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Abstract 25 

Biased estimates of population status are a pervasive conservation problem. This problem has 26 

plagued assessments of commercial exploitation of marine species and can threaten the 27 

sustainability of both populations and fisheries. We develop a computer-intensive approach to 28 

minimize adverse effects of persistent estimation bias in assessments by optimizing operational 29 

harvest measures (harvest control rules) with closed-loop simulation of resource–management 30 

feedback systems: management strategy evaluation. Using saithe (Pollachius virens), a bottom-31 

water, apex predator in the North Sea, as a real-world case study, we illustrate the approach by 32 

first diagnosing robustness of the existing harvest control rule and then optimizing it through 33 

propagation of biases (overestimated stock abundance and underestimated fishing pressure) 34 

along with select process and observation uncertainties. Analyses showed that severe biases lead 35 

to overly optimistic catch limits and then progressively magnify the amplitude of catch 36 

fluctuation, thereby posing unacceptably high overharvest risks. Consistent performance of 37 

management strategies to conserve the resource can be achieved by developing more robust 38 

control rules. These rules explicitly account for estimation bias through a computational grid 39 

search for a set of control parameters (threshold abundance that triggers management action, 40 

Btrigger, and target exploitation rate, Ftarget) that maximize yield while keeping stock abundance 41 

above a precautionary level. When the biases become too severe, optimized control parameters–42 

for saithe, raising Btrigger and lowering Ftarget–would safeguard against overharvest risk (<3.5% 43 

probability of stock depletion) and provide short-term stability in catch limit (<20% year-to-year 44 

variation), thereby minimizing disruption to fishing communities. The precautionary approach to 45 

fine-tuning adaptive risk management through management strategy evaluation offers a powerful 46 

tool to better shape sustainable harvest boundaries for exploited resource populations when 47 
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estimation bias persists. By explicitly accounting for emergent sources of uncertainty our 48 

proposed approach ensures effective conservation and sustainable exploitation of living marine 49 

resources even under profound uncertainty. 50 

Keywords 51 

Decision making; environmental stochasticity; measurement error; management procedure; 52 

management strategy evaluation; risk analysis; state-space models; stock assessment; trade-offs. 53 

INTRODUCTION 54 

Managers and policymakers increasingly face trade-offs in sustainably managing extractive use 55 

of living marine resources while effectively conserving biodiversity under the precautionary 56 

principle (FAO 1996, Hilborn et al. 2001, Harwood and Stokes 2003). But imperfect knowledge 57 

of social–ecological systems impedes the decision making. Scientific uncertainty (imprecision in 58 

measurements) of current population status can obscure the assessment of decline or extinction 59 

threats (Ripa and Lundberg 1996, Ovaskainen and Meerson 2010). Lack of certainty in 60 

socioeconomic dynamics that can promote noncompliance and inertia also may reduce the 61 

efficacy of management measures applied (Hilborn et al. 2001, Beddington et al. 2007, Fulton et 62 

al. 2011). If we are to achieve internationally agreed conservation targets such as sustainable use 63 

of marine resources portrayed under Sustainable Development Goal 14 (UN 2015) and Aichi 64 

Biodiversity Target 6 (CBD 2010), we must account for various sources of uncertainty 65 

(imprecision and inaccuracy) to assess overexploitation risk (Memarzadeh and Boettiger 2018) 66 

and recovery potential (Memarzadeh et al. 2019) and set conservation priorities. 67 

In commercial capture fisheries, assessments of current population status provide a scientific 68 

basis for setting a threshold for safe harvest to prevent the decline of fish stocks. This approach 69 

may include using biological thresholds such as the population abundance that produces 70 
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maximum sustainable yield (Beddington et al. 2007). The harvest of wild populations is 71 

commonly managed by applying decision rules (harvest control rules) based on such predefined 72 

thresholds to set a catch limit for the year (Beddington et al. 2007). Accurate population 73 

assessments contribute to successful implementation of management measures to sustain long-74 

term commercial exploitation of fish populations (Hilborn et al. 2020). But systematic errors in 75 

assessments have posed a multitude of challenges (Patterson et al. 2001, Sethi 2010). If 76 

population abundance is persistently overestimated, for example, resulting overly optimistic 77 

catch advice or rebuilding plans will deplete the population, thereby threatening the 78 

sustainability of fisheries that depend on it (Walters and Maguire 1996, Memarzadeh et al. 79 

2019). Overestimated abundance and underestimated exploitation rates, which often heighten 80 

extinction risk, have led to some historical collapses of oceanic predators (Walters and Maguire 81 

1996, Charles 1998).  82 

Biased estimates in perceived population status have plagued assessments of exploited marine 83 

species (Punt et al. 2020) and likely contributed to overharvest and depletion including stocks 84 

that are considered well-monitored (Brooks and Legault 2016). Inconsistency across assessments 85 

such as persistent overestimation of abundance has led to the rejection of assessments (Punt et al. 86 

2020). Although past research has proposed solutions to estimation bias, applying these solutions 87 

remains a challenge because the bias could originate from multiple sources (Hurtado-Ferro et al. 88 

2015, Brooks and Legault 2016, Szuwalski et al. 2017). Incomplete knowledge of the causes 89 

behind biased estimates may lead to incorrect application of the tools, inadvertently exacerbating 90 

the problems by amplifying overharvest and depletion risks (Brooks and Legault 2016, Kraak et 91 

al. 2008, Szuwalski et al. 2017). Given serious ecological and socioeconomic implications for 92 

getting it wrong, we urgently need a procedure that provides practical guidance for explicitly 93 
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evaluating robustness of management strategies and designing alternatives to inform decision 94 

making to safely harvest under uncertainty (Punt et al. 2020). 95 

We illustrate how closed-loop simulation of resource–management systems (management 96 

strategy evaluation) can help prevent estimation bias from derailing effective management of 97 

exploited marine populations. Management strategy evaluation is a flexible decision-support tool 98 

used in fisheries management (Butterworth and Punt 1999, Smith et al. 1999) and has 99 

increasingly been applied to conservation planning in marine and terrestrial systems (Milner-100 

Gulland et al. 2001, Bunnefeld et al. 2011). This tool is designed to evaluate the performance of 101 

candidate policy instruments through forward simulations of feedback between natural resources 102 

and management systems (policy implementation and new observation) by accounting for trade-103 

offs among management goals of stakeholders (Punt et al. 2016). Management strategy 104 

evaluation also can assess consequences of suspected sources of bias in assessments (Szuwalski 105 

et al. 2017, Hordyk et al. 2019). Here we take this approach further: we first diagnose estimation 106 

bias (robustness testing, Cooke 1999). Then, through computational optimization of harvest 107 

control rules (Walters and Hilborn 1978, Chadès et al. 2017), our proposed method searches for 108 

robust rules by explicitly accounting for bias in perceived stock status along with process (life 109 

history parameter) and observation (survey and reported catch) uncertainties. Specifically, we 110 

evaluate how robust current management procedures are to persistent estimation bias, and then 111 

demonstrate how management procedures can remain precautionary through the optimization of 112 

harvest control rules to avert mismanagement–setting overly optimistic catch limits that promote 113 

stock depletion and a future fishery closure. 114 

METHODS  115 

Management strategy evaluation framework 116 
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We simulated population and harvest dynamics, surveys, assessments, and implementation of 117 

management strategies to explore trade-offs in achieving conservation-oriented (minimizing 118 

overexploitation risk) and harvest-oriented (maximizing yield) goals through management 119 

strategy evaluation. We made use of the framework developed and adopted for commercially 120 

harvested species in the Northeast Atlantic including four North Sea demersal fish stocks (ICES 121 

2019c) and Atlantic mackerel (Scomber scombrus, ICES 2020c). The framework consists of 122 

submodels that simulate 1) true population and harvest dynamics at sea (operating model, OM), 123 

from which observations through monitoring surveys and catch reporting (data generation) are 124 

made, and 2) management processes–assessments based on observations from the surveys and 125 

reported catch and subsequent decision making (management procedure, MP) (Fig. 1a, Punt et 126 

al. 2016). We used the North Sea population of saithe (Pollachius virens) (ICES statistical areas: 127 

Subareas 4 and 6 and Division 3a,, ICES 2019c), a demersal (bottom-water) predatory fish 128 

harvested commercially by more than a dozen European nations, as a real-world case study. And 129 

we used the State-space Assessment Model (SAM, Nielsen and Berg 2014) as estimation model 130 

(EM) and harvest control rule set for saithe (ICES 2019c); model settings and forecast 131 

assumptions are fully described in ICES (2019c). We performed all simulations in R (version 132 

3.60, R Development Core Team 2019) using the mse R package (https://github.com/flr/mse) 133 

(ICES 2019c), part of the Fisheries Library in R (FLR, Kell et al. 2007). 134 

Population dynamics 135 

To simulate future population dynamics of target species, the framework uses an age-structured 136 

population model that accounts for environmental stochasticity. For saithe we modeled the 137 

population dynamics of four-year-olds and older as 138 

         log 𝑁𝑁𝑎𝑎,𝑦𝑦  =  log 𝑁𝑁𝑎𝑎−1,𝑦𝑦−1 − 𝐹𝐹𝑎𝑎−1,𝑦𝑦−1 − 𝑀𝑀𝑎𝑎−1,𝑦𝑦−1 + 𝜂𝜂𝑎𝑎,𝑦𝑦                        (1a) 139 
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log 𝑁𝑁𝐴𝐴,𝑦𝑦  =  log (𝑁𝑁𝐴𝐴−1,𝑦𝑦−1 𝑒𝑒−𝐹𝐹𝐴𝐴−1,𝑦𝑦−1−𝑀𝑀𝐴𝐴−1,𝑦𝑦−1 + 𝑁𝑁𝐴𝐴,𝑦𝑦−1𝑒𝑒−𝐹𝐹𝐴𝐴,𝑦𝑦−1−𝑀𝑀𝐴𝐴,𝑦𝑦−1) + 𝜂𝜂𝐴𝐴,𝑦𝑦            (1b) 140 

log 𝐹𝐹𝑎𝑎,𝑦𝑦  =  log 𝐹𝐹𝑎𝑎,𝑦𝑦−1 + 𝜉𝜉𝑎𝑎,𝑦𝑦                                                (1c) 141 

where Na,y, Na,y-1, Fa,y, Fa,y-1, Ma,y, and Ma,y-1 are a-year-old numbers, fishing mortality rates, and 142 

natural mortality (non-fishing such as starvation and diseases) rates in year y and y-1, and ηa,y and 143 

ξa,y  are multivariate normally distributed variables, reflecting process errors correlated between 144 

ages within years (Appendix S2: Fig. S1, Nielsen and Berg 2014). Fa,y-1 is time-varying and 145 

simulated through the implementation of harvest control rules (see Management procedure 146 

below). Historical surveys indicate that 10-year-olds and older are relatively uncommon, and we 147 

simulated them as a dynamic aggregate pool (known as a plus group in fishery stock assessment, 148 

NA, FA, and MA).  149 

We simulated density-dependent regulation of recruitment in the population dynamics with a 150 

segmented regression (ICES 2019c) relating adult biomass to the number of recruits (three-year-151 

olds for saithe) as  152 

log N3,y = log β + SSBy + γy (if 0 < SSBy ≤ b)                                          (1d) 153 

log N3,y = log α + γy (if SSBy > b)                                                (1e) 154 

where SSBy is adult biomass (known as spawning stock biomass, t) in year y, which is the sum of 155 

the product of age-specific numbers, masses, and maturity rates, β, b, and α are parameters, and 156 

γy is process error in year y.  157 

We developed the OM using data and life history parameter estimates taken from the 2018 158 

assessment (Fig. 1b, ICES 2018), which represents the best available information on the past 159 

(1967–2017) population and harvest dynamics (Fig 1b and Appendix S1). The data sources, 160 

survey methods, and model structure have been extensively documented in ICES (2016) and 161 

ICES (2019a). Briefly, we parameterized the model with 51-year estimates of age-specific 162 
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masses (g, Appendix S1: Table S3–S4) and maturity rates (proportion of adults, Appendix S1: 163 

Table S5), and natural mortality rates assumed at 0.2 year-1 for all ages and years. Then, we fitted 164 

the population model to time series data of commercial catch (age-aggregated biomass of 165 

German, French, and Norwegian trawlers in 2000–2017, tonnes or t, Appendix S1: Table S6 and 166 

Appendix S2: Fig. S1) and age-specific (ages three to eight) abundance indices (International 167 

bottom trawl surveys in the third quarter, IBTS-Q3, in 1992–2017, Appendix S1: Table S7 and 168 

Appendix S2: Fig S2) (ICES 2018) using SAM (see Monitoring and catch surveys below for 169 

details of computing catch and age-specific abundance indices).  170 

We projected true population and catch dynamics annually for 21 years (2018–2038). To 171 

account for process uncertainty (year-to-year variability in survival rate), we generated 1000 172 

realizations of stochastic populations using the variance-covariance (inverse hessian) matrix of 173 

age-specific numbers and fishing mortality rates taken from the 2018 assessment (Appendix S2: 174 

Fig. S3a, ICES 2019c). We derived a set of mean age-specific masses, maturity rates, and fishing 175 

gear selectivity by randomly selecting a year with replacement from the 2008–2017 data; this 176 

process was repeated independently for each replicate every year to account for environmental 177 

stochasticity.  178 

To account for environmental stochasticity in density-dependency of recruitment, we first 179 

parameterized the spawner–recruit model by fitting it to the 1998–2017 data on SSB and recruit 180 

numbers by resampling residuals with replacement. Because preliminary analyses had revealed 181 

gaps in the resampling process (ICES 2019c), we used a kernel density function to smooth the 182 

resulting distribution of residuals from the fitted regression. Then, we resampled residuals from 183 

the distribution and applied these to model outputs to generate recruits every year (Appendix S2: 184 
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Fig. S4a,b); this process was repeated independently for each replicate. Preliminary analyses 185 

showed little evidence of temporal autocorrelation in recruitment (Appendix S2: Fig. S4c). 186 

Monitoring and catch surveys 187 

We simulated future annual monitoring of the population and harvest, which are subject to 188 

error, by adding observation error to age-specific survey indices and aggregated catch computed 189 

from the OM. To simulate deviances to the observed survey index (IBTS-Q3) we used the 190 

variance-covariance matrix for the survey index to account for observation error correlated 191 

between ages (Appendix S2: Fig. S5a and S6a). Survey observations (I) are generated as: 192 

𝐼𝐼𝑎𝑎,𝑦𝑦 = 𝑞𝑞𝑎𝑎𝑁𝑁𝑎𝑎,𝑦𝑦𝑒𝑒−𝑡𝑡𝑖𝑖𝑍𝑍𝑎𝑎,𝑦𝑦  𝑒𝑒𝜀𝜀𝑎𝑎,𝑦𝑦                                                             (2a) 193 

𝜀𝜀𝑎𝑎,𝑦𝑦,𝑖𝑖~𝑁𝑁(0,𝛴𝛴𝑖𝑖)                                                                         (2b) 194 

where Z a,y is a-year-old total (Fa,y + Ma,y) mortality rate in year y from the OM; qa are a-year-old 195 

survey catchabilities for the survey i; t is the timing of the annual survey (0.575 for IBTS-Q3). 196 

εa,y represents multivariate normally distributed errors with mean zero and standard deviation Σ 197 

defined by the variance-covariance matrix between ages within years (ICES 2019b). Observation 198 

error is applied to age-specific abundance indices as multiplicative lognormal error (Appendix 199 

S2: Fig. S5a). 200 

To avoid using the age information twice (once in computing age-specific catches and again in 201 

selectivities), we computed a fishable biomass index, a combined (German, French, and 202 

Norwegian trawlers) index from the OM (Appendix S2: Fig. S5b and S6b) standardized by 203 

average fishing mortality rates as: 204 

𝐼𝐼𝑦𝑦 = 𝑞𝑞�∑ 𝑆𝑆𝑎𝑎,𝑦𝑦𝑤𝑤𝑎𝑎,𝑦𝑦
𝑐𝑐 𝑁𝑁𝑎𝑎,𝑦𝑦𝑒𝑒−0.5 𝑍𝑍𝑎𝑎,𝑦𝑦  𝑎𝑎 �𝑒𝑒𝜀𝜀𝑦𝑦                                              (3a) 205 

𝑆𝑆𝑎𝑎,𝑦𝑦 = 𝐹𝐹𝑎𝑎,𝑦𝑦

∑ 𝐹𝐹𝑎𝑎,𝑦𝑦𝑎𝑎 /𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎
                                                               (3b) 206 

𝜀𝜀𝑦𝑦~𝑁𝑁(0,𝜎𝜎2)                                                           (3c) 207 
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where q is the catchability; 𝑤𝑤𝑎𝑎,𝑦𝑦
𝑐𝑐  are a-year-old catch masses in year y; 0.5 indicates projection to 208 

mid-year; Sa,y is the selectivity of a-year-olds in year y; nage is the number of age classes in the 209 

population; and εy is a normally distributed error with mean zero and standard deviation 𝜎𝜎 in year 210 

y (Appendix S2: Fig. S3c). We used a version of SAM (Nielsen and Berg 2014) accounting for 211 

this change (https://github.com/fishfollower/SAM/tree/biomassindex). 212 

Management procedure 213 

The MP simulates decision making by managers based on perceived current stock status and 214 

model-based harvest control rules (Fig. 1a). The current status is assessed annually by fitting the 215 

EM to the time series (past plus most recent year, y) data simulated from the observation model 216 

(survey and catch data, Ia,y and Iy) before the provision of catch advice (May of the following 217 

year, y+1, for saithe). Under the control rule set for saithe (ICES 2019c), when the estimated 218 

SSB at the start of the advice year following the assessment year (terminal year) remains above a 219 

fixed threshold (Btrigger) (Fig. 1b), the catch limit is computed based on target exploitation rate 220 

(Ftarget). These two control parameters (Btrigger and Ftarget) are designed to prevent overharvesting 221 

by accounting for uncertainty in population and harvest dynamics (Rindorf et al. 2016). For 222 

consistency we used the same parameter values of the control rule that had been estimated in 223 

ICES (2019c) (Btrigger = 250,000 t and Ftarget = 0.35, see Population and management measure 224 

performance below for detail). When the SSB falls below Btrigger, exploitation rate is adjusted to 225 

Ftarget scaled to the proportion of SSB relative to Btrigger (Fig. 1c), thereby allowing the population 226 

to rebuild (adaptive harvesting). In simulations the advice year’s SSB (SSBy+1) is first forecasted 227 

with the EM (SAM) using the average of estimated fishing mortality rates in the most recent 228 

three years (known as F status quo). Then the target exploitation rate for the advice year (Fy+1) is 229 

determined to compute the catch limit (Cy+1) as 230 
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𝐹𝐹y+1 = 𝐹𝐹targetmin �1, SSBy+1
𝐵𝐵trigger

�                                             (4a) 231 

𝐶𝐶y+1 = ∑ 𝑤𝑤𝑎𝑎,𝑦𝑦+1𝑁𝑁𝑎𝑎,𝑦𝑦+1

𝑆𝑆𝑎𝑎,𝑦𝑦+1𝐹𝐹𝑦𝑦+1

𝑍𝑍𝑎𝑎,𝑦𝑦+1
(1 − 𝑒𝑒− 𝑍𝑍𝑎𝑎,𝑦𝑦+1) 𝑎𝑎                               (4b) 232 

where wa,y+1, Na,y+1, Sa,y+1, and Za,y+1 are as above and forecasted for the advice year. 233 

Population and management measure performance 234 

We computed conservation-oriented (risk of stock depletion) and harvest-oriented (median 235 

catch and interannual catch variability, ICV) metrics averaged across 1000 replicates of short-236 

term (2019–2023) and long-term (2029–2038) projections from the OM to evaluate performance 237 

of the harvest control rules applied. We chose the number of replicates based on the stability of 238 

risk (ICES 2019c). Risk of stock depletion is defined as the maximum annual probability of SSB 239 

falling below a limit threshold, Blim (Fig. 1c), a spawner abundance below which reproductive 240 

capacity of the populatio is expected to decline (Rindorf et al. 2016), consistent with previous 241 

analyses (ICES 2019b). We computed the risk based on the proportion of 1000 replicates with 242 

annual estimates of SSB < Blim. The International Council for the Exploration of the Sea (ICES) 243 

defines reference points following its guidelines (ICES 2021). Blim is set to 107,297 t for saithe 244 

(2019a) and based on the lowest observed historical SSB. Following ICES (2021), Blim is used as 245 

the basis for computing maximum sustainable yield (MSY) Btrigger (ICES 2020a, 2021) as 246 

MSY Btrigger = 1.4Blim                                                                              (5) 247 

which is a default value of Btrigger. FMSY (used as default Ftarget) is estimated with the eqsim R 248 

package (https://github.com/ices-tools-prod/msy). EqSim produces a long-term stochastic 249 

projection (ICES 2015, 2017, 2020a). The resulting control parameters follow the MSY 250 

approach but are constrained under the precautionary criteria (ICES 2021). As part of the latest 251 

management strategy evaluation both Btrigger and Ftarget were optimized through a grid search by 252 
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maximizing median catch limits while maintaining long-term risk ≤ 0.05 (Appendix S2: Fig. S7 253 

and S8, ICES 2019b). We computed ICV (a proportional change in catch limit) as 254 

ICV𝑦𝑦 = |𝐶𝐶𝑦𝑦+1− 𝐶𝐶𝑦𝑦|
𝐶𝐶𝑦𝑦

                                                              (6) 255 

where Cy+1 and Cy are projected catches (eq. 4b) in year y+1 and y. 256 

Estimation bias scenarios 257 

To evaluate how managing with persistently biased assessments degrades performance of 258 

harvest control rules and potential to achieve management goals, we simulated hypothetical 259 

scenarios of bias in perceived spawner abundance and fishing mortality rate in annual 260 

assessments. Although bias can emerge in both directions (over- and under-estimation), they 261 

have asymmetric implications for conservation and harvest decision making by managers 262 

(Hordyk et al. 2019). We analyzed scenarios that can cause severe conservation issues for 263 

exploited species: SSB overestimation and mean F (averaged across four to seven-year-olds for 264 

saithe) underestimation simultaneously. We simulated six scenarios by introducing a bias 265 

(0%/baseline, 10%, 20%, 30, 40%, and 50% per year) in estimating age-specific numbers and 266 

fishing mortality rates in the terminal year of annual assessment before forecasting SSB and 267 

mean F and projecting a catch limit. The magnitudes of realized biases in these parameters 268 

however varied among simulations because of process uncertainty. We introduced a bias as 269 

log 𝑁𝑁�𝑎𝑎,y = log 𝑁𝑁�𝑎𝑎,y + log (1 + δ) + ηa,y                                                (7a) 270 

log 𝐹𝐹�𝑎𝑎,y = log 𝐹𝐹�𝑎𝑎,y + log (1 – δ) + ξa,y                                                (7b) 271 

where 𝑁𝑁�a,y and 𝐹𝐹�a,y are estimated a-year-old numbers and fishing mortality rates in year y from 272 

the EM, and δ is a bias (in proportion). The biased estimates are then used to compute SSBy+1 273 

prior to projecting a catch limit using the harvest control rule as above (eqs. 4a,b). Note that for 274 

simplicity and generality these bias scenarios are designed to illustrate our proposed approach to 275 
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generic estimation bias in assessments, rather than specific scenarios of persistent, time-varying 276 

bias that may cumulatively emerge between assessments as input data are updated owing to 277 

model misspecification and biased input data (known as retrospective pattern, ICES 2020b, Punt 278 

et al. 2020). We analyzed all scenarios based on the performance metrics (risk, median catch, 279 

and ICV) of short-term and long-term projections. 280 

Developing robust management measures 281 

To evaluate how precautionary the harvest control rule needs to be to minimize adverse effects 282 

of biased estimates in the assessment on catch advice provisioning, we explored alternative 283 

values of the two control parameters of the harvest control rule (Btrigger and Ftarget) and projected 284 

catch limits under the same bias scenarios (overestimated SSB and underestimated mean F) 285 

through management strategy evaluation. Building on the grid search from the latest evaluation 286 

(ICES 2019c) and using Btrigger = 250,000 t and Ftarget = 0.35 as baselines, we explored a finite 287 

number of select candidate combinations of the parameters (12 Btrigger × 16 Ftarget = 192 per 288 

scenario or 1,920,000 unique runs in total) for reoptimization to illustrate our proposed approach. 289 

We conducted a restricted grid search in parameter spaces of Btrigger (210,000 to 320,000 t with 290 

10,000 t increments) and Ftarget (0.24 to 0.39 with 0.01 increments) for each bias scenario. We 291 

computed median catch limits and risk from the simulations and optimized the parameter sets by 292 

maximizing median catch limits while maintaining long-term risk ≤ 0.05. 293 

RESULTS 294 

Performance of harvest measures with estimation bias 295 

An increasing amount of estimation bias in annual assessments was found to increase median 296 

catch and overharvest risk in the short term. Although median SSBs declined by as much as 30% 297 

in the OM (Fig. 2a), with SSB overestimation, median catches rose by 15–44% relative to the 298 
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baseline (Fig. 3a), increasing mean Fs in the OM by 19–80%, which were underestimated in the 299 

EM by on average 42% (Fig. 2b). As a result, biased assessments elevated risks as much as 17-300 

fold (Fig. 3a). Mean ICV responded nonlinearly to biased estimates, and the distribution was 301 

highly skewed (Fig. 3a).  302 

In the long-term the estimation bias was found to increase ICV and risk but had negligible 303 

effect on median catch. Biased estimates reduced median SSB in the OM by as much as 35% 304 

(resulting in a 37% increase in mean F) relative to the baseline; this reduction was 305 

underestimated in the EM by on average 53% (Fig. 2a,b). With overestimated SSBs and largely 306 

unadjusted Ftarget, median catches remained unchanged (~113,000 t, Fig. 3b). Also, biased 307 

assessments amplified temporal variations (CVs in medians of replicates) in both SSB and mean 308 

F in the OM as much as ~71%, thereby increasing ICVs by up to 72%, which, combined with 309 

reduced SSBs, elevated risks 2–13-fold (Fig. 3b).  310 

Harvest control rule optimization 311 

The proportion of the select grid search area evaluated through management strategy 312 

evaluation that remained precautionary (which we define as safe harvest margin) progressively 313 

shrank as more bias was introduced (Fig. 4 and Table 1). Within the safe harvest margin, the 314 

fishery yielded highest catches at lower (by 0.02–0.10) Ftarget and higher (by 10,000–60,000 t) 315 

Btrigger (Table 1 and Fig. 4). With reoptimization of these control parameters the control rule was 316 

projected to produce higher (by 6.7–25%) short-term catches and maintain similar (<3.0% 317 

deviation from the baseline) long-term catches under all bias scenarios (Table 1). And both 318 

short- and long-term SSBs declined by 3.1–6.9% and long-term ICVs rose by less than 1.5% 319 

(Table 1). 320 

DISCUSSION 321 
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An optimization approach applied through management strategy evaluation offers a powerful 322 

decision-support tool to develop robust harvest control rules for sustainable fisheries even when 323 

severe estimation bias persists in assessments. For North Sea saithe, increasingly severe biases 324 

(abundance overestimation and fishing pressure underestimation) initially set overly optimistic 325 

catch limits that deplete the stock. But unacceptably high long-term risks of missing management 326 

targets result from progressively amplified fluctuations in annual catch limits. With 327 

computational optimization our proposed approach can help develop harvest control rules to 328 

achieve robust, cost-effective performance: low risks and stable catch limits–less disruption to 329 

fishing communities. By explicitly accounting for persistent estimation bias in assessments this 330 

approach can guide resource managers in balancing the trade-off in managing commercial 331 

exploitation: achieving stability in harvest while also maintaining sustainable resource 332 

populations. 333 

Costs of managing with estimation bias 334 

How robust management measures are to biased estimates in assessments would depend on life 335 

history, fishing operation, and current status of a given species or population (Hurtado-Ferro et 336 

al. 2015, Wiedenmann and Jensen 2018, Hordyk et al. 2019). Our North Sea saithe case study is 337 

based on the 2018 assessment in which the stock is in good condition (~37% above MSY Btrigger, 338 

ICES 2019c). Analyses show the current harvest control rule is robust to a moderate amount of 339 

bias (up to ~16%, based on our further analyses with 1% increments between 10% and 20%) in 340 

assessments and the stock can be sustainably managed at an acceptable level of risk (≤5% 341 

probability of stock depletion). Simulations revealed, however, that managing harvest with more 342 

severely biased assessments can progressively amplify the risk of overharvesting but the causes 343 

of heightened risk vary over time. The risk initially increases as the population becomes depleted 344 
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owing primarily to overly optimistic projections of annual catch limits. Past research suggests 345 

that this pattern can emerge from misspecification of an estimation model such as unaccounted 346 

temporal variability in demographic parameters (Szuwalski et al. 2017) and overestimated 347 

natural mortality rate (Hordyk et al. 2019), and biased input data such as underreported catch 348 

(Hordyk et al. 2019). Our exploratory analyses with misspecified natural mortality rates also 349 

show that assessments with an overestimated (by 50%) natural mortality rate can underestimate 350 

fishing pressure and overestimate stock size, increasing the risk of depletion (by 67%, Appendix 351 

S2: Fig. S9). Over time managing with biased assessments would destabilize the stock, which is 352 

displayed as amplified variations in both stock abundance and fishing pressure in our case study. 353 

Yields also would become increasingly more variable (by as much as 74% for saithe), elevating 354 

the probability of overharvesting. Even when the long-term risk of managing with estimation 355 

bias remains within acceptable levels (under <20% bias scenarios in our case study), harvesting 356 

destabilized stocks may have more uncertain consequences for population persistence and yield.  357 

Large year-to-year fluctuations in catch limit are disfavored by fishing communities (Anderies 358 

2015) and a management measure to suppress the fluctuations (known as stability or catch 359 

constraint) is commonly applied in industrial exploitation (ICES 2019b). But evidence for the 360 

efficacy of this policy tool remains limited (but see Kell et al. 2005, Kell et al. 2006, Goto et al. 361 

2021) especially when assessments suggest persistent biases in stock status. Applying the 362 

fluctuation-suppressing measure may, to some extent, limit catch variability inflated by 363 

managing with biased assessments. But the risk of stock depletion likely remains unacceptably 364 

high because this tool may not be sufficiently sensitive to rapid population declines and unlikely 365 

prompts large enough reductions in annual catch limit effectively (Kell et al. 2005, Kell et al. 366 

2006, Goto et al. 2021). 367 
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The time-varying consequences of biased estimates in assessments also may present a dilemma 368 

for managers in decision making, as illustrated for several exploited marine species (Deroba 369 

2014, Hordyk et al. 2019). Managing with biased assessments would produce higher yields (and 370 

revenues) in the short term but would amplify catch fluctuations and thus probabilities of 371 

depletion in the long term. Trade-offs between short-term gains and long-term losses (or vice 372 

versa) are common dilemmas in managing natural resources (Mangel et al. 1996, Carpenter et al. 373 

2015). Past research focuses on developing solutions to biased assessments in fisheries 374 

management (Brooks and Legault 2016, Wiedenmann and Jensen 2018). Capturing how 375 

managers and fishing communities respond to these changes also would contribute to developing 376 

effective strategies for sustainable use of resource populations (Fulton et al. 2011). For example, 377 

historical records tell us that realized catch limits and landings in the Northeast Atlantic on 378 

average varied less than recommended by scientific advice (Patterson and Résimont 2007), 379 

which may attenuate or amplify the effects of biased assessments on the sustainability of 380 

harvesting. In situations where the science that management advice is based on becomes 381 

increasingly unreliable, evaluating both short- and long-term consequences of taking certain 382 

management actions would aid managers make decisions effectively. Our findings reemphasize 383 

alternative harvest measures need to be explicitly assessed before implementation when giving a 384 

scientific basis to inform defensible decision making. 385 

Managing risks under rising uncertainty  386 

Our analyses suggest persistent overestimation of abundance and underestimation of fishing 387 

pressure can mask the extent of overharvesting and depletion, thereby delaying management 388 

responses (asynchronized resource–fishery dynamics, Fryxell et al. 2010). Although a certain 389 

time lag in the management cycle (from monitoring surveys to provisioning of catch advice) is 390 
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unavoidable, severe estimation bias can promote management inertia. Once population 391 

abundance reaches a biological limit threshold (Blim for example), the population may even 392 

become unresponsive to any measure for recovery (Allee effect, Kuparinen et al. 2014). One 393 

proposal to minimize adverse effects of estimation bias is by identifying the sources of and 394 

correcting for model misspecification such as accounting for time-varying demographic 395 

parameters in an estimation model (Szuwalski et al. 2017). But without prior knowledge of true 396 

demographic processes of the population the current form of this method may not sufficiently 397 

reduce bias or may even exacerbate the problem if incorrectly applied (Szuwalski et al. 2017). 398 

Also, if biases originate from two or more demographic parameters, uncertainties in these 399 

misspecified parameters may covary and interact unpredictably, making the application of the 400 

method challenging for many harvested populations.  401 

To circumvent this challenge others suggest annual catch limits be proportionally adjusted 402 

using an index that quantifies relative deviation in population metrics (such as stock abundance) 403 

between assessments (known as Mohn’s ρ) (Deroba 2014, Brooks and Legault 2016). Although 404 

this index can be useful as a diagnostic, past analyses suggest the index may not necessarily 405 

reflect the magnitude and direction of bias (Hurtado-Ferro et al. 2015, Brooks and Legault 2016, 406 

Wiedenmann and Jensen 2018). When applied the outcomes and net benefits can be equivocal in 407 

both the short- and long-terms (Deroba 2014, Brooks and Legault 2016).  408 

Shifting the focus from assessment to decision making in management strategy evaluation (Fig. 409 

1a), our analysis shows the undesirable outcomes of managing with biased assessments can be 410 

avoided by developing more precautionary measures to set annual catch limits through dynamic 411 

optimization of the control parameters of harvest control rules. For our saithe case, when 412 

estimation bias becomes too severe, lowering target exploitation rate and raising threshold 413 
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abundance that trigger management action–early intervention–would maintain not only low 414 

probabilities of stock depletion (<3.5% when SSB < Blim) (and thus a fishery closure) but also 415 

short-term catch stability (<20% year-to-year variation) without foregoing yields, thereby 416 

minimizing disruption to fishing communities. Although this approach needs to be tested with 417 

more case studies, our work demonstrates the optimization approach can guide managers in 418 

making decisions to cost-effectively safeguard against ecologically and socioeconomically 419 

undesirable outcomes of managing risks with biased assessments. 420 

Like all model-based methods our proposed approach also has limitations. The main aim of 421 

this work was to develop an alternative approach to guide resource managers in decision making 422 

to support sustainable use of resource populations despite estimation bias. For this reason, we did 423 

not explore underlying mechanisms of the bias propagating through a resource–management 424 

system. Analyses show that even with optimization our ability to safely harvest the populations 425 

would become progressively limited (less margin of error in setting the precautionary harvest 426 

rules or “safe operating space”, Carpenter et al. 2015) as the magnitude of bias increases. We 427 

encourage continued efforts to develop methods to identify root causes of bias and to minimize 428 

their adverse effects on scientific advice (Hurtado-Ferro et al. 2015, Szuwalski et al. 2017, 429 

Hordyk et al. 2019).  430 

Another caveat of our approach is computational intensity (requiring extensive parallel 431 

computing on a high-performance computer cluster), which may pose challenges in its 432 

application especially for more complex management objectives (more control parameters) 433 

(Walters and Hilborn 1978, Chadès et al. 2017). Methods have been recently adopted to improve 434 

the efficiency of computational optimization including genetic algorithms (Fischer et al. 2021), 435 

partially observable Markov decision process (Memarzadeh & Boettiger 2018), stochastic 436 
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process (Wiedenmann et al. 2015), bootstrapping (ICES 2020a), and Bayesian statistics (ICES 437 

2020a). Future research would benefit from applying these techniques to expand this feedback-438 

based approach to tackling estimation bias in assessment. 439 

More broadly, our proposed approach using management strategy evaluation, which is 440 

designed to account for multiple sources of uncertainty (Punt et al. 2016), offers a robust 441 

alternative to managing resource populations when biases in assessments persist. This approach 442 

can not only act as a diagnostic to evaluate the robustness of management measures by explicitly 443 

accounting for long-term (a decade or more) consequences but also present an adaptive, 444 

transparent way to improve protective measures when the perception deviates too far from 445 

reality. Given ubiquity of estimation bias and challenges in identifying the sources (Hurtado-446 

Ferro et al. 2015, Brooks and Legault 2016, Szuwalski et al. 2017) we suggest the bias be 447 

routinely evaluated through management strategy evaluation as an additional source of 448 

uncertainty, and harvest control rules be (re)optimized when the bias becomes too severe.  449 

Demand for wild-capture fisheries, which provide food, nutrition, and job security, will 450 

continue to rise with growing human populations in the coming decades (Costello et al. 2020). 451 

Changing ocean conditions are also projected to increase environmental stochasticity, amplifying 452 

resource population and harvest fluctuations (Brooks and Legault 2016). Higher environmental 453 

stochasticity may promote autocorrelation in population fluctuation (Ripa and Lundberg 1996, 454 

Gamelon et al. 2019) and amplify the magnitude of assessment error, thereby further shrinking 455 

safe harvest margins. These anticipated issues underscore greater needs for taking precautionary 456 

measures in shaping resilient management policies (adopting “resilience-thinking”, Fischer et al. 457 

2009) to safeguard shared resources in the face of rising uncertainty. 458 
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Tables 620 

Table 1. Optimized control parameters (Ftarget and Btrigger)† of the harvest control rule set for 621 

North Sea saithe and performance metrics‡ from management strategy evaluation under 622 

scenarios of varying levels of estimation bias in assessments.  623 

      short-term (2019–2023) long-term (2029–2038) 
scenario§ Ftarget Btrigger Catch ICV SSB risk¶ catch ICV SSB risk¶ SHM¶ 

base 0.35 250000 92464 20 251973 2.0 116700 17.7 292067 1.5  - 
10% 0.33 250000 101786 13 238194 3.2 116288 17.8 279135 2.5 84.4 
20% 0.31 270000 103545 13 235356 3.3 116154 18.7 274958 3.0 65.6 
30% 0.27 310000 93047 20 252123 2.2 115984 18.0 293711 2.2 53.1 
40% 0.26 310000 101131 14 240643 2.9 115863 18.4 282929 2.5 37.5 
50% 0.25 310000 104943 12 234525 3.3 115730 19.1 274228 2.8 29.2 

†The model parameters were optimized for the highest median catch while meeting the precautionary 624 

criterion: long-term risk ≤ 5% (ICES 2019c). 625 

‡The performance was evaluated with short-term and long-term median catch (t), interannual catch 626 

variability (%, ICV), median spawning stock biomass (SSB, t), and risk (%).  627 

§Scenarios simulate SSB overestimation and mean (averaged across four to seven-year-olds) fishing 628 

mortality rate (F) underestimation. 629 

¶Risk is the maximum probability of SSB falling below Blim (107,297 t) over a given period. Safe harvest 630 

margin (SHM) indicates the proportion (%) of the grid-search area with the harvest rules that remain 631 

precautionary (Fig. 4).  632 
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Figure legends 633 

Figure 1. Management strategy evaluation framework and historical population and harvest 634 

dynamics of North Sea saithe. (a) Schematic of the management strategy evaluation framework 635 

(Fisheries Library in R/Assessment for All or FLR/a4a, redrawn from 636 

https://github.com/ejardim) adopted for evaluation of saithe management strategies. (b) 637 

Reconstructed saithe population and harvest dynamics taken from the 2018 assessment (ICES 638 

2019a). Ribbons indicate 95% confidence intervals. (c) Harvest control rule evaluated in this 639 

study. Blue dashed (horizontal and vertical) lines show the harvest control rule parameters set for 640 

saithe: Btrigger = 250,000 t and Ftarget = 0.35 (ICES 2019c). 641 

Figure 2. Stock abundance (SSB) and fishing pressure of North Sea saithe from the population 642 

operating and estimation models (OM and EM) under scenarios of varying levels of estimation 643 

bias: (a) short-term (2018–2023) and (b) long-term (years 2029–2038). Violin plots indicate 644 

frequency distributions of performance metrics. Horizontal lines (from bottom to top) within the 645 

box plots indicate the 25th, 50th, and 75th percentiles; whiskers (of the box plots) extend to the 646 

largest and smallest values within 1.5x the inter-quartile range (IQR) from the box edges; and 647 

black circles indicate the outliers. Fishing mortality rates are computed by averaging across age-648 

specific fishing mortality rates of four to seven-year-olds. Red horizontal lines indicate median 649 

values from the baseline scenario. 650 

Figure 3. Performance of the harvest control rule for North Sea saithe under six scenarios of 651 

varying levels of estimation bias (overestimation of stock abundance and underestimation of 652 

fishing mortality rate): (a) short-term (2018–2023) and (b) long-term (years 2029–2038). The 653 

performance was evaluated with median catch (t), interannual catch variability (ICV), and risk. 654 

Risk is the maximum probability of SSB falling below Blim (107,297 t). Violin plots indicate 655 
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frequency distributions of performance metrics. Horizontal lines (from bottom to top) within the 656 

box plots indicate the 25th, 50th, and 75th percentiles; whiskers (of the box plots) extend to the 657 

largest and smallest values within 1.5x the inter-quartile range (IQR) from the box edges; and 658 

black circles indicate the outliers. Red horizontal lines indicate median values from the baseline 659 

scenario (catch and ICV) or the precautionary threshold (risk = 0.05). 660 

Figure 4. Grid search for combinations of the harvest control rule parameters (Ftarget and Btrigger) 661 

for North Sea saithe under five scenarios of varying levels of estimation bias (overestimation of 662 

stock abundance and underestimation of fishing mortality rate). Heat maps indicate median catch 663 

for only combinations that meet the precautionary criterion (risk ≤ 5%) in the long term (years 664 

2029–2038). Black rectangles indicate combinations of the harvest control rule parameters with 665 

the highest median catch. Blue circles indicate the parameter sets optimized without estimation 666 

bias (Btrigger = 250,000 t and Ftarget = 0.35, ICES 2019c). 667 

  668 
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