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The hierarchical structure and non-probabilistic sampling in fisher self-sampling programmes makes it difficult to evaluate biases in total catch
estimates. While so, it is possible to evaluate bias in the reported component of catches, which can then be used to infer likely bias in total catches.
We assessed bias in the reported component of catches for  species in the Barents Sea trawl and longline fisheries by simulating  realizations
of the Norwegian Reference Fleet sampling programme using the mandatory catch reporting system, then for each realization we estimated fleet-
wide catches using simple design-based estimators and quantified bias. We then inserted variations (e.g. simple random and systematic sampling)
at different levels of the sampling design (sampling frame, vessel, and operation) to identify important factors and trends affecting bias in reported
catches. We found that whilst current sampling procedures for fishing operations were not biased, non-probabilistic vessel sampling resulted in
bias for some species. However, we concluded this was typically within the bounds of expected variation from probabilistic sampling. Our results
highlight the risk of applying these simple estimators to all species. We recommend that future estimates of total catches consider alternative
estimators and more conservative estimates of uncertainty where necessary.
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Introduction
Self-sampling by fishers is emerging as an effective method of col-
lecting data at sea (Starr, 2010; Lordan et al., 2011; Roman et al.,
2011; Kraan et al., 2013; Bell et al., 2017). An extension of this ap-
proach is a reference fleet, defined as a group of active fishing vessels
with an enhanced data collection role requiring training and sup-
port (Mangi et al., 2013). Reference fleets can reduce the logistics
and costs of data collection compared with observer programmes
(Mangi et al., 2013; Suuronen and Gilman, 2020), and improve re-
lationships with the fishing industry through participatory research
and a two-way communication channel (Kraan et al., 2013).

As a relatively new approach, data collection through self-
sampling has received more scrutiny than other more established
methods such as scientific observers (Kraan et al., 2013; Mangi et
al., 2013) towards the representativeness of samples for making in-

ferences about the wider fleets it covers. Multi-stage sampling of
catches in fisheries results in complex, hierarchical data. At each
stage, there are chances that bias is introduced in either a self-
sampling or independent observer programme (ICES, 2008; Table
1), reducing the representativeness of samples.

The bias of an estimate is the degree to which the expected value,
obtained through repeated sampling and estimation, differs from
the true value (Jessen, 1978). The reality of fisheries sampling makes
it difficult to assess the bias of total catch estimates as the true value
is not known for comparison. Under a landing obligation, such as
those implemented in Norway and the EU, reported catches do not
always accurately reflect total extractions from the fishery. Catches
may go unreported due to illegal discarding, intentional misreport-
ing, or because of low resolution of reporting for some species or
species identification errors (Pitcher et al., 2002). However, no sin-
gle study can address all aspects of bias. For example, comparing

C© The Author(s) 2021. Published by Oxford University Press on behalf of International Council for the Exploration of the Sea. This is an
Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsab242/6453069 by Fiskeridirektoratet. Biblioteket. user on 07 January 2022

https://orcid.org/0000-0002-8508-8958
https://orcid.org/0000-0003-4236-5916
https://orcid.org/0000-0001-8738-8543
mailto:tom.clegg@hi.no
http://creativecommons.org/licenses/by/4.0/


 T. L. Clegg et al.

Table 1. Potential sources of bias in a fishery sampling programme.

Aspect of sampling design Potential sources of bias

Sampling frame � A poorly defined sampling frame will affect representativeness of samples.
� Insufficient data to define the sampling frame risks out-of-frame samples being included.

Sampling units
) Vessel � Opt-in participation may bias towards more compliant vessels (rejection effect).

� Type and size of compensation may influence motivation to participate.
� Mandatory participation may influence fishing strategy if % of fishing activity is not

observed (Liggins et al., ; Benoît and Allard, ; Snyder and Erbaugh, ).
) Fishing operation � Human selection of sampled fishing operations may favour convenience (e.g. sampling

smaller hauls to reduce time spent sampling) and introduce bias.
) Catches � Gear characteristics, variable habitat, and fishing strategy will likely result in a non-random

distribution of fish throughout the catch operation, which if sampled opportunistically
would produce biased observations (e.g. sampling from the first available portion of the
catch).
� Intentional manipulation of catch data, possibly where results could have a large impact

on management or policy decisions (e.g. misreporting catches of protected species or
species with limited quota).
� Poor sampling techniques, either through inadequate training (e.g. species identification,

misuse of equipment) or lack of time during catch processing.
Estimator � Choice of estimator must be upheld by the relevant assumptions

self-sampling data with independent observations of known relia-
bility (Faunce, 2011; Roman et al., 2011) will only address measure-
ment error such as under-reporting of sensitive species. Similarly,
comparing multiple estimators or sampling designs may address bi-
ases in those specific aspects (Diamond, 2003; Cahalan et al., 2015;
Cahalan and Faunce, 2020), but prior knowledge of potential biases
will help when defining the candidate estimators.

Total catches can be broken down into the portion reported to
the authorities (in daily logbooks or landing reports), and the por-
tion that is not reported but does occur. The unreported compo-
nent is especially problematic because it is difficult, if not impossi-
ble to quantify biases related to them (Ainsworth and Pitcher, 2005).
However, we can reach a better understanding of biases affecting es-
timates of total catches by focusing on just the reported component.
Mandatory catch reporting acts as a census of fishing effort and the
reported component of total catches, so it can be utilized to explore
such biases, assuming that biases affecting reported catches are also
likely to affect total catches (Liggins et al., 1997).

The Institute of Marine Research recruits vessels and maintains
the Norwegian Reference Fleet, a fisheries self-sampling project,
which tasks participating vessels with regularly gathering of data
on fishing operations during normal fishing activity (Clegg and
Williams, 2020). An independent evaluation of the Norwegian Ref-
erence Fleet by Bowering et al. (2011) concluded that based on ex-
pert judgement and limited analyses, the sampling programme is
representative of the wider fleets it covers. However, Bowering et al.
(2011) concluded that focused analyses are needed to evaluate rep-
resentativeness of individual segments of the Norwegian Reference
Fleet.

This study aims to understand the representativeness of the Nor-
wegian Reference Fleet sampling design by identifying biases that
are likely to affect estimates of total catches. We addressed this by
focusing on the reported component of total catches, for which we
have census data in the form of mandatory daily catch logbooks. We
simulated Norwegian Reference Fleet sampling design in the Bar-
ents Sea trawl and longline fisheries between 2012 and 2018. We
then estimated fleet-wide catches based on the reports in the sam-
ple and quantified bias through comparison with observed reported
catches and used random forest models to understand which vari-

ables are important for explaining variations in bias. Assuming bi-
ases in our estimates of reported catches will likely affect estimates
of total catches, we discuss the results in the context of total catches
to suggest ways in which the biases can be reduced or mitigated.

Data
Case study fisheries
Our case study is focused on a portion of the Barents Sea bottom
trawl and longline fisheries, defined as vessels with overall length
(LOA) greater than 28 m using bottom trawl or longline fishing
gears to target demersal fish species in the statistical areas high-
lighted in Figure 1. Area 24 only includes the trawl fishery, as the
longline fishery does not extend into this statistical area. In the trawl
fishery, a fishing operation is defined as a haul, whilst in the long-
line fishery it is defined as all hooks hauled from all longlines in a
calendar day.

Both fisheries occur all year round, peaking between November
and January. However, statistical areas 23 and 24 are typically inac-
cessible between January and April due to sea ice. Vessels predomi-
nantly target cod (Gadus morhua) and to a lesser extent haddock
(Melanogrammus aeglefinus), but also infrequently target saithe
(Pollachius virens), tusk (Brosme brosme), Greenland halibut (Rein-
hardtius hippoglossoides), and beaked redfish (Sebastes mentella).

The northern prawn (Pandalus borealis) trawl fishery and pelagic
trawl fisheries (mainly capelin, Mallotus villosus) carry a small risk
of being included in this study because of overlap in space and
time and possible erroneous reporting of trawl gear codes. How-
ever, these fisheries are easily identifiable due to very high selec-
tivity, allowing fishing operations to be removed if the dominant
species was not a demersal fish.

For each year, we post-stratified samples based on a combina-
tion of statistical area (Figure 1) and season (winter: January–April;
summer: May–August; and autumn: September–December). Three
seasons reflect the seasonality of the Barents Sea, such as ice cover
restricting access to areas 23 and 24 (Figure 1) in winter. Further-
more, there were insufficient data to estimate fleet-wide reported
catches on a monthly timescale. We only estimated reported catches
in strata with three or more fishing operations sampled, as unsam-
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Figure 1. Statistical areas in the Barents Sea trawl and longline fisheries as defined by the Norwegian Directorate of Fisheries. Area  is
excluded from the longline fishery due to negligible fishing activity.

pled strata require imputation methods that are often subjective and
so introduce new biases that are difficult to quantify (Stratoudakis
et al., 1999; Lohr, 2010).

Table 2 provides a full list of species included in this study. Broad
species groups were removed from the study (e.g. unidentified flat-
fish) to avoid double counting. An exception to this rule was skates
and rays for which species identification is notoriously difficult and
are typically grouped in the reported catches. Species observed in
less than 1% of fishing operations in any given year were removed
from the study. Extremely rare species typically require more com-
plex modelling approaches for estimating total catches, so the rel-
evance of bias using design-based estimators is not of relevance to
this study.

Norwegian reference fleet
The Norwegian Reference Fleet project is a trust-based collabora-
tion between fishers and scientists to improve data for input into
stock assessments and provide data on bycatches and discards. Our
selected fisheries in this study are prioritized for the Norwegian Ref-
erence Fleet, meaning that active participation is required in the
contract to ensure representativeness and sufficient data for stock
assessments.

Table 2. Species included in this study. Asterisks mark species included
only in the longline fishery.

Common name Scientific name FAO code

Atlantic wolffish Anarhichas lupus CAA
Northern wolffish∗ Anarhichas denticulatus CAB
Spotted wolffish Anarhichas minor CAS
Ratfish∗ Chimaera monstrosa CMO
Atlantic cod Gadus morhua COD
Greater forkbeard∗ Phycis blennoides GFB
Greenland halibut Reinhardtius hippoglossoides GHL
Haddock Melanogrammus aeglefinus HAD
Atlantic halibut Hippoglossus hippoglossus HAL
Common ling Molva molva LIN
Monkfish∗ Lophius piscatorius MON
Saithe Pollachius virens POK
Skates and rays∗ Rajidae RAJ
Beaked redfish Sebastes mentella REB
Golden redfish Sebastes norvegicus REG
Roughhead grenadier∗ Macrourus berglax RHG
Lesser redfish∗ Sebastes viviparus SFV
Tusk Brosme brosme USK
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Vessel owners can apply to participate in the Norwegian Refer-
ence Fleet through a publicly open tender process, as mandated by
law. This process involves a public announcement of a paid con-
tract for a vessel to sample catches from their normal fishing activity
over a 4-year period. Each tender specifies a list of mandatory and
desired requirements, which aim to recruit a typical vessel in the
defined category. Applicants must provide evidence that they meet
these requirements to be included in the selection process. Eligi-
ble applications are then assessed by a panel to evaluate the desired
requirements. If after this evaluation there are multiple eligible ves-
sels, then the contract is awarded randomly.

The vessel categories relevant to this study are the trawl and long-
line categories where the tender requires that vessels must be greater
than 39 m and 35 m LOA, respectively, and hold permit and quota
to fish various demersal species in the Barents Sea fisheries. Over
the study period, around 14% of all vessels in the study fisheries
have participated in the Norwegian Reference Fleet (longline: 8/55
vessels; trawl: 6/42 vessels).

Each vessel has designated crew who are given training on the
sampling protocol and species identification. These crew sample to-
tal catches systematically, such that one fishing operation is sampled
every 2 days (1-in-2 systematic sample; Lohr, 2010). The starting
day for systematic sampling is selected randomly for each trip by
the crew or skipper. For trawl vessels, the fishing operation is de-
fined as a single haul. A haul is randomly selected from all those
planned on the sampling day. On longline vessels, for which fishing
operation is defined as a calendar day, it is relatively easier to sub-
sample the catch in a fishing operation. All specimens are recorded
from a subsample of consecutive hooks, spanning the start, middle,
and end of longlines that the crew or skipper deems representative
of the catch composition for that day.

Daily logbooks
Norwegian law requires all vessels in the Barents Sea fisheries at or
above 15 m LOA to report the weight of each species caught in ev-
ery fishing operation through an electronic reporting system (ERS).
Each entry contains an estimated total live weight for each species,
alongside the time and location of the fishing operation. This at-
sea reporting of total catches may be biased downwards if fish are
discarded during processing or processed catches are misreported
(i.e. illegally landed). Official catch statistics are reported as round
weight (live weight when removed from the sea), but on factory ves-
sels, all catch reporting is done post-production. Therefore, product
weights are converted back to round weight using official conver-
sion factors for each product (Norwegian Directorate of Fisheries,
2021). This weight conversion has negligible impact on our study
as factors are applied consistently across all vessels. Although re-
ported weights are estimated at sea, various regulations ensure that
weights match those officially declared in sales notes when weighed
and sold on land (10% tolerance) to verify the accuracy of reported
catches (Gezelius, 2006; Gullestad et al., 2015). Whilst catches are
weighed more accurately in sales notes, they offer insufficient data
resolution for our analysis because they are a summary of all fish-
ing activity in each trip, which spans multiple statistical areas over a
period of weeks. We, therefore, can view the ERS data as a census of
true reported catches in the fisheries for the purposes of this study.

We extracted ERS logbook data, provided by the Norwegian Di-
rectorate of Fisheries, between 2012 and 2018 from all commercial
fishing operations (longline: 21807; trawl: 109801) in the two case
study fisheries. We removed 17 entries from trawl vessels for which

trawl duration could not be calculated because erroneous start and
stop times were reported. We also removed one anomalous entry
where a trawl vessel reported 40 tonnes of fish for 1 min of fishing
time.

Methods
In order to identify biases that are likely to affect estimates of un-
reported catches in the Barents Sea trawl and longline fisheries
between 2012 and 2018, we performed a simulation study using
the ERS logbook data on reported catches. By simulating the Nor-
wegian Reference Fleet sampling design using data on reported
catches, we can generate estimates of the reported component of
catches that can be directly compared to the true values, such that
biases can be quantified. Results from these simulations can then
be applied to improve estimates of total catches (i.e. reported + un-
reported) using the real data generated by the Norwegian Refer-
ence Fleet sampling programme mimicking the Norwegian Ref-
erence Fleet sampling design and various other designs (e.g. sim-
ple random), and quantified bias through comparison of the esti-
mated fleet-wide catches from the simulated sample with observed
reported catches.

Simulating sampling designs
The simulation framework consists of three components which we
manipulated: the sampling frame, vessel sampling, and fishing op-
eration sampling. Simulating these in a fully-crossed design (Figure
2) ensured balanced groups for the statistical analysis (Boulesteix et
al., 2012).

We assessed if the Norwegian Reference Fleet is representative of
the entire fishery (> 28 m LOA) by first estimating total reported
catches of vessels within the length ranges defined in Norwegian
Reference Fleet tender specifications (sampling frame: LIM; Figure
2) and compared it to an estimation of reported catches from all
vessels in the study fishery (sampling frame: ALL).

To evaluate the bias incurred from the non-probabilistic selec-
tion of vessels in the current Norwegian Reference Fleet (vessel:
RF; Figure 2), we also performed two probabilistic selections of ves-
sels for comparison. First, a simple random sample (vessel: SRSV)
of vessels within the vessel length class requirements of the Norwe-
gian Reference Fleet tender specifications, and second, a weighted
random sample (vessel: WRS) where vessels were selected with a
probability proportional to the fishing effort (fishing days) in the
previous year.

Finally, we simulated the 1-in-2 systematic sampling protocols
by the Norwegian Reference Fleet (fishing operation: SYS; Figure
2), then compared it to a simple random sample (fishing operation:
SRSFO) from all fishing operations by sampled vessels in each stra-
tum, with a sample size equal to that of the post-stratified system-
atic sample for each simulation. Systematic sampling is expected to
be the equivalent of simple random sampling but was nevertheless
included for confirmation.

Estimation procedure
We chose two conventional design-based estimators [Equations (1)
and (2)] that are currently used for estimating discards and by-
catches in Norwegian fisheries (Bærum et al., 2019; Berg and Ne-
dreaas, 2020; Moan et al., 2020). These simple estimators assume
that samples are randomly selected from all fishing operations in
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Figure 2. Schematic diagram of the simulations showing the three stages and fully-crossed design.

each stratum, effectively ignoring variations in catches between ves-
sels. Despite the hierarchical sampling design of the Norwegian Ref-
erence Fleet, it is not yet clear how a multi-stage estimator should be
defined due to the non-probabilistic selection of vessels and a lack
of understanding of which levels of the sampling design contribute
the most to variations in total catches. Therefore, for the purposes of
simplicity, we ignored the hierarchical sampling design and applied
commonly used simple estimators.

For species i in year j, total reported catches (Ŷi, j ) in sampled
strata were estimated using the stratified unit estimator [Equation
(1)] for the longline fishery, and the stratified ratio estimator [Equa-
tion (2)] for the trawl fishery:

Ŷi, j =
K∑

k=1

Nj,k

n j,k
yi, j,k, (1)

Ŷi, j =
K∑

k = 1

yi, j,k

x j,k
Xj,k, (2)

where k = stratum, y = weight of reported catches sampled, n =
number of fishing operations sampled, N = total number of fish-
ing operations in population, x = sampled trawl duration, and X =
total trawl duration in population. Note that when simulating the
Norwegian Reference Fleet sampling design for longline vessels, we
do not need to account the subsampling of hooks (which is done
for Norwegian Reference Fleet sampling), as catches for the entire
fishing operations are reported in the ERS logbooks.

The accuracy of the ratio estimator [Equation (2)] is partially de-
pendent on the correlation between catch weight (y) and trawl du-
ration (x). We, therefore, calculated the Spearman’s rank correlation
coefficient between catch weight and trawl duration for each species
(Rochet and Trenkel, 2005; Lohr, 2010).

The re-sampling and estimation processes were repeated 2000
times (S = 2000), and the relative error (RE) of Ŷi, j calculated as a

measure of bias using:

REi, j = 1
S

S∑

s = 1

Ŷi, j,s − Yi, j,s

Yi, j,s
, (3)

where Yi, j, s is the observed annual catches of species i in sampled
strata in year j and in simulation s.

Systematic sampling of fishing operations for each vessel will re-
sult in a different sample size for every realization of the sampling
protocol. As the starting day for systematic sampling is selected for
each vessel per simulation, the number of fishing operations in each
stratum will vary slightly depending on where the sampling days
fall, which is in turn proportional to the number of vessels in that
year. For trawl vessels, this is further affected by which haul is se-
lected for sampling on each day. These variations were not con-
trolled as they reflect the true variations that arise from sampling
protocols.

Modelling the sources of bias
We used random forests (Breiman, 2001) as a regression method
to explore which aspects of the sampling process are causing bias
in estimations of reported catches. For a detailed explanation and
guidance for random forest models in various biological and eco-
logical contexts, we recommend Cutler et al. (2007), Boulesteix et
al. (2012), Fox et al. (2017), and Siders et al. (2020).

First and foremost, we chose random forests for a unique and
novel feature: variable importance (Genuer et al., 2009). Fitting
a random forest model involves repeatedly sampling observations
and explanatory variables from the original dataset. Those obser-
vations not included in model fitting (known as “out-of-bag” sam-
ples) can be used to test the accuracy of model prediction (com-
parable to cross validation in Generalized linear models). However,
random forests can also examine how the exclusion of each explana-
tory variable affected the accuracy of prediction. This overall de-
crease in accuracy can be used as a measure of importance for each
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Table 3. Variables considered in the random forest models.

Variable Type Description

Vessel Categorical Vessel sampling design simulated†

Fishing operation Categorical Fishing operation sampling design simulated†

Sampling frame Categorical Population from which vessels are sampled†

Species Categorical Species or species group (Table )
Year Categorical Year (–)
Encounter rate Continuous Proportion of fishing operations where the species was observed (mean across all

simulations).
Sample size∗ Continuous Number of fishing operations sampled annually (mean across all simulations)
Correlation
coefficient∗

Continuous Spearman’s rank correlation coefficient between catch weight and trawl duration for each
species and year

†See Figure  for categories.
∗Only used in trawl fishery model as it is only relevant to the bias of a ratio estimator.

explanatory variable. For example, if there was no change in model
accuracy when a variable was not included, then that variable was
not important in explaining any variations in bias.

Random forest methods also suit the exploratory nature of our
study, mitigating against the bad practice of “data dredging” (Burn-
ham and Anderson, 2002). There is no iterative variable selection
and testing process, meaning all potential variables are included
in a single model. Similarly, random forests automatically capture
non-linear relationships and complex interactions between vari-
ables without the need for prior specification.

To account for possible biases arising from differences in scale
and type of predictor variables, we used a class of decision trees
called conditional inference trees to build the random forest
(Hothorn et al., 2006; Strobl et al., 2007). All models were fitted
using the R package party (version 1.3–7; Hothorn et al., 2006;
Strobl et al., 2007, 2008) with “cforest_unbiased” convenience con-
trols. Importance was estimated conditionally, which accounts for
correlated variables and interactions (Strobl et al., 2008, 2009).
We also explored the relationship between bias and each explana-
tory variable using partial dependence plots (Friedman, 2001),
calculated using the R package edarf (version 1.1.1; Jones and
Linder, 2016).

In addition to the various elements of sampling design we sim-
ulated (Figure 2), we also included five other predictor variables
in the random forest analysis: species, encounter rate, year, sam-
ple size, and correlation coefficient (Table 3). Sample size and cor-
relation coefficient were only included in the trawl fishery model
where we used a ratio estimator, for bias is a function of these two
variables. As an alternative to encounter rate, we considered total
annual reported catches of all species. However, encounter rate was
preferred as a better indication of the rarity of species and was more
relevant to the sampling data than the population data.

We fitted a random forest model to each fishery independently.
Model tuning was steered by two hyperparameters: number of trees
(ntree) and number of randomly sampled variables at each split
(mtry), which were optimized using a simplified grid search to min-
imize the out-of-bag mean square error (MSE). We tested all pos-
sible mtry values (longline: 1–6; trawl: 1–8 variables), and five ntree
values spaced evenly between 50 and 1000. Results may be sen-
sitive to the random seed, so we compared variable importance
outputs from five initial runs with new random seeds. Any sub-
stantial changes in results indicates instability, meaning more trees
should be added. Tuning resulted in both models being fitted using
mtry = 4 and ntree = 500 (Supplementary Table S1).

Additional analyses
The current selection of vessels in the Norwegian Reference Fleet
is the only possible realization of the expert judgement selection
process. Comparatively, we have simulated a large number of real-
izations using a simple random sample of vessels. We assume the
non-probabilistic, expert judgement selection behaves like a simple
random sample to be able to use design-based estimators. For this
assumption to be upheld, we would expect that the estimate based
on expert judgement selection of vessels would lie within the distri-
bution of estimates based on a simple random selection. We evalu-
ated this using z-scores for each estimate of relative error, taking the
mean and standard deviation from the distribution of relative errors
from simulations using a simple random sample of vessels. In ad-
dition to this, we made pairwise comparisons of accuracy using the
different vessel sampling methodologies for individual simulations
to determine how often a simple random sample out-performs the
expert judgement selection.

Results
Amongst the three components of the catch sampling design
(Figure 2), vessel sampling method was the most important con-
tributor of bias when estimating the reported component of total
catches in both the longline and trawl fisheries (Figure 3). With
the estimators used here, the current realization of the Norwegian
Reference Fleet vessel selection procedure tends to overestimate
catches when averaged across all species (Figure 4a). However, this
summary statistic does not account for the important variations in
bias across years and species (Figure 4b and c).

Figure 5 illustrates to what extent the expert judgement selection
in the current Norwegian Reference Fleet behaves like simple ran-
dom sampling. More than half of the annual species catch estimates
using a non-random vessel selection were within one standard de-
viation of the mean from a simple random sample (z-score < 1;
longline: 56%; and trawl: 77%), with few estimates being outside the
95% confidence interval (z-score > 1.96; longline: 12%; and trawl:
4%). However, the distribution of z-scores was skewed to the right
(Figure 5), confirming the tendency for this non-random sample of
vessels to result in overestimation in reported catches of individual
species.

As the sampling frame was not important in explaining the vari-
ations in bias when estimating the reported component of catches
for individual species (Figure 3), it suggests that the vessel length
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Figure 3. Importance of variables for explaining variations in relative error when predicting the reported component of total catches. Measures
of conditional importance of variables estimated using random forest models. Note different scales on x-axes.

requirements in the Norwegian Reference Fleet do not affect the
representativeness in relation to all vessels in the fishery (> 28 m
LOA). Similarly, the simulated methodologies for sampling fish-
ing operations were of negligible importance when estimating to-
tal reported catches (Figure 3), confirming that systematic sam-
pling of fishing operations is the equivalent of simple random
sampling.

Variations in relative error of estimated reported catches be-
tween species was of high importance in both fisheries and was
the most important variable in the longline fishery (Figure 3).
These variations across species were large in both fisheries but
was most extreme in the longline fishery (Figure 4c). For many
species, the probabilistic sample of vessels still resulted in estima-
tion bias, which further highlights that the weak assumptions in
our chosen estimators (i.e. not applying multi-stage estimators, and
poor correlation between catches and trawl duration) resulted in
bias due to species-specific factors. Total reported catches were
underestimated only in a small number of cases, most notably

beaked redfish (REB) and skates and rays (RAJ) in the longline
fishery.

In the trawl fishery, biases were consistently largest across species
when using the non-random selection of vessels (Figure 4c). The ra-
tio estimator [Equation (2)] is known to be biased when the corre-
lation between catches and trawl duration is low, and with a smaller
sample size (Lohr, 2010). However, the random forest model indi-
cated both these factors were of low importance when explaining
variations in bias (Figure 3). Given the small variations in these ex-
planatory variables (Supplementary Figure S1), this does not pro-
vide insights into how bias would improve with higher correlation
coefficients or larger sample size.

Despite accounting for many other variables that could explain
differences in relative error, there were still annual variations affect-
ing bias of reported catch estimates across all species, albeit weak
(Figure 3). These variations were more extreme for non-random
Norwegian Reference Fleet vessel sampling (Figure 4b) than for
probabilistic sampling of vessels.
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Figure 4. Partial dependence plots of the most important variables in the random forest models, showing the marginal effect of variables on
relative error. (a) Vessel selection (RF = current Norwegian Reference Fleet vessels (fixed); SRS = simple random sample; and WRS: weighted
random sample). (b) and (c) include interactions between the three vessel sampling methodologies. Note different scales on y-axes in panel c.
Species ordered by descending total reported catches for each fishery. Species names are listed in Table .

Discussion
Through a simulation approach using the reported component of
total catches, we have identified aspects of the Norwegian Refer-
ence Fleet vessel selection and catch sampling design that will likely
affect biases in estimates of total catches for a range of species in
the Barents Sea trawl and longline fisheries. We have identified
that the vessel selection process for the Norwegian Reference Fleet
resulted in an overestimation of the reported component of total
catches for many species, indicating possible biases in similar es-
timations of unreported catches. However, we also found biases in
reported catch estimates using probabilistic sampling, which indi-
cates the hierarchical structure of Norwegian Reference Fleet pro-
gramme’s sampling design does not meet the assumptions of the
simple estimators used here. Furthermore, important variations be-
tween species indicate that the suitability of our chosen estimators
is highly dependent on species-specific factors, suggesting the con-
sideration of alternative estimators.

Vessel selection process
There is potential for the vessel selection process to result in bias
due to practical difficulties in maintaining a reliable at-sea sam-
pling programme such as issues regarding participation (Vølstad
and Fogarty, 2006; Benoît and Allard, 2009; Kraan et al., 2013) and

budget restrictions (Borges et al., 2004). For a simple random se-
lection of vessels, one realization could risk selecting vessels with
very different fishing strategies relative to the wider fleet. Further-
more, randomly selected vessels may be rarely active in the fishery,
yielding little data for a large investment in equipment and train-
ing. A weighted random sample could reduce those risks but could
also introduce further complications. For example, a vessel that is
consistently active in the fishery could spend long periods in the
harbour for repairs or refurbishments, reducing its selection prob-
ability for the following year. Probabilistic sampling implies that all
vessels are willing to participate if selected, which is unrealistic if
not impossible, as current laws require that all vessels must have the
opportunity to apply to an open tender, rather than being selected
and requested to participate.. Mandatory participation can function
with independent samplers (Ewell et al., 2020), but self-sampling re-
quires large amounts of time and effort alongside normal fishing ac-
tivity. If self-sampling was mandatory and without compensation,
then we would expect trust to deteriorate between scientists and
fishers and a reduction in data quality (Jacobsen et al., 2012; Mangi
et al., 2016). Our results found that for the majority of cases, an esti-
mate using expert judgement selection of vessels for the Norwegian
Reference Fleet was within the range of expected estimates using
a simple random selection of vessels (Figure 5). However, there is
a tendency when using Norwegian Reference Fleet to overestimate
reported catches, which can be significantly large for certain species.
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Figure 5. The range of z-scores for bias in annual estimates of reported catches for species using an expert judgement selection of vessels. A
z-score is the number of standard deviations from the mean of simulated estimates using a simple random sample of vessels (i.e. where an
expert judgement selection lies within a distribution of simple random samples). Each z-score represents an estimate of annual reported
catches for one species.

Supplementary Figures S2 and S3 in the Supplementary mate-
rials provide comparisons of fishing activity between Norwegian
Reference Fleet vessels and the wider fleet to suggest reasons for
the tendency of Norwegian Reference Fleet sampling to overesti-
mate catches. Norwegian Reference Fleet vessels have higher catch
rates and different fishing strategies compared to the wider fleet.
These differences could be caused by higher engine power and an-
nual quotas, both of which will affect overall catch composition,
and therefore, unreported catches. Furthermore, in selecting a small
sample of vessels that are to be fixed for several years, the selection
cannot be optimized to capture the tails of statistical distributions
that may be derived from these vessels or their catches. It is reason-
able to expect this to lead to some underestimation of variability of
total catches, and some over- or under-estimation of total catches
when the distribution of total catches is not symmetric.

Although a devoted study is required to provide evidence for the
differences in catch rates, we can still consider ways to improve in-

centives for participating in the Norwegian Reference Fleet. A larger
number of applications would improve the outcome of expert selec-
tion, and in the situation where similar vessels are short-listed, then
random selection could be applied more effectively.

Variations in bias across species
We cannot discuss the biases in estimates for individual species in
this exploratory study, but we can nevertheless discuss generaliza-
tions. Each species and stratum can be viewed as a domain (subpop-
ulation), as these properties are unknown before the sample is taken
(Lohr, 2010). Whilst there are methods to approximate the sampling
probabilities of fishing operations (i.e. systematic sampling for the
Norwegian Reference Fleet), a single sampling programme cover-
ing all species will not adequately address the sampling demands
for all species (domains), such as spatial and temporal variations
(Stock et al., 2020), catchability (Rochet and Trenkel, 2005), and
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sorting or reporting behaviour (Pitcher et al., 2002). However, our
results suggest that excessively large overestimations are limited to
a small number of rare or non-commercial bycatch species (Figure
4). The practical consequences of non-probabilistic sampling may
vary for any specific parameters observed, and across species. For
example, a small spatial bias can be very significant for very local-
ized populations if not adequately accounted for in the chosen esti-
mator (Cosandey-Godin et al., 2014).

Choice of estimator
The interpretation of our results must be viewed through the lens
of the estimators we applied. We applied simple estimators as they
are currently the standard practice for estimating discards and by-
catches using data from the Norwegian Reference Fleet. However,
reported catches tended to be overestimated even when vessels
were sampled probabilistically. The magnitude of this overestima-
tion when using probabilistic sampling is small relative to estimates
using observations from Norwegian Reference Fleet vessels. How-
ever, it is still important to consider why this overestimation is oc-
curring, and why it is larger in the trawl fishery.

The complex hierarchical structure of fisheries sampling is often
ignored to simplify estimations (Nelson, 2014), either based on as-
sumption or from evidence that sampling levels do not contribute
significantly to the total variance (Tamsett et al., 1999). However,
accounting for the variations between sampled vessels can improve
both the accuracy and precision of estimates (Moan et al., 2020;
Fernandes et al., 2021). Our results, therefore, indicate that ignor-
ing the hierarchical structure of Norwegian Reference Fleet sam-
pling could result in biased estimates in total catches. This bias may
be mitigated by accounting for the hierarchical structure of sam-
pling, namely the sampling of vessels. Adequately handling the two-
stage sampling design will also allow for variance estimates that may
both explain part of the perceived bias and put the bias in perspec-
tive. We found small biases in our estimations in the trawl fishery,
even when using probabilistic sampling of both vessels and fish-
ing operations. The accuracy of ratio estimators is influenced by
both the sample size and the strength of correlation between catches
and fishing effort (Lohr, 2010). We applied the ratio estimator as
this is typically employed in studies which assume a relationship
between catches and fishing effort, despite evidence of little to no
relationship in many cases (Diamond, 2003; Rochet and Trenkel,
2005; Cahalan et al., 2015), given that other influential variables
have not been accounted for, such as vessel characteristics, or on
a finer spatio-temporal scale, such as within-stratum variations or
variations across trips. The random forest analysis indicated that
both the correlation coefficient and sample size were not important
for explaining variations in biases when estimating the reported
component of catches (Figure 3). However, this may be because of
the limited range in values for the correlation coefficient and sam-
ple size (Supplementary Figure S3). Our random forest model was
built to explore variations in biases, so whilst some variables may
not have been deemed important in explaining variations in bias, it
suggests that the ratio estimator was consistently biased across all
species and years.

Limitations
We must also acknowledge additional biases related to total catch
sampling that could not be addressed in this study. For example, of-
ficial reporting of catches is enforced through inspection and carries

a risk of prosecution if inaccurate. Conversely, voluntary recording
of total catches may risk under-reporting sensitive portions of the
catch (measurement biases; Table 1). However, based upon the data
sent by Norwegian Reference Fleet vessels, the constant dialogue
between scientists and fishers, payment for sampling, and super-
vision, we are generally confident that data collectors in the Nor-
wegian Reference Fleet report honestly. The willingness to report
sensitive information is evident in studies, which have used Norwe-
gian Reference Fleet data to estimate “unsustainable” and “concern-
ing” levels of bycatches of sensitive species such as seabirds (Fangel
et al., 2015; Bærum et al., 2019) and harbour porpoise (Phocoena
phocoena; Moan et al., 2020), which are entirely absent from the of-
ficial reporting framework. Nevertheless, comparisons of Norwe-
gian Reference Fleet data with a data source of known reliability
(e.g. independent observer, remote electronic monitoring; Liggins
et al., 1997; Faunce, 2011) could test this assumption and improve
reliability from a statistical perspective (Kraan et al., 2013).

This simulation study focused on the selection of vessels and
hauls which was limited by the available data from mandatory re-
porting of catches. However, it is also important to consider biases
in the biological sampling of catches which would affect size-based
estimates of unreported catches. For example, clustering of sam-
ples (such as vessels in a reference fleet) can have impacts on es-
timates of age composition (Aanes and Pennington, 2003; ICES,
2008), whilst haul- or trip-based sampling has impacts on accu-
racy of estimated size distributions (Plet-Hansen et al., 2020). Such
biases can be identified by comparing sampling with another data
source of known reliability (e.g. Starr and Vignaux, 1997).

Improving future estimations
For estimating total catches of all species in a fishery, an overly sim-
ple evaluation of bias is not appropriate. How much bias can be tol-
erated is dependent on a wide range of factors including intended
use, accompanying precision, and sampling limitations, all of which
vary between species.

Our study aimed to identify potential biases when estimating to-
tal catches. First and foremost, vessel-related biases were present in
estimates using probabilistic sampling of vessels, suggesting the im-
portance of accounting for vessel clustering of samples. Our results
also suggest that the ratio estimator may be biased across all species.
The variations between species are very complex and cannot be ex-
plained by encounter rates or commercial importance. There are
many other species-related factors that affect bias in estimations of
total catches such as patterns in spatial distribution. Therefore, al-
ternative estimators should also be considered for individual species
where assumptions of the ratio estimator are violated (Lohr, 2010),
such as with rare species where the delta lognormal estimator may
be more appropriate (Pennington, 1983; Ortiz et al., 2000).

Although estimator bias was not directly accounted for in the
random forest models, the degree to which it affects the overall
bias of estimates is evident in the model interpretation (Figure 4).
First, estimator bias of simple estimators resulted in an overall small
yet detectable positive bias. Particularly large overestimations of re-
ported catches for some rare species, regardless of vessel sampling
method (e.g. lesser redfish in the longline fishery; Figure 4c) show
that the severity of estimator bias is complex and may impact some
species more than others. Fortunately, estimator bias can be evalu-
ated in a future study in the direct context of total catches to fully
understand the severity of ignoring the hierarchical sampling de-
sign.
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In addition to determining the most appropriate design-based
estimator to reduce bias, an improvement in sampling design may
also reduce bias in estimates of total catches. Our results show
that whilst the expert judgement selection of Norwegian Reference
Fleet vessels behaves like a simple random sample for many species
(Figure 4c), this assumption does not hold for all species. Increas-
ing incentives for vessels to apply to open tenders would improve
the expert judgement selection to identify the most “typical” ves-
sels. Furthermore, in the event of multiple eligible vessels, then a
larger pool of vessels would be available for the final random selec-
tion.

This study focused on the accuracy of estimators, but it is also
important to consider the precision. Assumptions behind design-
based estimators are different for defining sampling variance for-
mulae (Lohr, 2010) and resampling methods for bootstrapping of
variance estimates. The vessel selection biases identified in this
study highlight the limitations of a small, fixed sample of vessels.
For the limited number of species where bias could be deemed ex-
cessive, it is arguably better to relax assumptions in variance estima-
tion to give a more conservative estimate in the aim of being vaguely
right rather than precisely wrong.
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