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Incorporating ecological covariates into fishery stock assessments may improve estimates, but most covariates are estimated with error. Model
selection criteria are often used to identify support for covariates, have some limitations and rely on assumptions that are often violated. For a
more rigorous evaluation of ecological covariates, we used four popular selection criteria to identify covariates influencing natural mortality or
recruitment in a Bayesian stock assessment of Pacific herring (Clupea pallasii) in Prince William Sound, Alaska. Within this framework, covariates
were incorporated either as fixed effects or as latent variables (i.e. covariates have associated error). We found most support for pink salmon
increasing natural mortality, which was selected by three of four criteria. There was ambiguous support for other fixed effects on natural mortality
(walleye pollock and the North Pacific Gyre Oscillation) and recruitment (hatchery-released juvenile pink salmon and a  regime shift).
Generally, similar criteria values among covariates suggest no clear evidence for a consistent effect of any covariate. Models with covariates as
latent variables were sensitive to prior specification and may provide potentially very different results. We recommend using multiple criteria
and exploring different statistical assumptions about covariates for their use in stock assessment.
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Introduction
Population dynamics models, such as those used in fisheries man-
agement, are governed by biological parameters including growth,
recruitment, and natural mortality (Hilborn and Walters, 1992).
Explaining the variability in recruitment and natural mortality is
perhaps the most challenging obstacle to conducting accurate fish-
eries stock assessments. Recruitment predictions that rely on a re-
lationship with parental biomass are a key source of uncertainty
in stock assessment (e.g. Needle, 2001; Maunder and Deriso, 2003;
Maunder and Watters, 2003), in large part because of the high vari-
ance around estimated stock–recruitment relationships for many
fish stocks (Gilbert, 1997; Lee et al., 2012; Szuwalski et al., 2015).

Natural mortality of young and old fish is also a key uncertainty
(Vetter, 1988; Clark, 1999), proving difficult to estimate and caus-
ing biased estimates of stock status when mis-specified, especially
when ignoring time-varying mortality (Deroba and Schueller, 2013;
Johnson et al., 2014). In fisheries research, one of the major driv-
ing questions is which ecological factors are most responsible for
variation in recruitment and natural mortality. Little progress has
been made in addressing this question (Rice and Browman, 2014;
Pepin, 2015), but efforts continue because improving the accuracy
and precision of stock assessments could result in more sustainable
fish stocks and fisheries.

Reliably modeling ecological effects on recruitment or natural
mortality can involve a variety of functions and analyses, but often
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starts (and sometimes stops) with linear models. In other words,
ecological covariates, or the observable variable, are often used as
predictors of recruitment or productivity in a linear or log-linear
manner, and their effects are additive (Maunder and Watters, 2003;
Deriso et al., 2008). This form treats covariates as fixed effects and
provides a convenient link between ecological and population dy-
namics and accommodates hypotheses regarding the specific bio-
logical processes that are impacted.

Despite the ease and convenience of this approach, inappropriate
assumptions about the covariates often undermine the robustness
of inferences made from these models. One of these inappropri-
ate assumptions occurs because the observations used for covariates
have statistical error (i.e. the “errors-in-variables” problem; Walters
and Ludwig, 1981). Many ecological covariates are estimates from
external analyses that are themselves uncertain such as time series
of abundance for predator species that come from population dy-
namics models. Overlooking this uncertainty when incorporating
as covariates into stock assessment may lead to erroneous conclu-
sions (Brooks and Deroba, 2015). Additionally, the covariate itself
may imperfectly represent the true forcing ecological factor and act
in concert or interact with other unmodelled or unobserved fac-
tors. This unexplained variability should be treated as random ef-
fects (Maunder and Watters, 2003; Deriso et al., 2008), with state–
space formulations (Maunder et al., 2015; Miller et al., 2016), or
by modeling covariates “as data” (Schirripa et al., 2009; Crone et
al., 2019); both approaches more generally treat covariates as latent
variables. Such models more appropriately represent covariate un-
certainty, although their performance results in little improvement
compared to models with fixed covariate effects and an appropriate
bias correction (Crone et al., 2019).

Time series for covariates are usually observed or estimated
outside of surveys conducted for single-species stock assessments,
and thus have nonoverlapping time frames or missing years. Ap-
proaches to address missing data for covariates have been proposed
and explored, including estimating random effects in years of miss-
ing covariate data, substituting the mean of the available covariate
data for missing years (“imputation”), or ignoring all fitted data in
the missing year (Maunder and Deriso, 2010). A state–space frame-
work is the preferred approach (Maunder and Thorson, 2019), but
simpler alternatives such as substituting the mean of the covariate
data may also perform well under some circumstances (Maunder
and Deriso, 2010).

Herring display large fluctuations in abundance (Hjort, 1914) as
well as prolonged periods of low adult abundance and recruitment,
even for decades (Trochta et al., 2020). Consequently, including
ecological covariates in herring (genus Clupea) stock assessments
has long been a focus (Deriso et al., 2008; Deroba et al., 2018; Hul-
son et al., 2018; Okamoto et al., 2020). Pacific herring in Prince
William Sound, Alaska offer an ideal case study, having failed to
recover following population collapse despite fisheries being closed
for more than two decades. This failure to recover from low levels
is unusual for fish stocks (e.g. Hilborn et al., 2014). Various studies
have investigated biological and ecological factors that may inhibit
the recovery of Prince William Sound herring, each providing dif-
ferent answers (Williams and Quinn, 2000; Brown and Norcross,
2001; Deriso et al., 2008; Pearson et al., 2012; Sewall et al., 2017;
Ward et al., 2017). Thus, there is a continued need to better un-
derstand the factors driving herring productivity in Prince William
Sound.

Currently, a single-species Bayesian age-structured stock assess-
ment model is used to estimate the stock status of Prince William
Sound herring (Muradian et al., 2017). A variety of model-selection

methods is available for Bayesian models on evaluating support for
individual covariates, each with its benefits and limitations (Hooten
and Hobbs, 2015). Commonly used Bayesian model selection cri-
teria include the Deviance Information Criterion (DIC; Spiegelhal-
ter et al., 2002), Watanabe–Akaike’s Information Criterion (WAIC;
Watanabe, 2013), and posterior predictive loss (herein PPL; Gelfand
and Ghosh, 1998), which maintain popularity largely because of
their easy computation. Existing posterior samples from draws of
a Markov chain Monte Carlo sampler are used to calculate DIC and
WAIC, while posterior predictive draws are used in PPL. Another
criterion, the Pareto-smoothed Importance Sampling Leave-one-
out Criterion (PSIS-LOO), was more recently developed and shown
to be more robust than these other criteria (Piironen and Vehtari,
2017; Vehtari et al., 2017). Statistically, all these criteria are approxi-
mations of a “true” utility function that measures the predictive per-
formance of a model (i.e. the Kullback–Leibler divergence between
the true data generating distribution and the predictive distribu-
tion of a candidate model; Piironen and Vehtari, 2017). However,
any one criterion is vulnerable to selecting the incorrect model, es-
pecially when models are overfitted or misspecified (Hooten and
Hobbs, 2015; Piironen and Vehtari, 2017).

Here, we evaluated the predictive ability of ecological covariates
in the stock assessment of Prince William Sound herring using mul-
tiple Bayesian model selection criteria. The essence of the approach
was to incorporate ecological covariates directly into the mortality
and recruitment functions within the Bayesian assessment. We in-
vestigated the implications on how covariates are incorporated by
running individual Bayesian assessment models with covariates in-
corporated as fixed effects and as latent variables. Since several co-
variates are systematically missing observations (e.g. data started or
ended part way through the modeling time period), we created sets
of models covering shorter or longer time periods, each of which
had more complete data for all covariates. The models with longer
time periods incorporated only those covariates with long time se-
ries, while the models with shorter time periods were able to include
more covariates. This approach allowed temporally consistent in-
formation for comparing models using Bayesian model selection.
Finally, we applied DIC, WAIC, PPL, and PSIS-LOO model selec-
tion criteria to check for inconsistencies in support between criteria.
Altogether, our methods provide a framework for accounting for
major technical issues involved in incorporating and selecting co-
variates for fisheries stock assessments: covariate data errors, miss-
ing covariate data, and model selection fallibility.

Material and methods
We reviewed the literature on hypotheses related to ecological fac-
tors driving Prince William Sound herring recruitment and natural
mortality (hereafter “mortality”) and collected corresponding co-
variate time series for inclusion in the Bayesian assessment model
for Prince William Sound herring. We also describe the model fit-
ting procedure and modifications made to the Bayesian assessment
to incorporate covariates; how we dealt with missing covariate data;
how we evaluated covariates using Bayesian model selection; and
the alternative modeling approach incorporating covariates as la-
tent variables.

Covariates of ecological factors impacting Prince William
Sound herring
Various ecological factors have been proposed to impact Prince
William Sound herring recruitment and adult (i.e. 3 years and
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older) mortality rates. Modeling studies suggest that recruitment
and mortality drive current population dynamics in Prince William
Sound and that food quality and quantity, predation, oceanographic
processes, and broad-scale climate drivers may explain their vari-
ability over time (Williams and Quinn, 2000; Brown and Norcross,
2001; Deriso et al., 2008; Pearson et al., 2012; Sewall et al., 2017;
Ward et al., 2017). Here we describe the covariates examined in this
study (notated by Iy in equations below), with an overall summary
and references given in Table 1.

(i) Viral hemorrhagic septicemia virus (VHSV) and
Ichthyophonus hoferi. Disease, specifically epizootics of
VHSV and ulcers, and continuous infections of the proto-
zoan parasite I. hoferi, have been hypothesized to be major
determinants of Prince William Sound herring mortality
(Marty et al., 1998; Quinn et al., 2001; Marty et al., 2003;
Marty et al., 2010). Three sets of disease data are currently
incorporated into the Bayesian assessment model for Prince
William Sound herring as an additive effect on adult natural
mortality (Muradian et al., 2017): a combined prevalence
index of VHSV and ulcers assumed to affect the mortality
rate of ages 3–4, I. hoferi prevalence from field collections
during 1994–2006 assumed to affect ages 5+, and I. hoferi
prevalence from a new survey during 2007–present assumed
to affect ages 5+ . Since previously supported models incor-
porate all disease data (Marty et al., 2010; Muradian et al.,
2017), we either include or exclude all disease data in the
model.

(ii) Summer upwelling. Upwelling drives coastal primary produc-
tivity which may influence bottom-up control on herring pro-
ductivity. The summer upwelling index describes the magni-
tude and direction of water transport and is calculated as the
average of monthly Bakun (1973); Bakun (1975) upwelling in-
dices (m3 s−1 100 m−1) over May-September at a 3-degree cell
centered on 60◦N 146◦W (https://oceanwatch.pfeg.noaa.gov
/products/PFELData/upwell/monthly/upindex.mon).

(iii) North Pacific Gyre Oscillation (NPGO). NPGO reflects pat-
terns in the variability of sea level, westerlies, winter tem-
peratures, and precipitation (Di Lorenzo et al., 2008), which
may also influence primary productivity dynamics in the Gulf
of Alaska. NPGO is the second Principal Component from
the empirical orthogonal function of sea-surface tempera-
ture (SST) and sea-surface height anomalies (SSHA) over the
Northeast Pacific (http://www.o3d.org/npgo/). Here, summer
NPGO is the average over May–September (i.e. when herring
primarily feed and generate lipid storage for future energy ex-
penditure), and winter NPGO the average over November-
March (i.e. when overwintering herring may need to rely on
energy stores if prey availability is low) the following year.

(iv) Pacific Decadal Oscillation (PDO). PDO (the first Principal
Component of SST and SSHA variability) is a pattern of cli-
mate variability in the mid- to north-Pacific that is expressed
as phases of warmer or cool SST in the northeast Pacific,
and correlates with many marine populations (Polovina et
al., 1996; Mantua et al., 1997; Mantua and Hare, 2002). Val-
ues were downloaded from http://research.jisao.washingto
n.edu/pdo/. Here, summer PDO is the average over May–
September, and winter PDO the average over November–
March the following year.

(v) Total pink salmon run and hatchery pink salmon releases.
Pink salmon in Prince William Sound prey on herring and
other species (Kaeriyama et al., 2000; Sturdevant et al., 2013),

and may also compete with them for food. Total numbers of
wild pink salmon (escapement + harvest) returning to Prince
William Sound each year were obtained from ADF&G esti-
mates (R. Brenner, pers. comm.). Releases of juvenile pink
salmon from Prince William Sound hatcheries predicted long
term shifts in Prince William Sound herring recruitment,
implying that pink salmon either competed with or preyed
on herring (Deriso et al., 2008; Pearson et al., 2012). These
releases drastically increased in the late 1980s and have re-
mained stable since the early 1990s. The number of hatchery-
released pink salmon fry in Prince William Sound were ob-
tained from ADF&G (pers. comm. R. Brenner, unpublished
data).

(vi) Gulf of Alaska arrowtooth flounder total spawning biomass.
Herring are eaten by Gulf of Alaska adult arrowtooth floun-
der (>20 cm), which has increased in abundance substan-
tially since the 1980s (Spies et al., 2017). We used stock as-
sessment estimates of arrowtooth flounder total biomass (ages
1+) from the Gulf of Alaska (Spies et al., 2017).

(vii) Gulf of Alaska walleye pollock spawning biomass (SB) and
age-1 numbers (lagged 1-yr). While walleye pollock eat her-
ring within Prince William Sound (Thorne, 2008; Gray et al.,
2019), a stronger effect may be reflected by the relative avail-
ability of walleye pollock and herring to dominant predators
in the Gulf of Alaska such as arrowtooth flounder (Dorn et
al., 2017; Oken et al., 2018; Barnes et al., 2020) and Steller sea
lions (Trites and Donnelly, 2003). Local estimates of walleye
pollock in Prince William Sound are unavailable, but spawn-
ing biomass estimates from Gulf of Alaska walleye pollock are
available and used here (Dorn et al., 2017). Thus, the hypoth-
esis we specifically evaluate is that Gulf of Alaska walleye pol-
lock abundance decrease mortality due to prey switching by
shared predators. Age-1 Gulf of Alaska walleye pollock were
strongly and positively correlated with Prince William Sound
herring productivity up to 2012, suggesting shared bottom-
up effects of zooplankton prey or prey switching by shared
predators (Sewall et al., 2017). Numbers of age-1 walleye pol-
lock were obtained from the Gulf of Alaska stock assessment
(Dorn et al., 2017), and lagged by 1 year to match the brood
year of Prince William Sound herring.

(viii) Humpback whales. Humpback whales are major predators
of herring throughout the northeast Pacific and in Prince
William Sound (Straley et al., 2017; Moran et al., 2018). Two
separate time series of humpback whale abundance are used
in this analysis: model estimates of summer Prince William
Sound humpback whale abundance through 2009 (Teerlink
et al., 2015) and humpback whale counts from standard-
ized sighting surveys and opportunistic efforts within Prince
William Sound during the fall and winter (Moran and Straley,
2019).

(ix) Freshwater discharge. Freshwater discharge into Prince
William Sound impacts quality of nearshore nursery habitats
for juvenile herring, changing zooplankton prey timing and
quantity (Ware and Thomson, 2005) and altering salinity,
which in turn cues changes in larval and juvenile fish behav-
ior (Boehlert and Mundy, 1988). We used annual indices of
freshwater discharge near Seward, AK (Royer, 1982), which
is positively associated with productivity of Prince William
Sound herring (Ward et al., 2017).

(x) First-year scale growth increment. First-year scale increments
in Prince William Sound herring measures growth rates in
the first year of life, and is strongly correlated with planktonic
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prey abundance and warmer summer temperatures (Batten et
al., 2016). We included a time series of scale increments from
archived herring scale images collected from Prince William
Sound (Haught and Moffitt, 2018).

(xi) 1989 regime shift. The year 1989 marked two ecologically sig-
nificant events in Prince William Sound: the Exxon Valdez
oil spill and a climate regime shift (Hare and Mantua, 2000).
These two events confound analyses on the cause of dra-
matic decreases of herring and salmon populations in Prince
William Sound that occurred during or shortly after this same
time (Ward et al., 2017). To account for these factors, we in-
cluded a time-block effect with a shift in estimated mean re-
cruitment.

(xii) Null model. The null model includes no covariates on natural
mortality and recruitment.

Bayesian age-structured assessment (BASA) model
Each ecological covariate was incorporated into BASA (Muradian
et al., 2017), which is an updated version of the ADF&G assessment
model used in previous modeling studies (Deriso et al., 2007; Hul-
son et al., 2007; Deriso et al., 2008). A total of six key datasets were
fit by the model: relative abundance indices from two hydroacous-
tic surveys conducted respectively by the Prince William Sound
Science Center (PWSSC) and ADF&G; a relative abundance index
from an aerial survey of milt coverage standardized by length of
shoreline and days surveyed; an absolute abundance index from an
egg deposition survey; fishery-dependent age compositions from
the purse-seine fishery; and fishery-independent age compositions
from seine and cast net surveys on pre-spawning aggregations of
herring (Muradian et al., 2017). Since the Bayesian assessment has
been thoroughly documented in earlier literature (Muradian et al.,
2017), we provide a brief description and tables of the data types,
model equations, parameters, and likelihood equations in the Sup-
plementary Material. We also made minor changes in how Mura-
dian et al. (2017) calculated mature biomass, to improve estimation,
and altered the model to start at age 0 instead of age 3 to allow for co-
variates to affect younger ages. These changes are further described
in the Supplementary Material.

Recruitment (Ry) was modeled as spawner independent where
process error varies around constant mean recruitment. Ecologi-
cal effects contribute to the process error in proportion to an es-
timated β (the effect size of covariate Iy), where εRec, y is the esti-
mated unexplained error in recruitment variation with log-normal
bias-correction and R̄ is mean stationary recruitment across time:

Ry = R̄ eβIy+εRec,y−0.5σ 2
Rec ,

εy ∼ N
(
0, σ 2

Rec

)
,

σRec ∼ U (0.0001, 2) .

There is a uniform prior that constrains σRec (recruitment stan-
dard deviation) to a positive variance, and differs from BASA (Mu-
radian et al., 2017), which freely estimated annual recruitment. We
fixed σRec to different values as a sensitivity check on the results
(Supplementary Figure S1).

Survival is a function of mortality that was modeled for two peri-
ods within each year to account for the seasonal fisheries that once
operated in Prince William Sound. Survival (Sy, a, b) of adult herring

of age a, in year y, and half-year b (1 or 2) is:
Sy,a,b = e−0.5M̄+βIy 0 ≤ a ≤ 8,

in which M̄ was the assumed average annual instantaneous mortal-
ity rate multiplied by 0.5 to spilt the mortality rate for each half-year,
and an estimated β measures the influence of covariate Iy. The value
of M̄ is fixed at 0.25 yr–1 (Muradian et al., 2017). Half-year survival
in the age 9 + group is:

Sy,9+,b = {
e−0.5M̄9++βIy y = 1980

Sy−1,9+,b

(
Sy,a,b

Sy−1,a,b

)
y > 1980 ,

in which M̄9+ is the instantaneous mortality rate of the plus group in
the first year, and was estimated. In all other years, whatever changes
were made to age 8 survival are also made to age 9 + survival; there-
fore, any covariate applied to age 8 is also referred to as having af-
fected age 9+ .

Each covariate was normalized to have a mean of 0 and stan-
dard deviation of 1 over the time series, and only one covariate at
a time was included in either the recruitment or survival functions
within BASA to provide a suite of independent models (Table 1).
Each covariate was assumed to affect one or more age groups: the
affected age groups were all affected in the same way, while the un-
affected age groups had β = 0. Covariate effects on ages 9+ survival
were implicit since they were related to age 8 survival. This linear
age-structured formulation for mortality is identical to the current
formulation in BASA that incorporates an index of disease preva-
lence rate (Muradian et al., 2017), except that the disease indices
were not normalized and were assumed to influence mortality over
the entire year.

BASA includes two additional, freely estimated mortality param-
eters (m1,1992−1993 and m2,1992−1993) that were added to M̄ in 1992–
1993 to account for the sudden and significant loss of biomass ob-
served in the milt and acoustic surveys in those years (Hulson et al.,
2007; Marty et al., 2010). One mortality parameter acted on ages 3–
4 and the other on ages 5–8 (Muradian et al., 2017). Excluding these
two parameters made no difference in the top models our analy-
sis selected and resulted in worse fits to the data and poorer con-
vergence. Here, we report values of these two parameters for each
model as a check on whether covariates may partially explain in-
creased mortality in 1992–1993.

Addressing missing covariates
Multiple covariates have observations that start or finish during
the modeled time frame and are missing values especially in early
years. To make model comparisons and selection consistent so
that the same time periods are affected across all covariates, we
re-ran the model on four time periods with different numbers of
years removed from the early or later part of covariate time se-
ries with cut-off years matching the first of last year of observa-
tions for incomplete time series (see Table 1). The time periods are
1980–2009, 1980–2017, 1994–2017, and 2007–2017. The complete
records (1980–2017) of the six fitted data sets are used in all models
across all time periods.

We then compared model results within each time frame. This
approach is similar to that used by Sewall et al. (2017). Some covari-
ates are missing values in individual years or for several years at the
end (see Table 1). We did not systemically omit these years in other
covariates because these instances are too few to substantially im-
pact results and would require running many more Bayesian mod-
els. Additionally, since all covariates are normalized to have a zero

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/78/8/2875/6368095 by Fiskeridirektoratet. Biblioteket. user on 05 January 2022



 J. T. Trochta and T. A. Branch

mean, missing years are analogous to an effect of the mean covari-
ate value within the model (i.e. substituting missing years with the
mean value), which was previously demonstrated as a possible al-
ternative for addressing missing covariate values (Maunder and De-
riso, 2010).

Bayesian model-fitting
BASA was implemented in ad Model Builder (ADMB; Fournier
et al., 2012). Parameter estimation was done using the no-U-
turn sampler (NUTS), a more efficient Markov chain Monte Carlo
(MCMC) algorithm for sampling from the posterior distribution
(Monnahan et al., 2017). We used the R package “adnuts” (Mon-
nahan and Kristensen, 2018) to run ADMB with NUTS inside R
(R Core Team, 2020). Three chains of 3000 samples were generated
using a diagonal mass matrix (the default in adnuts) adapted with a
warm-up phase of 500 samples and a target acceptance rate of 0.925.
The results from all chains were combined. To assess convergence
in each model, we checked for sufficient potential scale reduction R̂
values (<1.1; Gelman et al., 2014a) of each parameter across chains
and zero divergences. Models typically converged in 30–90 min.

Hypothesis evaluation
We used two general approaches to evaluating support for each eco-
logical covariate: (1) computing posterior probabilities of estimated
effects and (2) Bayesian model selection.

The posterior probabilities of the estimated effects (β) of each co-
variate was calculated as the proportion of posterior draws greater
than or less than zero depending on the sign of the effect implied
by the hypotheses (Table 1). We directly compared effect probabili-
ties among models because all covariates were normalized and thus
estimates for β are on the same scale.

For Bayesian model selection, we used the Deviance Information
Criterion (DIC), Watanabe Akaike Information Criterion (WAIC),
Posterior Predictive Loss (PPL), and Pareto-smoothed Importance
sampling Leave-one-out cross validation (PSIS-LOO). Calculating
criteria values involves multiple computational steps (Figure 1). De-
tails on how they are applied to the multiple data sets within BASA
are provided in the Supplementary Material.

There are similarities in how these criteria are computed, such as
the use of posterior densities for model estimates of the data (WAIC
and PSIS-LOO), but also key differences and caveats to each. DIC
(Spiegelhalter et al., 2002) has been widely used with stock assess-
ment (Wilberg and Bence, 2008; Punt et al., 2014; Brooks et al.,
2019), but poorly characterizes and favors model complexity, is bi-
ased when the posterior distribution is not multivariate normal, and
disregards uncertainty, a key benefit of Bayesian inference (Hooten
and Hobbs, 2015). WAIC is preferred to DIC because it integrates
over the posterior densities (Figure 1) and asymptotically approxi-
mates conventional leave-one-out cross-validation, but its reliance
on reusing the data to estimate out-of-sample prediction error can
lead to high variance and result in choosing the nonoptimal model
(Piironen and Vehtari, 2017; Vehtari et al., 2017). PPL (Ibrahim and
Laud, 1994, 1995; Gelfand and Ghosh, 1998) considers simulated
measurements from the posterior estimates of the data (i.e. poste-
rior predictive distributions) and has been shown to penalize more
complex models, but may be biased especially with non-normal
posterior predictive distributions (Piironen and Vehtari, 2017).

PSIS-LOO has been shown to be a more reliable approxima-
tion of leave-one-out cross-validation and more robust to weak
priors and influential observations compared to WAIC (Vehtari et

al., 2017). However, PSIS-LOO is still subject to incorrectly esti-
mating prediction accuracy under these conditions or when data
are sparse. An added benefit to using this criterion is accompa-
nying output that provides diagnostics on the reliability of PSIS-
LOO values. Specifically, calculating PSIS-LOO involves estimat-
ing tail shape parameters of the generalized Pareto distribution (k̂)
for each fitted observation; values of k̂ should not exceed 0.7 for
most estimates (Vehtari et al., 2017). Many problematic k̂ indicate
the PSIS-LOO value may be unreliable and in these cases, full K-
fold cross-validation or model changes are recommended. We did
not run K-fold cross-validation for models with many problematic
k̂ because there is no clear way to do this with an integrated catch-at-
age model such as BASA. Further details on PSIS-LOO diagnostics
are provided in the Supplementary Material.

We included the null model in model selection. The null model
provides a benchmark for comparison in which alternative models
need to have lower criteria values than the null model to be con-
sidered better (i.e. better than using no covariate information). The
best model should produce the lowest values under each criterion.
Model selection with the full model (all covariates) was beyond the
scope of this study, which is to evaluate individual hypotheses and
identify the single most important factors.

Another important aspect of our criteria computations is that
random effects (i.e. estimated recruitment deviations) and la-
tent variables were sampled along with other parameters, result-
ing in conditional likelihoods that enter the calculated posterior
densities. Using conditional likelihoods resulted in suboptimal
model selection with DIC and WAIC using marginal likelihoods
(where random effects are marginalized out at in each posterior
draw during sampling) in a state–space surplus-production stock-
assessment model (Kai and Yokoi, 2019). However, the computation
of marginal likelihoods in MCMC sampling is computationally in-
feasible for the much more complex BASA model.

Impact of covariates on population estimates
While it is important to examine estimated effect probabilities and
support from model selection criteria, of even greater importance
is the impact of selected covariates on key management quantities.
Fisheries management relies on estimates of spawning biomass to
decide on catch levels and rebuilding strategies, and on estimates of
recruitment to predict future trends in spawning biomass. There-
fore, we compared the posterior distributions of spawning biomass
and recruitment estimated from each model with those from the
null model.

Treating covariates as latent variables
The models assumed that covariates are fixed effects without error,
but many covariates are model estimates themselves with accom-
panying estimates of uncertainty. This is true of stock assessment
estimates we used as covariates (e.g. arrowtooth flounder, walleye
pollock). To address this issue, we ran model variants where we
incorporated ecological time series as latent variables of estimable
process error. For the survival model, this alternative formulation
is:

Sy,a,b = e−0.5M̄+εy,a,b 0 ≤ a ≤ 8,

where εy, a, b is a parameter estimated for each year that is avail-
able from the ecological time series and across ages impacted by
the changes in mortality (e.g. if ages 3+ are impacted, then a single
parameter is estimated for that age group in each year). A normal
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Applying Bayesian model selection to determine ecological covariates for recruitment and natural mortality in stock assessment 

Figure 1. Schematic for how Bayesian model selection criteria were calculated in this analysis using a single example data set y with
normally-distributed errors. This example data set has N total observations as indexed by t. Model estimates of the data ŷi, t conditioned on
parameter vector θi the ith iteration of a total Nmcmc iterations sampled using Markov chain Monte Carlo. Steps for calculating Deviance
Information Criterion (DIC), Watanabe Akaike Information Criterion (WAIC), Posterior Predictive Loss (PPL), and Pareto Smoothed Importance
Sampled Leave-one-out Cross-validation (PSIS-LOO) are provided as equations that use the log-likelihood or posterior density of the data y.

error distribution was specified for αεy, a, b, where α is an estimated
nuisance parameter that scales εy, a, b to the normalized ecological
time series, Iy:

αεy,a,b ∼ N
(

Iy, σ
2

Iy,y

)
.

We fixed year-specific variance parameters, σ 2
Iy, y, to estimates

of annual standard error or deviation values that are available for
some time series. Most time series do not have accompanying stan-
dard errors. We assumed these had a constant standard deviation
of σ 2

Iy, y= 0.3 in all years. While this is arbitrary, it is a reasonable
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 J. T. Trochta and T. A. Branch

Figure 2. Posterior distributions of the estimated effects on natural mortality and for each time frame. A zero effect is denoted by a dashed
vertical line. No posterior is shown for VHSV from  to  because indices were zero in most years except one year (.).

value similar to error magnitudes provided or estimated for other
data included in BASA (i.e. fitting a covariate is roughly equally
weighted compared to fitting other data). We also conducted a sen-
sitivity check by running all latent variable models with larger stan-
dard error values ( σ 2

Iy, y= 0.7; Supplementary Material). The result-
ing prior is:

∑
y

[
ln

(
σIy,y

) +
(
αεy,a,b − Iy

)2

2σ 2
Iy,y

]
.

Running BASA with uniform priors on the scalar for the annual
errors (α) resulted in various models failing to meet convergence
criteria. To overcome this issue, we placed informative priors on α

using a Normal distribution centered around 0:

α ∼ N
(
0, 12) .

We also refit models with a larger standard deviation in the above
normal prior (σ = 5) as a sensitivity check (Supplementary Fig-
ure S2). However, we retained a Uniform prior α ∼ U (−10, 10) in
models with the recruitment covariates as latent variables because
these models passed the convergence criteria.

The equations for the recruitment model and contribution to the
objective function follow similar forms, but with lognormally dis-
tributed deviates and an unstandardized ecological time series:

Ry = R̄ eεRec,y−0.5σ 2
Rec ,

∑
y

[
ln

(
σIy,y

) +
(
ln (αeεRec,y ) − ln

(
eIy

))2

2σ 2
Iy,y

]
.

We also include in the total likelihood (Supplementary Table S4)
the shrinkage distribution for estimating the recruitment devia-

tions, εRec, y:

38In(σRec ) + 1
2σ 2

Rec

∑
yεY

εRec,y2 .

For the latent-variable model variants, we calculated DIC, WAIC,
PPL, and PSIS-LOO to select the best models and compare their es-
timates of spawning biomass and recruitment with the null model.

Results
Posterior probabilities of effects
For the model fitted to the longest time series of data (1980–2017),
multiple covariates have high probabilities of an effect on natural
mortality (>95% of posterior draws in the direction of the hypoth-
esized effect for that covariate, be it positive or negative), which in-
creased with higher winter and summer NPGO, higher total pink
salmon returns, lower summer PDO, lower GOA walleye pollock
SSB, and higher GOA arrowtooth founder total biomass (Figure 2).
These estimated effects were mostly consistent in 1994–2017 (with
the addition of an increasing effect with higher I. hoferi before 2007)
and 1980–2009, except the probability for a total pink salmon ef-
fect substantially decreased for the 1980–2009 data. Over 1980–
2009, a negative effect of winter PDO and positive effect of summer
upwelling had high probabilities, as did a positive effect of sum-
mer humpback whales. For the shortest time period data (2007–
2017), most covariates have low probabilities, except for summer
upwelling and total pink salmon.

High probabilities (>95%) of increasing recruitment with lower
hatchery-released juvenile pink salmon, higher GOA walleye pol-
lock age 1, and an upward regime shift in 1989 are shown from 1980
to 2017 (Figure 3). The median proportions of variance explained
in log(Ry ) from 1980 to 2017 is substantial for hatchery-released
juvenile pink salmon and the 1989 regime shift, both at 0.37 (95%
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Applying Bayesian model selection to determine ecological covariates for recruitment and natural mortality in stock assessment 

Figure 3. Posterior distributions of the estimated effects on recruitment and for each time frame. A zero effect is denoted by a dashed vertical
line.

uncertainty from 0.10 to 0.79), while other covariates explained 0.16
or less.

Identical posterior probabilities for the effects of hatchery-
release juvenile pink salmon and a 1989 regime shift are seen in
all four time periods, but only in 1980–2017 and 1980–2009 for
GOA walleye pollock. In 2007–2017, recruitment also likely cor-
related with higher summer PDO, lower summer NPGO, and high
age-0 scale growth, which explained 0.43–0.67 of log(Ry ) variance
in those years.

Bayesian model selection
For natural mortality effects, model selection most consistently sup-
ported the model with total pink salmon returns (Figure 4). The
total pink salmon returns model is best in three of four criteria
(PSIS-LOO, WAIC, and DIC) in 1980–2017, 1994–2017, and 2007–
2017, but not in 1980–2009. In 1980–2009, total pink salmon re-
turns were the worst model under all four criteria (Figure 4) and
had the most number of k̂ values from PSIS-LOO that were prob-
lematic (9 values) compared to the other covariate models (5–7 val-
ues for each model). Altogether, this suggests that total pink salmon
returns from 2007–2017 are highly influential in model selection for
this same time period.

An effect of GOA walleye pollock SSB on natural mortality is
the best model under one criterion (PPL) in 1980–2017, while win-
ter NPGO was selected under this same criterion in 1994–2017
and 1980–2009 (Figure 4). Multiple recruitment covariates were
selected as well, including a tie between age 0 scale growth, sum-
mer PDO, and summer NPGO in 2007–2017 (under PPL), and
hatchery-released pink salmon in 1980–2009 (under PSIS-LOO
and WAIC). However, differences in criteria values between recruit-
ment covariates and the null model are negligibly small, suggesting
these models did not improve estimates. This result did not change
when σRec was fixed to a high value (2.0), but when σRec was set low
(0.3), hatchery-released pink salmon and the 1989 regime shift per-
formed much better than the null model in two of four criteria (Sup-
plementary Figure S1). Still, most models resulted in a number of
problematic k̂ values from PSIS-LOO (4–10), suggesting that PSIS-
LOO values (and the other criteria) may be inaccurate or the models
misspecified.

When incorporating covariates “as latent variables” into BASA,
model selection differed substantially (Figure 5). Assuming a stan-
dard deviation of 0.3 (σIy, y) for the latent variables resulted in
humpback whale counts vaulting to the top position in two of four
criteria (PSIS-LOO and WAIC). Additionally, the models with dis-
ease indices and total pink salmon returns minimized PPL and DIC,
respectively. These rankings changed with a higher assumed stan-
dard deviation ( σIy, y= 0.7) or weaker prior on the scaling param-
eter in the natural mortality models (α ∼ N(0, 5.02 ); Supplemen-
tary Figure S2). With a larger σIy, y, the best natural mortality mod-
els also included humpback whale counts (PPL) and walleye pollock
SSB (whose DIC nearly tied that of total pink salmon returns), as
well as age-0 scale growth in the recruitment function (PSIS-LOO
and WAIC). With a weaker prior on α for mortality errors, winter
PDO was also favored by PSIS-LOO and WAIC, while total pink
salmon returns, humpback whale counts and disease still produced
lower values amongst the four criteria.

Explaining the – decline
Model performance was evaluated with respect to their ability to ex-
plain the decline in spawning biomass in the early 1990s. If any of
these covariates were able to at least partially explain this mass her-
ring mortality, or a substantial decline in biomass in general (e.g.
through persistent low recruitment), we would expect lower esti-
mates of the two 1993 additive mortality parameters compared to
the null model. However, none of the mortality covariates reduced
these parameter estimates, and some even increased the estimate of
1993 mortality (Figure 6). Additional analyses running BASA with
each covariate and without these two additional mortality param-
eters all resulted in worse performance amongst model selection
criteria compared to the present results.

Consequences to population estimates
We examined the impacts of including the top covariates on re-
sulting estimates of spawning biomass and recruitment—key out-
puts from BASA that are used by management (Figures 7 and 8).
Top natural mortality covariates (as fixed effects and as latent vari-
ables) tended to produce more pronounced differences in trends
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 J. T. Trochta and T. A. Branch

Figure 4. Bar charts of model selection values across select covariates as fixed effects model variants of BASA with at least two criteria better
than the value of the Null model (empty black bar). Colors indicate the process affected, either natural mortality (red) or recruitment (blue).
Each row represents the different time periods modeled: – (a–d), – (e–h), – (i–l), and – (m–p). Each
column represents one of the four model selection criteria used (PSIS-LOO, WAIC, PPL, and DIC). Bar lengths measure the difference in the
criteria values from the best model (the minimum) in each box. The raw criteria values are labeled next to the bars. The same  covariates are
shown for all rows and are ordered from the smallest to largest values of �PSIS − LOO in plot a).

or scale of spawning biomass estimates in recent years. The most
consistently supported covariate, total pink salmon returns, esti-
mated different spawning biomass and recruitment levels depend-
ing on how the covariate was incorporated; as a fixed effect, es-
timates differed little from the null model, while as a latent vari-
able, very different trends resulted especially in biomass. Hatchery-
released juvenile pink salmon, one of the top covariates affecting
recruitment, had no impact on spawning biomass and recruitment
estimates (Figure 7); in fact, all recruitment covariates, when imple-
mented as fixed effects, had little impact on recruitment estimates
(not shown). However, including age-0 scale growth as a latent vari-
able increased biomass estimates in the second half of the time se-
ries while reducing uncertainty of the most recent recruitment esti-

mates (Figure 8). Furthermore, all recruitment covariates as latent
variables produced different estimates of spawning biomass and re-
cruitment, as with the natural mortality covariates, but most were
unsupported by selection criteria.

Discussion
An effect of total pink salmon returns (including catch and escape-
ment) on adult natural mortality had the most consistent support
amongst criteria and in different time periods, but not in earlier
years (before 2009). The impact of pink salmon on population esti-
mates differed by how it was incorporated into BASA. Evidence for
other covariates was more ambiguous: many covariates had a high
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Applying Bayesian model selection to determine ecological covariates for recruitment and natural mortality in stock assessment 

Figure 5. Bar charts of model selection values across all covariates as latent variable model variants of BASA. The format is identical to Figure
. (red = natural mortality effect, blue = recruitment effect) and is only shown for one time frame (–). Results are presented from
two different assumed values for σ Iy , y : σ Iy , y= . (a–d) and . (e–h). The ecological covariates are ordered from the smallest to largest values
of �PSIS − LOO in plot a).

probability of an effect, fewer had support from model selection in
general, and none had support from all criteria or for all time pe-
riods. Altogether, no single covariate was a good predictor for the
entire time period of collapse and failed recovery of Prince William
Sound herring biomass and recruitment, but at least several covari-
ates may partially inform variability in herring population dynam-
ics.

Supported covariates of natural mortality
Our results support an antagonistic interaction between adult her-
ring mortality and Prince William Sound pink salmon. However,
the most recent period of pink salmon returns (2007–2017) ap-
peared influential to our results because pink salmon were not se-
lected as a covariate when 1980–2009 was considered. This suggests
a risk of spurious correlation, especially considering the negative
autocorrelation in even-year and odd-year pink salmon returns due
to their two-year life cycle. Furthermore, the specific mechanism for
pink salmon causing higher herring mortality is uncertain. Initially,
predation of herring by pink salmon within Prince William Sound
was thought to be virtually negligible (Okey and Pauly, 1999; Pear-
son et al., 2012), but there has been recent evidence for irregular lo-
calized predation impacts on Prince William Sound herring (Stur-

devant et al., 2013). Adult pink salmon migrate inside and outside of
Prince William Sound into the Gulf of Alaska, and exhibit a diverse
diet that includes adult herring and herring prey items (Sturdevant
et al., 2013). Thus there could also be competition between adult
herring and pink salmon, as has been shown in Puget Sound, Wash-
ington state (Kemp et al., 2013). The strengths of interactions with
pink salmon through diet may also change with climate, migration,
and the degree of overlap between the two species (Kaeriyama et al.,
2000; Sturdevant et al., 2013). Interactions between Prince William
Sound herring and pink salmon are also likely influenced by highly
variable herring movement to and from the Gulf of Alaska (Bishop
and Eiler, 2018), as concluded by a previous study that found a sig-
nificant impact of pink salmon returns on Prince William Sound
sockeye salmon productivity (Ward et al., 2017). Our ambiguous
support for a pink salmon effect suggests the value in further inves-
tigating interactions between Prince William Sound pink salmon
and herring and characterizing their overlap in space and time.

There is weaker support for higher abundance of Gulf of Alaska
walleye pollock being linked to lower age 3+ mortality (i.e. pol-
lock abundance and herring survival are positively correlated). Di-
rect overlap between these two populations is not evident, so the
most likely cause is a third factor that impacts both populations.
Some predators target both herring and walleye pollock in the Gulf
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 J. T. Trochta and T. A. Branch

Figure 6. Median (empty circle) and % credibility intervals (blue lines) of additional mortality in  for two different age groups (Ages –
and Ages +). Recruitment (–) and natural mortality (–) specific effects are shown together with estimates of the null model denoted by
the shaded regions (% interval) and vertical dashed lines (median). If covariates partially explain the decline in biomass in , then we
would expect the additional mortality estimates for these covariates to be lower than those of the null model. Estimates are from models using
the full covariate time series (–).

Figure 7. Estimates of spawning biomass and recruitment (in millions of age  fish) from select models with covariates as fixed effects from
 to  that were the best model in at least one criterion compared to the Null model (dark grey lines). These include effects on natural
mortality from total pink salmon returns, GOA walleye pollock SSB, and Winter NPGO, and an effect on recruitment from hatchery-released
juvenile pink salmon. Color coding indicates the process affected (red = recruitment, blue = natural mortality). The lines and shaded regions
reflect the posterior median and % credibility intervals, respectively. The Null model median and uncertainty estimates are shown by the
solid and dashed grey lines, respectively. For the hatchery-released juvenile pink salmon model, estimates are virtually an exact match with the
Null model because additional random effects are estimated to capture the variability not explained by the covariate. Estimates are shown over
the complete time frame (–) and after  because of the substantial difference in scale of biomass and recruitment dynamics before
and after collapse.
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Figure 8. Estimates of spawning biomass and recruitment (in millions of age  fish) from select models with covariates as latent variables that
were the best model in at least one criterion compared to the Null model (dark grey lines). These include errors in natural mortality informed
by winter humpback whale counts, disease, and total pink salmon returns, and errors in recruitment informed by age- scale growth. Color
coding indicates the process affected (red = recruitment, blue = natural mortality). The lines and shaded regions reflect the posterior median
and % credibility intervals, respectively. The Null model median and uncertainty estimates are shown by the solid and dashed grey lines,
respectively. Estimates are shown over the complete time frame (–) and after  because of the substantial difference in scale of
biomass and recruitment dynamics before and after collapse.

of Alaska, including Steller sea lions (Trites and Donnelly, 2003;
Womble and Sigler, 2006) and arrowtooth flounder; our analysis
did show a positive correlation between arrowtooth flounder and
herring mortality, and other evidence shows herring to be a small
component of their diet (Yang, 1993; Spies et al., 2017). Prey switch-
ing by predators could occur depending on the relative availability
of their prey, as has been implied for Steller sea lions (Trites and
Donnelly, 2003). Another reason for their covariation is bottom-up
forcing. Adult Pacific herring feed on lipid-rich crustaceans, other
zooplankton, and small fish (e.g. Andrews et al., 2016), which are
also eaten by walleye pollock (Dorn et al., 2017). Changes in prey
availability and quality for both herring and walleye pollock may
then have an identical effect on each species, such as influenced by
climate conditions (e.g. Andrews et al., 2016).

Our analysis also suggested climate factors may have an effect on
age 3+ mortality as well as recruitment. Posterior probabilities and
model selection implicated effects of NPGO and PDO indices from
summer and winter. It is difficult to hypothesize and interpret the
signs of these effects because NPGO and PDO are not physical pro-
cesses, but statistical summaries of emergent patterns across space
and time, and associated with measurable physical and climate vari-
ables (e.g. SST and Sea Level Pressure field; Litzow et al., 2019, 2020;
Puerta et al., 2019). PDO had been the dominant climate pattern in
the Gulf of Alaska (Di Lorenzo et al., 2008) and correlated with the
productivity and abundance of various Gulf of Alaska fish popula-
tions; however, this correlation has changed over time and disap-
peared in recent years (Litzow et al., 2018, 2019, 2020; Puerta et al.,
2019). Following 1988/1989, NPGO explained more climate vari-
ance (Di Lorenzo et al., 2010; Yeh et al., 2011) and associated with
fish population dynamics such as salmon survival in the North Pa-
cific (Kilduff et al., 2015). NPGO also more recently lost its associ-
ation with physical–ecological variables while having strengthened
its anticorrelation with PDO (Litzow et al., 2020), which may ex-
plain why PDO and NPGO shown more likely, but opposite ef-
fects on recruitment in 2007–2017 compared to other time peri-

ods (Figure 3). Given the evidence for non-stationarity in PDO
and NPGO relationships, a superior approach would be to explic-
itly model time-varying relationships (e.g. Litzow et al., 2018, 2019,
2020; Puerta et al., 2019) or identify time blocks that correspond
with regime shifts, as has been done in relating PDO to natural mor-
tality in another Gulf of Alaska herring stock (Hulson et al., 2018).
This should be the next step for considering these climate indices
in BASA and other stock assessment models.

When included as latent variables, some of these same covari-
ates were also selected (total pink salmon returns and walleye pol-
lock) in addition to humpback whales and disease. Humpback
whales (summer estimates and overwinter counts) are also likely
to increase mortality (Figure 2). Humpback whales are frequently
recorded targeting herring aggregations (Pearson et al., 2012; Stra-
ley et al., 2017; Moran et al., 2018). Importantly, humpback whale
consumption within Prince William Sound in the late 2000s was
estimated at 21–77% of herring spawning biomass (Moran et
al., 2018). The summer abundance estimates and raw overwinter
counts of humpback whales we used likely does not characterize
the true extent of humpback predation on herring in Prince William
Sound. Ancillary information, such as humpback prey selection and
herring energy content as used by Moran et al. (2018a), is necessary
to better account for the predation impact of whales within herring
models.

Previous lab, field, and modeling studies provided evidence that
disease, specifically VHSV and I. hoferi, increased juvenile and
adult herring mortality (Marty et al., 1998, 2003, 2010). However,
a synthesis of the available evidence suggests that neither pathogen
had a primary role in the collapse nor failed recovery of herring
(Pearson et al., 2012). More importantly, the disease prevalence in-
dices do not reflect the proportion that died, but the proportion
that were infected and still alive at the time of sampling. In par-
ticular, I. hoferi can cause acute mortality or persistent infections
with selective mortality (e.g. selective vulnerability to predation) in
subsequent years, although this is irregular (Hershberger et al.,
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2016). This may help to explain the substantial change in probabil-
ity of I. hoferi increasing mortality before and after 2007 (Figure 2).
Data on the exposure history to these pathogens, such as from neu-
tralizing antibody tests (Hart et al., 2017), may better allow for a
more accurate assessment of the impact of past infections on her-
ring.

The remaining covariates with negligible support, in particular
upwelling and arrowtooth flounder biomass, are not likely covari-
ates of herring mortality on their own. Evidence for the influence
of upwelling indices on Gulf of Alaska fish populations is not par-
ticularly strong (e.g. weaker than coastal SST effects on salmon sur-
vival; Mueter et al., 2002) despite being linked to herring recruit-
ment elsewhere in the northeast Pacific (Williams and Quinn, 2000;
Reum et al., 2011). Arrowtooth flounder in the Gulf of Alaska have a
diverse diet where herring are a minor prey item compared to other
species (Yang, 1993; Spies et al., 2017) and predation on herring is
mitigated by the abundance of other prey species as noted earlier.

Ambiguous support for recruitment covariates
We did not find any convincing covariates that consistently ex-
plained Prince William Sound herring recruitment. While effects
of hatchery-released juvenile pink salmon and a 1989 regime shift
had high probabilities across time periods, explained a moderate
amount of variance, and were favored in model selection with low
assumed recruitment variance (Supplementary Figure S1), their
time series showed long-term shifts with very little or no interan-
nual variability that cannot explain the large pulses of individual co-
horts that predominate recruitment variability. Furthermore, these
two effects were identical in magnitude and proportion variance ex-
plained, which suggests a likely shift in average recruitment, but
whose specific cause cannot be discerned from our analysis. The
mixed support for scale growth and summer NPGO and PDO in
2007–2017 (by posterior probabilities, PPL when included as fixed
effects, and PSIS-LOO and WAIC when included as latent variables)
may also be plausible, especially for scale growth because it strongly
correlated with the availability of appropriately-sized high-quality
prey for young-of-the-year herring that may also affect herring sur-
vival (Batten et al., 2016). However, evidence for these three covari-
ates is suspect since few years (11 years) are modeled and evaluated
for support.

Our results further contrast with other recent modeling studies
that identified predictors of Prince William Sound herring recruit-
ment. Previously, Gulf of Alaska juvenile walleye pollock (Sewall et
al., 2017) and freshwater discharge (Ward et al., 2017) were selected
as top predictors for herring recruitment. However, these studies
evaluated covariates with a Ricker stock–recruitment relationship,
an assumption we avoided here because stock–recruitment rela-
tionships are poorly estimated for Prince William Sound herring
(Muradian et al., 2017). Additionally, these studies used model es-
timates from the herring stock assessment as input data, which may
produce unreliable results (Brooks and Deroba, 2015). We avoid
these problems while also including more years of data (at least for
juvenile walleye pollock), which may also erase previously detected
environment–recruitment correlations (Myers, 1998).

As fixed effect versus as latent variable models
For our analysis, most covariates as latent variables were sensitive
to parameter specification and often exhibited worse model selec-
tion values. Incorporating covariates as latent variables as opposed

to fixed effects follows recommendations for evaluating environ-
mental covariates in a more statistically rigorous manner to ac-
count for covariate uncertainty (CAPAM, 2017). Simulation anal-
yses comparing these two approaches in a maximum likelihood
framework indicated similar performance in the quality of results
(nominally, our “as fixed effect” is “as structure,” and “as latent vari-
able” is “as data” in Schirripa et al., 2009; Crone et al., 2019). Our
results suggest estimated recruitment or mortality deviations “fit”
to latent variables depend on the assumed value for σIy, y and the
standard deviation of the Normal prior for α. Latent variables act
as informative priors that alter the posterior geometry sampled in
MCMC to produce different model selection results. With more in-
formative priors ( σIy, y= 0.3 or α ∼ N(0, 1.02 )), covariates as la-
tent variables led to worse model estimates (i.e. large criteria val-
ues) than covariates as fixed effects, especially compared to the null
model. When the error distributions were loosened ( σIy, y= 0.7 or
α ∼ N(0, 5.02 )), different covariates provided even lower criteria
values compared to the best fixed effect models (e.g. age-0 scale
growth and winter PDO). This suggests latent variable errors on
mortality or recruitment may improve estimates beyond fixed ef-
fects models with the same covariate. A more in-depth analysis is
needed to understand more precisely how and why these differences
result before determining if these models offer better estimation
performance.

Our comparison of both approaches for incorporating covariates
also reveal consequences for stock assessment. For modeling co-
variates as fixed effects on recruitment in particular, where random
effects are included, a substantial amount of recruitment variabil-
ity could not be explained by any covariate. Since random effects
captured a majority of recruitment variation, covariates as fixed ef-
fects did not produce different estimates of total recruitment and
spawning biomass compared with the other recruitment covariates
and the null model. This implies a key benefit to modeling covari-
ates as fixed effects with additional random effects; if the wrong
covariate(s) is used, there is no consequence to model estimates.
Of course, this issue would be consequential for forecasting, where
there is no clear approach on how to best use covariates as fixed ef-
fects with additional random error or as latent variables if substan-
tial uncertainty remains. Scientists should consider this flexibility
in using covariates as either fixed effects or latent variables within
stock assessments and explore the consequences of both to model
estimates.

Mixed messaging in Bayesian model selection
Model selection criteria may fail under certain conditions and with
certain models (Vehtari and Ojanen, 2012; Gelman et al., 2014b; Pi-
ironen and Vehtari, 2017). However, results from simulation analy-
ses using these criteria with more complex population–dynamics
models are promising; for example, performance of criteria im-
proved when latent variables/random effects were marginalized
out of the likelihood compared to criteria based on conditional
likelihoods in one study (Kai and Yokoi, 2019), while in another
study, criteria were able to favor models that produce reliable es-
timates, despite failing to select the true model (Dey et al., 2019).
The additional diagnostics available for PSIS-LOO (k̂) in particu-
lar provides insight to the reliability of both model selection cri-
teria and the models themselves. That all models in our analysis
had multiple problematic k̂ may suggest yet unaddressed misspeci-
fication within BASA. Alternatively, considering that many covari-
ates showed likely effects (Figures 2 and 3), differences in criteria
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were small amongst various models (including the top and null
models; Figures 4 and 5), and population estimates differed little
between the best models (Figures 7 and 8), the underlying rea-
son might lie in BASA being a very flexible model. Future Bayesian
model selection with BASA, or any fisheries stock assessment,
should involve simulation testing the performance of criteria in re-
lation to the various issues raised here (e.g. influential observations
in covariate time series).

That we found some consensus amongst criteria for at least one
covariate suggests our approach would be useful for evaluating al-
ternative stock assessment models. Various model configurations
are typically explored and presented as a part of a stock assessment
for fisheries management. Our results emphasize that it is prudent
to use multiple established criteria when comparing models to con-
firm conclusions of support for any one model. Other specific mea-
sures such as retrospective bias (Mohn, 1999) and forecasting er-
ror afford different perspectives on prediction that would further
inform model selection, though this becomes computationally ex-
pensive when considering many Bayesian models.

Conclusions
Our study demonstrates the continual difficulty in discerning mod-
eling evidence for any single ecological effect despite more data,
newer models and analytical techniques, and more robust assump-
tions. Still, using single covariate models with model selection to
determine evidence for certain ecological factors remains nearly
ubiquitous in fisheries science. Our extensions of this established
approach offer the next step for stock assessment researchers to take
when moving to Bayesian multi-model inference.
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