was the more accessible at the spatial scales considered that tem-
porally matched the median year of the stereo-BRUV data. We
chose a 50-km radius to capture the upper limit of small-scale
commercial and recreational fishing activities (Chuenpagdee
et al. 2006). We acknowledge that there are other anthropogenic
factors that may be associated with proximity to human popula-
tion, such as water quality, habitat loss, vessel noise, and indus-
trial development. Human gravity was computed, with a modi-
fication of the original metric proposed by Cinner et al. (2018),
as the human population divided by the linear distance (kilo-
meters) from the stereo-BRUVs to the nearest coastal urban
locality (from the Australia Bureau of Statistics significant urban
areas data set; https://www.abs.gov.au/census). The prevailing
type of management at the time of sampling, either fished (areas
where local fisheries management regulations applied, e.g., size
or catch limits) or NTMRs (areas closed to fishing and other
extractive activities), was compiled from the Collaborative Aus-
tralian Protected Area database (2020) and validated by regional
managers.

Predictor variables were initially screened for the presence of
potential outliers, collinearity, and relatively even spread of data
points. Predictors with positively skewed distributions were log
(x +1) or square-root transformed, and we excluded predictors
with correlations >0.8, resulting in a final set of nine predictor
variables: relief, depth, SST mean, SST SD, nitrate, NPP mean,
NPP SD, human gravity, and management status (Appendix
S10).

Statistical modeling

We used generalized additive mixed models (Wood 2006) and
a full-subset model-selection approach implemented in the R
package FSSgam (Fisher et al. 2018) to test the relative influ-
ence of biophysical and anthropogenic covariates on the body-
size structure of fished species (assemblage-level models, 82
species). Models were run in the gamm4 package (Wood &
Scheipl 2014) with a binomial distribution with a logit link func-
tion for the probability of occurrence of large fishes and a
negative binomial distribution with a log link function for the
abundance of legal and sublegal fishes. The overdispersion
parameter (tetha) of the negative binomial distribution was esti-
mated via comparison of model fits in a range of potential val-
ues. The basis dimensions (k) of the cubic regression splines
were limited to 4 to ensure unimodal relationships. The candi-
date set of models included combinations of all predictor vari-
ables, up to a maximum of 4 to avoid overfitting, and exclud-
ing any model with predictors correlated by >0.5 to avoid
multicollinearity issues. Graham (2003) suggested a collinear-
ity threshold of 0.28, but this is a rather conservative threshold
that generally prevented SST and human gravity to occur in the
same model, even when they were weakly correlated (Appendix
S11). A null model containing the intercept and random effect
terms was also included in the model set (Appendices S12 &

https://www.abs.gov.au/census
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S13). The random effect term contained the hierarchical nested
structure of our data (1|state/clust.4 km + 1|Campaignid for
assemblage-level models, 1|ecoregion/clust.4 km + 1|Cam-
paignid for regional species group models) (Appendices S12 &
S13). This enabled us to control for large imbalances in sam-
pling effort among states and small-scale variations in stereo-
BRUV setup (e.g., sample separation, bait quantity, and soak
time). We considered models in two units of the lowest AIC
model as having substantial support (Burnham & Anderson
2003). When competing models were present, we selected the
model with highest Akaike weights (ωAIC). The relative impor-
tance of each predictor was calculated by summing ωAIC of all
models containing that variable (Fisher et al. 2018).

We used generalized linear mixed models (GLMMs) to
explore the generality of the effect of indirect proxies of human
footprints on the body-size structure of regional fished species
groups. Models were fitted with a binomial (i.e., probability of
occurrence of large fishes) and negative binomial (i.e., abun-
dance of legal and sublegal fishes) distribution in the glmmTMB
R package (Brooks et al. 2017). Model-selection was conducted
in the MuMIn R package (Kamil 2018) and followed identical
criteria as the full-subset GAMMs for assemblage-level mod-
els. Continuous predictors were standardized (mean 0 and SD
1) before analysis to account for differences in scaling. Model-
averaged coefficients were used to draw inferences about the
magnitude and direction of the effect of proxies of human foot-
prints, while accounting for uncertainty (weight of evidence,
ωAIC) in the set of competing models. All models were visu-
ally inspected for violations of homoscedasticity by checking
residuals against fitted values (Appendices S14–S16). We eval-
uated the suitability of the negative binomial distribution to
model the large proportion of zeros in the count data by inspect-
ing quantile-quantile plots, running tests of zero inflation via
the DHARMa package in R (Hartig 2017), and comparing the
fits of models with a 0-inflated negative binomial (intercept-
only model for the 0 inflation) (Appendix S17). We carried
out the analyses in R 3.5.2 (R Core Team, 2019) with the
ecocloud Platform (www.ecocloud.org.au), which is supported
by the National Collaborative Research Infrastructure Strategy
through the Australian Research Data Commons.

RESULTS

Assemblage-level models

The most supported model to predict the probability of occur-
rence of large fishes contained the effects of human gravity,
depth, and relief (i.e., a proxy of seabed complexity), although
there was high uncertainty (ωAIC = 0.05–0.13) (Appendix
S18), with models containing the effect of environmental
predictors also receiving considerable support (Figure 2a).
Similarly, the abundance of legal-size fishes was best predicted
by a model containing the effect of human gravity, depth,
NTMRs, and relief; but, unlike models for large fishes, there
was weak support for other competing models containing the
effect of environmental predictors (ωAIC = 0.66) (Figure 2a;

Appendix S18). For the abundance of sublegal fishes, the
most supported model contained the effect of temperature
(mean and variance) and NTMRs, but there was a high level of
uncertainty: eight competing models had similar levels of sup-
port (ωAIC = 0.08–0.15) (Appendix S18). Mean SST was the
strongest predictor for sublegal fishes; a model containing this
term alone had support similar to other more complex models
(ωAIC = 0.08 cf 0.11) (Appendix S18). Seascape relief had
moderate levels of support for sublegal fishes, whereas human
gravity had weak support (Figure 2a). The variance explained by
the explanatory covariates in the most supported models was
low (about 2–5%) (Appendix S18), but these models outper-
formed a null model containing the intercept and random effect
structure.

Human gravity had a strong negative effect on the probability
of occurrence of large fishes and the abundance of legal fishes.
Large fishes were about three times more likely to be encoun-
tered in areas with low human gravity (Figure 2b), whereas
areas with the lowest human gravity supported about five times
the abundance of legal fishes (Figure 2f). Relief had a positive
relationship with the probability of occurrence of large fishes
and the abundance of legal fishes (Figures 2d & h); a ceiling
effect was observed at high relief areas for the latter. Depth
showed a unimodal (hump-shaped) response with the proba-
bility of occurrence of large fishes and the abundance of legal
fishes (peaks observed at approximately 30 and 20 m, respec-
tively) before declining in deeper waters (Figures 2c & g). The
abundance of sublegal fishes followed a biogeographic trend,
increasing rapidly as mean SST increased and displaying a peak
at intermediate levels of SST variance (Figures 2j & k). The
presence of NTMRs had a positive effect on the abundance of
fished species, but predicted the probability of occurrence of
large fishes less well (Figure 2a). Predicted differences between
NTMRs and fished areas were twice as large for the legal-size
fishes (0.44 MaxN vs. 0.25 MaxN for legal and sublegal, respec-
tively), and there were larger uncertainties for the sublegal-size
fishes (Figures 2e & i).

Regional species group models

Models for regional species groups generally had low model
weights and varying support for anthropogenic, environmen-
tal, and habitat predictors across large, legal, and sublegal fishes
(Appendix S19). Despite the high uncertainty in the models and
relatively greater importance of environmental and habitat pre-
dictors for most species groups (Appendix S20), the summed
ωAIC for potential anthropogenic predictors (human gravity
and NTMRs) was consistently greater for large and legal-size
fishes after controlling for habitat and environmental covariates
(Figure 3a). Further, human gravity better explained the abun-
dance of legal-size fishes, but was of negligible importance for
sublegal fishes in most species groups (Appendix S20). The vari-
ance explained by explanatory covariates in the most supported
models varied strongly across species groups (0.04 cf 0.39)
(Appendix S19), but was generally higher than the assemblage-
level models.

http://www.ecocloud.org.au
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FIGURE 2 Drivers and patterns of fished species occurrence and abundance across Australian neritic (1–50 m) continental shelf systems: (a) relative
importance of explanatory variables to predict the probability of occurrence of large fishes (>90th percentile of body size distribution) and abundance of legal (≥
minimum legal size [MLS]) and sublegal (<MLS) fishes, (b–k) best generalized additive mixed models for predicting the probability of occurrence of (b–d) large
fishes and abundance of (e–h) legal and (i–k) sublegal fishes (MaxN, maximum number of individuals at one time; solid lines, mean fitted values from cubic
regression splines with other predictors in the top-ranked models held constant; gray bands, 95% CI [including random effect variances]; SST, sea surface
temperature (◦ C); NPP, net primary productivity [mg C/m2 day])

Model-averaged coefficients showed a generalizable, negative
trend of human gravity on the probability of occurrence of large
fishes and the abundance of legal-size fishes. However, in the
former, standard errors around model predictions overlapped 0
in three species groups considered (Notolabrus spp., Nemadacty-

lus spp., and Lutjanus spp.) (Figure 4a). In contrast, there was
no apparent trend in the abundance of sublegal fishes, and
model-averaged coefficients had standard errors overlapping
0. An exception to this was the positive relationship between
human gravity and trends in the probability of occurrence of
large fishes and abundance of both legal and sublegal pink snap-
per (Chrysophrys auratus). The NTMRs had a positive effect in

four key fisheries species’ groups (C. auratus, Choerodon spp., Plec-

tropomus spp., and Lethrinus spp.). Large fishes for these species
groups generally displayed a strong effect of NTMRs in their
probability of occurrence, although there was substantial vari-
ability around model-averaged predictions and standard errors
overlapped 0 in two species’ groups (C. auratus and Choerodon

spp.). For abundance models, a consistent positive effect was
found for the legal fishes, whereas the effect for sublegal fishes
was variable (Figure 4b). Two species groups (Nemadactylus spp.
and Lutjanus spp.) had a neutral relationship with NTMRs for
both legal and sublegal fishes. The labrids Notolabrus spp. dis-
played negative associations with NTMRs.
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FIGURE 3 Size-specific determinants of fished species occurrence and abundance across Australian neritic (1–50 m) continental shelf systems: relative
importance (pooled Akaike weights [ωAIC ]) of (a) anthropogenic (human gravity [i.e., a proxy of human impacts] and management status), (b) environmental
(nitrate, net primary productivity [NPP] mean, NPP standard deviation [NPP SD], sea surface temperature [SST] mean, and SST standard deviation [SST SD]), and
(c) habitat (relief and depth) covariates to predict the probability of occurrence of large (>90th percentile of body size distribution) fishes and the abundance of legal
(≥minimum legal size [MLS]) and sublegal (<MLS) fishes

DISCUSSION

Our large-scale (approximately 10,000 km of coastline) quan-
titative analyses showed consistent support for the ubiquitous
role of human footprints in shaping the body-size structure
of marine fished species by selectively removing large-bodied
individuals, an effect that was generally consistent across
conspicuous species groups with contrasting habitat, envi-
ronmental, and biogeographic affinities. For large-bodied
individuals (>90th percentile of the body-size distribution)
and individuals >MLS, probability of occurrence and relative
abundance was best predicted by gradients of human gravity,
depth, and seascape relief. The NTMRs were strong predictors
of the abundance of legal-size fishes, but had weak support
for predicting the probability of occurrence of large fishes,
highlighting potential limitations in NTMR coverage and design
(Edgar et al. 2018; Goetze et al. 2021). In contrast, models

for sublegal individuals were weak, but consistently featured
positive relationships with environmental predictors, including
mean and variance in SST. Combined, these results stress
the importance of geographic areas subjected to low levels
of human footprint in the surrounding seascape (Cinner et al.
2013, 2018) as spatial refuges for large-bodied individuals across
multiple ecosystem configurations. Our results also suggest that
well-designed NTMR networks (Knott et al. 2021, Goetze et al.
2021) and areas that remain relatively unaltered by humans
provide useful reference points against which target levels of
large-bodied fish indicators can be assessed (Stuart-Smith et al.
2017; McClanahan et al. 2019). This will boost the understand-
ing of the potential benefits of protecting large-bodied fishes for
conserving trophic links (Dulvy et al. 2004; Mumby et al. 2006)
and contribute to the recovery of local stocks through larval
supply (Le Port et al. 2017; Andrello et al. 2017; Marshall et al.
2019).
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FIGURE 4 Model-averaged coefficients (SE) from generalized linear mixed models testing the effect of (a) human gravity (i.e., a proxy of human impacts) and
(b) no-take marine reserves (NTMRs) on the probability of occurrence of large fishes (dark squares), and the abundance of legal (gray triangles) and sublegal (light
gray circles) fishes. Coefficients depict the magnitude of the effect while controlling for other environmental and habitat predictors and accounting for uncertainty
of the models

Areas with the lowest human gravity were about three
times more likely to support large-bodied fishes and contained
approximately five times the abundance of legal-size fishes
relative to the highest human gravity areas. Uncertainty around
model predictions suggests that increasing distance from access
points and population centers does not provide a panacea
of protection (Devillers et al. 2015) and that there are other
factors that can modulate the probability of occurrence and
abundance of large-bodied fishes across human-gravity gradi-
ents. Because we used buffers of 50 km, designed to capture
the footprint of small-scale fishing activities (e.g., recreational
fishing [Chuenpagdee et al. 2006]), as our metric of human
gravity, other distal pressures, such as commercial fishing effort
or stochastic and seasonal tourism to remote areas, may have
influenced the probability of occurrence and abundance of
large-bodied fishes in the low human-gravity regions (Amoroso
et al. 2018).

There is a clear need for future research and methodologi-
cal development of metrics that capture both the persistent and
transient nature of human footprints (e.g., satellite-derived mea-
sures of recreational and commercial boat traffic) across the
seascape (Smallwood et al. 2011). Natural variations in the sur-
rounding physical environment, such as local-scale habitat fea-
tures (Wilson et al. 2010; Nash et al. 2016) and regional-scale
productivity constraints (McClanahan et al. 2019), may also have

contributed to the large degree of variation in the probability of
occurrence and abundance of large-bodied fishes. We set out
to test the generality of patterns across tropical and temperate
waters by synthesizing data from multiple independent studies,
and the low variance explained by our models could partly be
attributed to unbalanced sampling effort and stochasticity in
sampling across independent studies synthesized. Besides the
above factors, the inherent natural variability of fish abundance
data, use of spatially static environmental predictors, and pool-
ing of abundances across species with contrasting habitat pref-
erences and life-history strategies may have contributed to low
variance explained.

In Australia, where the majority of the human population
lives in the south of the continent, our human-gravity met-
ric could be confounded by gradients in SST and the natu-
ral biogeographic distributions of the endemic fished species
(Langlois et al. 2012) (Appendix S11). Yet, we found that the
probability of occurrence of large fishes and abundance of legal
fishes from regional species groups with similar habitat affini-
ties and life-history strategies generally consistently declined as
human gravity increased, after controlling for other habitat and
environmental predictors. This result supports fishing as a pri-
mary driver beyond the species-specific response to environ-
mental and habitat factors (Cinner et al. 2018). A marked excep-
tion to this trend was the increasing abundance of both legal
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and sublegal pink snapper (C. auratus), a cosmopolitan fished
species from temperate Australia that typically forms spawning
aggregations in shallow embayments (Wakefield 2010). Around
warm-temperate Australia, human population centers typically
co-occur with these shallow embayments, and although data
used in this analysis avoided pink snapper spawning seasons,
their suspected tendency to aggregate near embayments may
have confounded the effect of human gravity on their abun-
dance distribution.

Networks of NTMRs are being expanded globally as a tool
to slow marine biodiversity loss (Tittensor et al. 2014), but their
potential fisheries benefits remain debated (Hilborn 2016; Di
Lorenzo et al. 2020). Our assemblage-level model demonstrated
that the network of NTMRs around Australia can enhance eco-
logical benefits by boosting the relative abundance of individuals
above the MLS across a broad array of species and ecosystem
configurations. The probability of occurrence of large fishes,
however, displayed a weaker response to the effect of NTMR
protection, a result that can be partly explained by the gen-
erally low number of individuals observed in the samples, as
well as their potential larger home range size and mobility
(Daly et al. 2021), which may not be captured adequately by
small reserves (Claudet et al. 2010; Edgar et al. 2014). For
instance, NTMRs had a strong effect on the probability of
occurrence of large-bodied individuals of coral trout (Plectropo-

mus spp.), a species that displays high residency and territo-
riality and responds strongly to NTMR protection and direct
catch or effort control measures (Hopf et al. 2016). The vari-
able response across regional species groups highlights poten-
tial limitations in the design of NTMR networks around Aus-
tralia where fisheries management measures are in place (Edgar
et al. 2018; Goetze et al. 2021), such as gaps in NTMR coverage
across the biogeographic extent of occurrence of species groups
we analyzed (Roberts et al. 2021). Multiple intrinsic factors can
also influence the biodiversity benefits of NTMRs, such as the
size, age, level of compliance, connectivity of the zones, and
the level of exploitation in the surrounding seascape (Claudet
et al. 2008; Edgar et al. 2014; Cinner et al. 2018). For instance,
in our synthesis, there was an uneven representation of the size
of NTMRs across the human gravity gradient; small (<10 km2)
NTMRs were overrepresented in areas of high human gravity,
whereas the largest NTMRs (>100 km2) exclusively occurred in
areas of low to intermediate human gravity. Gains in ecologi-
cal and societal benefits may exist in establishing representative
networks of NTMRs, including large NTMRs in areas with high
human gravity (Cinner et al. 2018, 2020) that cover broad-depth
ranges (Goetze et al. 2021).

Habitat complexity (relief) was one of the strongest predic-
tors of the probability of occurrence and abundance distribu-
tion of fished species. High topographic relief areas were more
likely to contain large fishes and more legal and sublegal individ-
uals. This highlights the importance of the local availability of
high complexity substrates across large geographic areas to sup-
port fished species irrespective of their life history stage, likely
through the provisioning of topographic refuges and availability
of prey (Almany 2004). Our demonstration of the importance of
habitat complexity, based on the available coarse resolution (250

m) national bathymetry data, suggests that existing data can use-
fully inform conservation and management of fished species at
national scales (Costa et al. 2014). Yet, spatial management in
regional contexts would be advanced by the acquisition of finer-
resolution seabed structural data, potentially improving model
predictions (Pittman & Brown 2011).

Our results showed the widespread effect of human activities
on the body size structure of marine fished species, an effect
that was generally consistent across regional species groups with
contrasting habitat, environmental, and biogeographic affini-
ties. This demonstrates the importance of the use of consistent
fisheries-independent body-size information at macroecologi-
cal scales (Heather et al. 2020) to quantify human footprints
on aspects of diversity that link to food-web structure. The use
of stereo-BRUVs can overcome the depth limitations of diver-
based censuses, providing a cost-effective means to expand
the knowledge of species responses to anthropogenic impacts,
including fisheries exploitation, across geographic space and
depth profiles. In this context, our synthesis highlighted the
importance of depth to explain patterns of occurrence and rela-
tive abundance of large-bodied fishes, which is consistent with a
longstanding paradigm of ontogenetic deepening (Audzijonyte
& Pecl 2018), with the upper limit to depth distribution typ-
ically limited by the availability of habitat and prey (Galaiduk
et al. 2018). Recently, this concept has been challenged by the
finding that large-bodied, older individuals of highly targeted
species can preferentially occupy shallower depth strata follow-
ing a fishing moratorium (Frank et al. 2018). The creation of
comprehensive, adequate, and replicated networks of NTMRs
(Goetze et al. 2021) and large-scale stereo-BRUV data sets cov-
ering broad depth ranges across different management scenar-
ios (e.g., NTMRs vs. fished areas) and gradients of human pres-
sure (e.g., human gravity here) will provide an experimental
framework to help decouple the relative importance of these
processes. This represents a key area for future research because
the effect of ocean warming and fisheries could compress the
three-dimensional distribution of marine species and have large
consequences for biodiversity and ecosystem productivity.
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