Food for Thought

Five centuries of cod catches in Eastern Canada

Rebecca Schijns (©) ${ }^{1, *}$, Rainer Froese (1) 2, Jeffrey A. Hutchings ${ }^{3,4,5}$, and Daniel Pauly (©) ${ }^{1}$
${ }^{1}$ Sea Around Us, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver BC V6T 1Z4, Canada
${ }^{2}$ GEOMAR Helmholtz Centre for Ocean Research, Düsternbrooker Weg 20, 24105 Kiel, Germany
${ }^{3}$ Dalhousie University, Halifax NSB3H 4R2, Canada
${ }^{4}$ Institute of Marine Research, Flødevigen Marine Research Station, N-4817 His, Norway
${ }^{5}$ Centre for Coastal Research, University of Agder, N-4604 Kristiansand, Norway
*Corresponding author: tel: 647-457-7712; e-mail: r.schijns@oceans.ubc.ca

Schijns, R., Froese, R., Hutchings, J. A., and Pauly, D. Five centuries of cod catches in Eastern Canada. - ICES Journal of Marine Science, 78: 2675-2683.

Received 19 May 2021; revised 25 June 2021; accepted 16 July 2021; advance access publication 28 August 2021.

Abstract

The fishery for Northern Atlantic cod (Gadus morhua) off Newfoundland and Labrador, Eastern Canada, presents the most spectacular case of an exploited stock crashed in a few decades by an industrial bottom trawl fishery under a seemingly sophisticated management regime after half a millennium of sustainable fishing. The fishery, which had generated annual catches of 100000 to 200000 tonnes from the beginning of the 16th century to the 1950s, peaked in 1968 at 810000 tonnes, followed by a devastating collapse and closure 24 years later. Since then, stock recovery may have been hindered by premature openings, with vessels targeting the remains of the cod population. Previous research paid little attention towards using multicentury time series to inform sustainable catches and recovery plans. Here, we show that a simple stock assessment model can be used to model the cod population trajectory for the entire period from 1508 to 2019 for which catch estimates are available. The model suggests that if fishing effort and mortality had been stabilized in the 1980s, precautionary annual yields of about 200000 tonnes could have been sustained. Our analysis demonstrates the value of incorporating prior knowledge to counteract shifting baseline effects on reference points and contemporary perceptions of historical stock status.

Keywords: Atlantic cod, catch reconstruction, fisheries management, historical marine ecology, rebuilding, reference point, shifting baseline, stock assessment

Introduction

For millennia, the biodiversity of the ocean has supported preindustrial fisheries, although they were already capable of extirpating easily accessible animals (Jackson et al., 2001). The ascent of industrial fishing, i.e. the deployment of large vessels fuelled by fossil energy (first coal, then diesel), however, radically changed fisheries, and made it increasingly possible to target accumulations of any desirable fish species at any distance from coastlines, depth of occurrence or season, all factors which created areas and times where fishing was not before possible (Swartz et al., 2010).

Thus, as industrial fishing spread across the world from the UK in the 1880s, global catch increased throughout most of the 20th century, and particularly after WWII, when bottom trawling
became widespread. Although many coastal fish populations rapidly collapsed under the onslaught, this was long masked by the opening of new fishing grounds in hitherto unfished areas (Pauly et al., 2002; Cardinale et al., 2015). In the mid-1990s, however, the opening of new fisheries became unable to compensate for the overexploitation of the "old" fishing grounds (Froese et al., 2009), and the world catch peaked and began a decline which continues to this day (Pauly and Zeller, 2016; FAO, 2018), despite the increasing fishing effort and seafood demand. Recent intensive management efforts across the globe have started to show improvements in stock status for marine fish assessments that are based on science (Hilborn et al., 2020).

We now have reached a point where the only way to increase-or even sustain present fisheries catches-must involve the rebuilding

[^0]of fish populations earlier depleted by overfishing. This is best illustrated by the Northern cod of Eastern Canada, i.e. Atlantic cod (Gadus morhua). The stock defined by this assessment includes all cod caught within NAFO-delineated Divisions 2J3KL.

Previously considered one of the world's largest and most important fish stocks (Hutchings and Rangeley, 2011), Northern cod have played a fundamental role in shaping the history, economy and culture of Atlantic Canada since the late $15^{\text {th }}$ century (Innis, 1940; Cell, 1982). In the 1960s, within a decade after European factory freezer trawlers began operation in Eastern Canada, catches peaked, and then plummeted. The declaration of a fishery exclusion zone in 1977, which largely eliminated foreign fishing, did not provide much of a respite, however, as Canada subsidised the building of a national fleet which continued overfishing. In 1992, the Canadian government declared a moratorium on Northern cod, as the stock had collapsed, followed in the next two years by cod moratoria in all eastern provinces of Canada, closing an entire economic sector.

The moratorium on directed commercial fishing was initially predicted by DFO to last two years to allow for sufficient stock recovery (Hutchings et al., 1997). Other factors such as temperature and prey availability may have contributed additional pressure on the stock's ability to recover (Rose and O'Driscoll, 2002; Buren et al., 2014). Almost 30 years later, all Canadian cod stocks remain in a critical state, their most recent estimates of population size being below their respective biomass limit reference points (all stock assessments for Canadian Atlantic cod are available through the Canadian Science Advisory Secretariat at https://www.dfo-mpo.gc .ca/csas-sccs/).

Applying a historical lens towards rebuilding

In order to estimate the full potential of an exploited resource, we must set our baseline near the start of its exploitation, and account for all withdrawals over time. Ignoring the past can lead to shifting baseline syndrome (Pauly, 1995), where we accept as baseline, a situation that does not account for the previous exploitation and its impact on stock size and dynamics. This can lead to underestimating fishing impacts and setting quotas too high, thus preventing a stock from rebuilding (Hutchings and Rangeley, 2011). The new discipline of historical marine ecology has emerged from attempts to counteract the shifting baseline syndrome, by demonstrating the value of recovering earlier abundance estimates and thus strengthening the management of marine populations (Jackson et al., 2001).

The case study presented here has two goals: (i) to demonstrate the usefulness of a 500+ year record of Northern cod catches for the current setting of stock rebuilding targets and (ii) to demonstrate, using the newly developed CMSY stock assessment method (Froese et al., 2017), that considering long time series does not necessarily require complex models with a multitude of free parameters.

Methods

Stock assessment

We used a new open source stock assessment tool (CMSY) (Froese et al., 2017), which is based on surplus-production modelling (Schaefer, 1954, 1957). The CMSY tool (Froese et al., 2017) includes two methods: the first (named CMSY, same as the overall tool) derives fisheries reference points from catch data and priors with a Monte Carlo approach, while the second (named BSM) is a Bayesian state-space implementation of a traditional surplus
production model which derives its estimates from catch plus abundance or effort data, if available. Since the BSM assessment is based on more information, it usually produces narrower estimates of changes in population biomass trends over time. Overall, both methods show good agreement with more data-demanding assessments (Martell and Froese, 2013). The most recent CMSY R-code is available from http://oceanrep.geomar.de/33076/. The R-code used for this analysis is available in the supplementary material.

Equation (1) below describes how parameters for the intrinsic rate of population increase (r), carrying capacity (k), and biomass in a given year $\left(B_{t}\right)$ and catch in the same year $\left(C_{t}\right)$ can be used to determine biomass (B) in the subsequent year $(t+1)$. Bias-correcting lognormal errors ($e^{s_{1}}$ and $e^{s_{2}}$) are assigned to surplus production and catch, respectively.

$$
\begin{equation*}
B_{t+1}=B_{t}+r\left(1-\frac{B_{t}}{k}\right) B_{t} \mathrm{e}^{s_{1}}-C_{t} \mathrm{e}^{s_{2}} \tag{1}
\end{equation*}
$$

The above equation is modified (Equation 2) when a stock size is severely depleted (biomass below $0.25 k$ or $0.5 \mathrm{~B} / \mathrm{B}_{\mathrm{MSY}}$) to account for depensation-the reduction of recruitment at a small stock size (Myers et al., 1995; Maroto and Moran, 2014; Perälä and Kuparinen, 2017; Neuenhoff et al., 2019). This differs from the latest assessment model (Cadigan, 2015) used by DFO (Brattey et al., 2018), which does not consider depensatory population dynamics, but does report periods of very low productivity for the Northern cod stock after the collapse (Morgan, 2019).

$$
\begin{equation*}
\left.B_{t+1}=B_{t}+\left(\frac{4 r B_{t}}{k}\right)\left(1-\frac{B_{t}}{k}\right) B_{t} \mathrm{e}^{s_{1}}-C_{t} \mathrm{e}^{s_{2}} \right\rvert\, \frac{B_{t}}{k}<0.25 \tag{2}
\end{equation*}
$$

Based on this theoretical framework, the CMSY method estimates likely biomass trajectories that correspond to the biomass reductions caused by fishing, the range for carrying capacity (k) and intrinsic rate of population increase (r). Uniform ranges for r and k were translated into prior densities with central values (Froese et al., 2017). The most probable "viable" r - k pair is selected from the tip of a triangle-shaped bivariate plot of r vs. k (Froese et al., 2017). When relative biomass data are known, an additional parameter (i.e. catchability or q) is estimated to convert catch-per-unit-ofeffort into biomass. Each tentative biomass trajectory is compared with the available relative biomass trend, which usually results in narrower confidence intervals.

Selection of priors

In the present study, a reconstructed catch time series (Hutchings and Myers, 1995; Supplementary Information) starts in 1508 and was updated to 2017, using Northwest Atlantic Fisheries Organization (NAFO) annual reports (NAFO, 2021), and further updated to 2019 from the most recent DFO stock status update (DFO, 2021b) (Table 1).

Resilience corresponds to the intrinsic rate of population increase (r). We used a lower (Hutchings and Rangeley, 2011) bound of r set at 0.095 year $^{-1}$ and an upper (Hutchings, 1999) bound set at 0.3 year $^{-1}$. Other studies also present the intrinsic rate of population increase within the chosen range (Myers et al., 1997; Rose, 2004).

Independent prior knowledge about the reduction of biomass by fishing from the start of the fishery to the end of the time series was translated into broad ranges of biomass relative to unexploited biomass (Table 2). At the start of the time series with very little fishing in 1508, the biomass range relative to unexploited biomass

Table 1. Northern cod (Gadus morhua) catches from 1508 to 2019 based on a reconstruction from Hutchings and Myers (1995) updated to 2017, using NAFO annual reports (NAFO, 2021) for cod caught within Divisions 2J3KL, and further updated to 2019 from the DFO stock status update (DFO, 2021b).

Year	Catch (tonnes)												
1508	156	1582	3288	1655	5382	1729	26904	1803	96796	1877	158000	1951	272000
1509	203	1583	2190	1656	4370	1730	46829	1804	97200	1878	161000	1952	265000
1510	251	1584	657	1657	3358	1731	50631	1805	92400	1879	204000	1953	238000
1511	188	1585	10301	1658	2346	1732	50295	1806	110800	1880	206000	1954	315843
1512	125	1586	8285	1659	1333	1733	50570	1807	98800	1881	220000	1955	232858
1513	125	1587	6268	1660	321	1734	49738	1808	86800	1882	206000	1956	263210
1514	125	1588	4252	1661	20292	1735	49561	1809	115600	1883	223000	1957	254456
1515	125	1589	2235	1662	40262	1736	46229	1810	125200	1884	222000	1958	206710
1516	125	1590	219	1663	643	1737	52819	1811	130000	1885	204000	1959	359572
1517	125	1591	219	1664	111129	1738	59410	1812	104400	1886	216000	1960	467802
1518	251	1592	219	1665	46705	1739	66328	1813	126000	1887	191000	1961	505105
1519	376	1593	219	1666	5797	1740	46094	1814	133200	1888	185000	1962	507026
1520	501	1594	219	1667	5476	1741	57446	1815	150000	1889	173000	1963	509209
1521	125	1595	219	1668	5476	1742	49737	1816	145200	1890	170000	1964	602651
1522	376	1596	22140	1669	5476	1743	42027	1817	142800	1891	181000	1965	545035
1523	156	1597	219	1670	28666	1744	44130	1818	141200	1892	163000	1966	524505
1524	125	1598	3726	1671	5476	1745	46233	1819	130800	1893	165000	1967	611764
1525	376	1599	4602	1672	5476	1746	48422	1820	128400	1894	170000	1968	810014
1526	627	1600	3891	1673	7730	1747	62175	1821	128400	1895	196000	1969	753690
1527	877	1601	20621	1674	9985	1748	75928	1822	126000	1896	188000	1970	520226
1528	501	1602	23878	1675	46705	1749	88793	1823	124400	1897	190000	1971	439518
1529	125	1603	3249	1676	14494	1750	80790	1824	126000	1898	200000	1972	458295
1530	376	1604	10306	1677	12560	1751	68907	1825	138000	1899	217000	1973	354509
1531	251	1605	17363	1678	10627	1752	89496	1826	137200	1900	206000	1974	372650
1532	125	1606	10856	1679	9985	1753	72965	1827	129200	1901	219000	1975	287508
1533	251	1607	9764	1680	26411	1754	73654	1828	129200	1902	222000	1976	214220
1534	125	1608	18455	1681	52180	1755	60362	1829	132400	1903	211000	1977	172720
1535	376	1609	22796	1682	38653	1756	54590	1830	135600	1904	191000	1978	138559
1536	125	1610	31477	1683	39620	1757	48819	1831	112400	1905	222000	1979	166899
1537	1128	1611	24961	1684	25769	1758	55736	1832	95600	1906	216000	1980	175788
1538	376	1612	30394	1685	52180	1759	62652	1833	104400	1907	234000	1981	170748
1539	376	1613	49932	1686	46383	1760	69569	1834	119600	1908	273000	1982	229774
1540	125	1614	37993	1687	47671	1761	76485	1835	108400	1909	261000	1983	232345
1541	9658	1615	18455	1688	38008	1762	83401	1836	126000	1910	238000	1984	232471
1542	752	1616	21713	1689	14745	1763	90318	1837	118000	1911	226000	1985	231293
1543	1505	1617	6507	1690	2768	1764	97234	1838	110800	1912	220000	1986	266713
1544	251	1618	10856	1691	3864	1765	92191	1839	128400	1913	211000	1987	239924
1545	156	1619	14287	1692	1604	1766	103712	1840	134800	1914	182000	1988	268677
1546	3011	1620	128101	1693	8373	1767	104951	1841	146000	1915	215000	1989	253990
1547	1631	1621	16280	1694	8051	1768	102924	1842	146000	1916	224000	1990	219452
1548	1631	1622	2903	1695	8373	1769	100895	1843	138000	1917	253000	1991	172012
1549	12418	1623	10856	1696	16427	1770	112469	1844	127600	1918	236000	1992	40956
1550	156	1624	8681	1697	11594	1771	111192	1845	146000	1919	265000	1993	11392
1551	219	1625	6507	1698	62489	1772	130617	1846	131600	1920	222000	1994	1314
1552	219	1626	81959	1699	53147	1773	132966	1847	126800	1921	250000	1995	413
1553	657	1627	157412	1700	27570	1774	120763	1848	137200	1922	249000	1996	1875
1554	219	1628	122677	1701	24765	1775	117880	1849	168400	1923	239000	1997	877
1555	23894	1629	13022	1702	21960	1776	96301	1850	158000	1924	223000	1998	4507
1556	1752	1630	13022	1703	19674	1777	79347	1851	125000	1925	256000	1999	8526
1557	2631	1631	13022	1704	17388	1778	62394	1852	119000	1926	289000	2000	5430
1558	84	1632	13022	1705	15101	1779	66672	1853	117000	1927	278000	2001	6969
1559	11179	1633	13022	1706	18993	1780	70949	1854	104000	1928	250000	2002	4249
1560	8330	1634	13022	1707	22884	1781	75227	1855	131000	1929	245000	2003	994
1561	6794	1635	13022	1708	25651	1782	79505	1856	151000	1930	241000	2004	649
1562	657	1636	29311	1709	15109	1783	83783	1857	169000	1931	216000	2005	1331
1563	2409	1637	21713	1710	23679	1784	88061	1858	134000	1932	227000	2006	2701
1564	10741	1638	21713	1711	19776	1785	103301	1859	154000	1933	250000	2007	2931
1565	26084	1639	28219	1712	11694	1786	119672	1860	166000	1934	268000	2008	3385
1566	876	1640	21713	1713	20522	1787	132704	1861	156000	1935	260000	2009	3116

Table 1. Continued

Year	Catch (tonnes)												
1567	745	1641	39075	1714	21590	1788	162518	1862	158000	1936	261000		
(tonnes)													Year
:---	:---												

Table 2. Prior biomass ranges relative to the unexploited biomass (B / k) for years that were used as start, intermediate, and end points in the Northern cod (Gadus morhua) stock assessment.

Year	Biomass range
1508	$0.9-1.0$
1930	$0.4-0.9$
1970	$0.2-0.6$
1985	$0.1-0.4$
2019	$0.01-0.2$

Table 3. Total abundance from the autumn DFO fall RV bottom-trawl surveys of NAFO Divisions 2J3KL (DFO, 2021b, Table 2).

Year	Abundance Index	Year	Abundance Index
1983	2088958	2002	62371
1984	2198605	2003	42861
1985	1288360	2004	62576
1986	2502702	2005	61133
1987	1020462	2006	82735
1988	1223314	2007	128027
1989	2127417	2008	141297
1990	1627647	2009	174981
1991	1117670	2010	139350
1992	239740	2011	106374
1993	90709	2012	167270
1994	21797	2013	325654
1995	43240	2014	463376
1996	38698	2015	500413
1997	25223	2016	536091
1998	28702	2017	437705
1999	60663	2018	551383
2000	72300	2019	566968
2001	63292		

was set at 0.9-1.0 (very low depletion (Rose, 2004)). The end of the time series in 2019 corresponds to a biomass range of $0.01-0.20$, as justified by expert knowledge that the stock's biomass is below critical levels (very strong depletion (Hilborn and Litzinger, 2009;

Brattey et al., 2018, DFO, 2021b)), but may be experiencing some recovery in sub-populations (Rose and Rowe, 2015). For the 15082019 analysis, the intermediate biomass range was set for 1930 at 0.4-0.9 (medium/low depletion). For the 1930-2019 analysis, the starting biomass was set at 0.4-0.9 (medium/low depletion) and an intermediate range was set for 1985 at 0.1-0.4 (strong depletion), since investigations at the time suggested the stock to be below B_{MSY} but not collapsed (Hutchings and Rangeley, 2011; Rose and Walters, 2019). For the 1970-2019 analysis, starting biomass was set at 0.2 0.6 (medium depletion (Rose and Walters, 2019)) and an intermediate range was set in 1985 at 0.1-0.4 (strong depletion (Hutchings and Rangeley, 2011; Rose and Walters, 2019)). A sensitivity analysis was conducted to test the use of priors in the 1970-2019 analysis by switching off the intermediate and end priors. The empirical builtin default priors gave similar ranges as the expert-based priors.

In addition, the BSM was informed by a time series of total abundance from the DFO fall Research Vessel (RV) bottom trawl surveys of NAFO Divisions 2J3KL (DFO, 2021b) (Table 3). The state-space model implementation of the BSM (Millar and Meyer, 2000) accounts for process error in population dynamics and observation error in measurement and sampling (Thorson et al., 2012). The standard deviation of the process error is specified in the code as sigmaR with a default value of 0.1 , which we varied, to evaluate sensitivity, between 0.1 and 0.4 . The alternative values of the process error had minimal effect on the model output, thus the default value of 0.1 was used in the final analyses. Process error is sampled anew for every year of the time series, accounting for uncertainty in the modelled productivity. The code also models error in catch, with a lognormal distribution.

Assessment results

The CMSY analysis produces proxies for MSY, $F_{\text {MSY }}, B_{\text {MSY }}$, and indicators like stock size ($B / B_{\text {MSY }}$) and exploitation ($\mathrm{F} / \mathrm{F}_{\mathrm{MSY}}$) (Table 4). The outputs of both CMSY and BSM analyses were similar for Northern cod (Table 4), thus building confidence in the results. Since BSM estimates are based on more data, they were used for the estimates presented in the text below (Figure 1). Analysing 512 years of catch data (Figure 1a) and 37 years of relative biomass data (Table 3) produced an estimate of the intrinsic rate of population increase (with 95% confidence intervals) of Northern cod

Table 4. Output parameters and reference points of the Northern cod (Gadus morhua) stock assessment with three time series with upper and lower confidence intervals. Results of reference points are based on BSM output. Units for $k, M S Y$, and $B_{M S Y}$ are in millions of tonnes.

Time series	1508-2019	1930-2019	1970-2019
r (BSM)	0.25 (0.14-0.46)	0.29 (0.16-0.50)	0.34 (0.20-0.57)
r (CMSY)	0.16 (0.11-0.22)	0.15 (0.11-0.22)	0.16 (0.11-0.23)
k (BSM)	6.00 (4.03-8.93)	4.92 (3.09-7.84)	2.98 (2.02-4.39)
k (CMSY)	8.34 (6.72-10.4)	8.72 (6.44-11.8)	7.92 (5.20-12.1)
MSY (BSM)	0.38 (0.29-0.49)	0.35 (0.25-0.49)	0.25 (0.17-0.37)
MSY (CMSY)	0.32 (0.28-0.38)	0.33 (0.28-0.38)	0.31 (0.21-0.48)
$B_{\text {MSY }}$	3.00 (2.02-4.46)	2.46 (1.55-3.92)	1.49 (1.01-2.19)
$B_{2019} / B_{\text {MSY }}$	0.03 (0.02-0.10)	0.10 (0.03-0.30)	0.21 (0.09-0.38)
$F_{\text {MSY (without depensation) }}$	0.13 (0.07-0.23)	0.14 (0.08-0.25)	0.17 (0.10-0.28)
$F_{\text {MSY (with depensation) }}$	0.008 (0.004-0.014)	0.029 (0.017-0.051)	0.071 (0.042-0.119)
$F_{2019} / F_{\text {MSY }}$ (with depensation)	14.3 (1.27-33.4)	1.49 (0.18-23.0)	0.50 (0.14-2.75)

Figure 1. Catch and estimated biomass of Northern cod (Gadus morhua) off Eastern Canada from 1508 to 2019 (A, B), with emphasis on 1930 to 2019 (C, D) and 1970 to 2019 (E, F). The catch and relative biomass level compatible with Maximum Sustainable Yield are shown (dotted lines), along with the 95% confidence intervals.
of $r=0.25$ year $^{-1}\left(0.14-0.46\right.$ year $\left.^{-1}\right)$ and a carrying capacity of $k=6.0$ million tonnes (4.0-8.9 million tonnes). Maximum Sustainable Yield (MSY) can then be computed from $r \cdot \mathrm{k} / 4$, which yields $380000 t \cdot$ year $^{-1}$, (290000-490000 tonnes), while biomasses can be expressed relative to the biomass that can produce MSY $\left(B / B_{\mathrm{MSY}}\right.$; see Figure 1b).

Figure 1b shows that, for 200 years, the fishery for Northern cod impacted its biomass only lightly, and that it began to be noticeably reduced from 1700 on; however, it remained well over $\mathrm{B}_{\text {MSY }}$ and thus capable of producing MSY as well as fulfilling its ecosystem
role as a major predator in the waters off what is now Eastern Canada. With catches increasing from the 18th to the middle of the 20th century, the biomass decline accelerated, but it was only in the 1960s, with the onset of the industrial trawl fishery, that Northern cod biomass precipitously declined below $B_{\text {MSY }}$, and specifically after 1968, when the peak reported catch of 810000 tonnes was extracted (Figure 1b).

Figure 1 c and d show that the 1977 declaration of a fishery exclusion zone and the departure of foreign fleets led to a brief stabilization, at a suboptimal level, of the biomass of Northern cod in

Table 5. Comparison of Northern cod (Gadus morhua) stock assessments, including data-limited stock assessment methods CMSY and BSM with 95% confidence intervals. Units for MSY and $B_{M S Y}$ are in millions of tonnes.

		Reference points	
Source	MSY	$B_{\text {MSY }}$	$F_{\text {MSY }}$
BSM	$0.38(0.29-0.49)$	$3.00(2.02-4.46)$	$0.13(0.07-0.23)$
CMSY	$0.32(0.28-0.38)$	$3.74(3.10-4.50)$	$0.08(0.06-0.11)$
Logistic growth model (Hilborn and Litzinger, 2009)		2.8	
VPA (DFO, 2011)		2.6^{*}	
Stock-recruitment model (Ricard et al., 2012)	0.13	4^{*}	0.1
Shelton model (Shelton, 1998)		2.4^{*}	0.2

*Assumed a 4:1 ratio for total biomass to SSB according to DFO (2011) and Ricard et al. (2012).
the late 1970 s and early 1980s. At this time, precautionary annual yields of around 200000 tonnes may have been sustained, but this opportunity to let the stock rebuild was not used. Rather, a newly built, heavily subsidized Canadian trawler fleet replaced the fishing mortalities previously exerted by foreign fleets, leading to a second collapse of catches (Figure 1e) and biomass, which fell below 1% of its original biomass (Figure 1f).

Remarkably, the 1992 fisheries "moratorium" did not lead to a cessation of the fishery. Rather, post-moratorium catches, ranging between 400 and 13000 tonnes per year, continued to be taken (DFO, 2021b), consisting of subsistence and recreational catches, by-catch, occasional 'sentinel surveys', and a stewardship fishery (i.e., small-scale commercial fisheries by any other name), and exerting just enough pressure to forestall a rebuilding of the population (Rose and Walters, 2019). The rebuilding plan, released in 2020, states that fishery removals are to be kept at the "lowest possible level" until stock biomass has grown above the critical zone (DFO, 2021a). This plan has been criticized for not restricting catches sufficiently and explicitly allowing increase in quotas before the stock has reached the limit reference point (Hutchings et al., 2021).

In addition to the time series of catch, the BSM method used a relative index of abundance available from fisheries-independent surveys conducted by the Canadian Department of Fisheries and Oceans since 1983 (DFO, 2021b) (Table 3). The results of BSM are similar to published estimates of more data-intensive models (Table 5). The model estimates biomass in 2019 is 310 (131-570) kt . Although our estimate is lower than the 480 kt reported by DFO (2021b), it is consistent with Rose and Walters' (2019) estimates of 300 kt in 2015 declining to about 250 kt in 2017. As well, the intrinsic rate of population increase (r) estimated here is similar to that estimated in another long-term assessment of Northern cod, but which explicitly accounted for climate effects (Rose, 2004).

To explore changes in carrying capacity over the 512 years, we repeated the assessment for two recent periods, 1930-2019 and 1970-2019. The estimate of carrying capacity for the 1970-2019 period of $3.0(2.0-4.4)$ million tonnes is lower than the estimate for the entire period of $6.0(4.0-8.9)$ million tonnes, though the difference is not significant, with both estimates being included in their respective 95% confidence limits. This decline may indicate a true change in carrying capacity (Palomares et al., 2018) or it may stem from non-consideration or under-reporting of previous catches and then present a case of a shifting baseline, where
a rebuilding target such as $B_{\text {MSY }}$ is underestimated because only recent data were included in the analysis (Préfontaine, 2009). For a lesser known stock, the shifting baseline syndrome (Pauly, 1995) may be more prevalent, especially if consecutive assessments selected more recent years without incorporating knowledge of past exploitation. For the case of Northern cod, the use of well-informed priors prevents or limits shifting baselines, as reflected by the limited shifts in reference points for the selected time periods (Table 4). The estimates of $F_{\text {MSY }}$ in Table 4 (with and without depensation) are consistent with the hypothesis that Northern cod is not capable of sustaining levels of fishing mortality as high as those of other cod stocks (Myers et al., 1996; Rose, 2019). These findings suggest that management strategies should strive to include historical data in order to provide realistic reference points as targets for rebuilding.

The broad confidence limits in our estimates of k reflect a legitimate challenge in estimating carrying capacity based on historical data. Although not statistically significant, we cannot discount the possibility that the changes in k are biologically informative and indicative of changing production regimes. One putative correlate of Northern cod productivity is water temperature (Lilly et al., 2008). For example, citing Colonial Office export records, Innis (1940) reported low catches during the 1713-1720 and 1789-1792 periods, ostensibly because cold water had reduced the availability of cod to inshore fisheries. In contemporary times, water temperatures were colder in the 1970 to 2000 period when compared to the 1940 to 1970 period, and this might have contributed to lower productivity in the short term. But if one examines temperatures with a longer historical lens (as we have done with the catch data), the colder temperatures of the late 1980s and early 1990s were experienced by Northern cod from the 1850s to the 1930s (Hutchings and Myers, 1994; NCAR, 2021) with no discernably negative effects on catches.
Exploring the results of Table 4 further, the CMSY method produces lower estimates of r (closer to the prior) and consequently higher estimates of k (r and k are inversely related in the context of a Schaefer model). The observation that the CMSY output is closer to the r prior than the output from the BSM model stems from the fact that the CMSY model has no information on stock abundance. In other words, the higher r values estimated by BSM stem from the incorporation of highly informative CPUE data. We note, however, that the confidence limits of r from the CMSY and BSM outputs overlap, suggesting that the differences in r produced by the two methods are not substantial.

Our assessment suggests that the biomass of Northern cod is currently (in 2019) 2% of carrying capacity and less than $0.05 \mathrm{~B}_{\text {MSY }}$. Independently of the accuracy of these quantitative estimates, the biomass of Northern cod is clearly far lower than the historical biomass that was capable of sustaining annual catches of 150000 to 200000 tonnes (Figure 1). There is a scientific consensus that the stock is currently well below its biomass limit reference point ($0.48 \mathrm{~B}_{\mathrm{LIM}}$, according to $\mathrm{DFO}, 2021 \mathrm{~b}$) and that periodic inshore fisheries since the 1992 moratorium have had (Hutchings and Rangeley, 2011; Rose and Walters, 2019), and continue to have (DFO, 2021b), an inhibitory effect on stock rebuilding.

All else being equal, the smaller a population, the greater its susceptibility to stochastic environmental change, resulting in increased variability in mortality in fishes (Minto et al., 2008); the greater the magnitude of population reduction, the longer and more uncertain the rebuilding period (Neubauer et al., 2013). Such impairments to recovery can be caused by depensation or Allee effects (Perälä and Kuparinen, 2017; Neuenhoff et al., 2019). Manifest by a decline in realized per capita population growth rate with declining population size, depensation in marine fish populations can be the result of declining recruits per spawner, increased natural mortality, or both (Maroto and Moran, 2014; Hutchings, 2015). Depensation is built into the principal Equation 2 of CMSY and reflected by a linear decline of curFmsy when biomass falls below $0.25 k$, a threshold consistent with previous estimates of where the Alleeeffect threshold might exist for marine fishes, including cod (Hutchings, 2014, 2015). Our incorporation of depensation draws explicit attention to the possibility that per capita population growth, and consequently $F_{\text {MSY }}$ (Table 4), declines with declining abundance at low population size, a caveat that is not reflected by current management strategies for Northern cod (Winter and Hutchings, 2020).

Conclusion

The CMSY tool may be useful to assess both data-limited stocks (those with only catch available) and data-rich stocks (e.g. Northern cod), as it can provide longer term estimates of stock status by incorporating past data-limited periods. Centuries-old catch data exist for several stocks, such as Bluefin tuna (Thunnus thynnus) in the Mediterranean (commercialized around the 8th century (Lleonart et al., 1998; Addis et al., 2009)), Atlantic herring (Clupea harengus) in the Baltic Sea (fishery started in the 13th century (MacKenzie et al., 2002)), and Atlantic salmon (Salmo salar) in the Celtic Sea (fishery started in the 14th century (Manx Heritage Foundation, 1991)). By integrating historical data into stock assessments, we may better understand the total impact of fisheries on marine ecosystems and effectively manage marine populations for a long-term future.

Supplementary Data

Supplementary material is available at the ICESJMS online version of the manuscript.

Data availability statement

All data used in this paper can be found in the Supplementary Data. The full CMSY package developed by Froese et al. (2017) is available from: https://oceanrep.geomar.de/33076/.

Author contributions

RS performed model simulations, statistical analyses, co-wrote, and co-edited the paper. RF assisted in developing priors, designed and performed model simulations, co-wrote, and co-edited the paper. JAH provided the catch data, assisted in developing priors, co-wrote and co-edited the paper. DP conceived the study, co-wrote, and coedited the paper.

Competing interest declaration

The authors declare no competing interest.

Acknowledgements

RS and DP are supported the Sea Around Us, a research initiative funded by a number of philanthropic foundations. We thank Elaine Chu for assisting with the figure design.

RF acknowledges support from the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) on behalf of the German Federal Agency for Nature Conservation (BfN). JAH is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada and by a Killam Memorial Chair (Killam Trusts). We are grateful for the constructive comments and reflections by George Rose and two anonymous reviewers on an earlier version of the manuscript.

References

Addis, P., Locci, I., and Cau, A. 2009. Anthropogenic impacts on Bluefin tuna (Thunnus thynnus) trap fishery of Sardinia (Western Mediterranean). Collect. Vol. Sci. Pap. ICCAT, 63: 174-185.
Brattey, J., Cadigan, N., Dwyer, K. S., Healey, B. P., Ings, D. W., Lee, E. M., Maddock Parsons, D. et al. 2018. Assessment of the Northern cod (Gadus morhua) stock in NAFO divisions 2J3KL in 2016 DFO Can. Sci. Advis. Sec. Res. Doc. 2018/018: 107.
Buren, A. D., Koen-Alonso, M., and Stenson, G. B. 2014. The role of harp seals, fisheries and food availability in driving the dynamics of Northern cod. Marine Ecology Progress Series, 511: 265-284.
Cadigan, N. G. 2015. A state-space stock assessment model for Northern cod, including under-reported catches and variable natural mortality rates. Canadian Journal of Fisheries and Aquatic Sciences, 73: 296-308.
Cardinale, M., Bartolino, V., Svedäng, H., Sundelöf, A., Poulsen, R. T., and Casini, M. 2015. A centurial development of the North Sea fish megafauna as reflected by the historical Swedish longlining fisheries. Fish and Fisheries, 16: 522-533.
Cell, G. T. (Ed.). 1982. Newfoundland Discovered: English Attempts at Colonisation, 1610-1630(Vol. 160). Routledge.
DFO. 2011. Proceedings of the Newfoundland and Labrador Regional Atlantic Cod Framework Meeting: Reference Points and Projection Methods for Newfoundland cod stocks; November 22-26, 2010. DFO Can. Sci. Advis. Sec. Proceed. Ser. 2010/053.
DFO. 2021a. Rebuilding plan for Atlantic Cod - NAFO Divisions 2J3KL. Government of Canada. Available at: https://www.dfo-mpo.gc.ca/fisheries-peches/ifmp-gmp/cod -morue/2020/cod-atl-morue-2020-eng.html [Accessed 14 January 2021].
DFO. 2021b. 2020 Stock Status Update for Northern Cod. DFO Can. Sci. Advis. Sec. Sci. Resp. 2021/004.
FAO. 2018. The State of World Fisheries and Aquaculture (SOFIA) Meeting the Sustainable Development Goals. Food and Agriculture Organization: p. xiii +210 .

Froese, R., Demirel, N., Coro, G., Kleisner, K. M., and Winker, H. 2017. Estimating fisheries reference points from catch and resilience. Fish and Fisheries, 18: 506-526.
Froese, R., Stern-Pirlot, A., and Kesner-Reyes, K. 2009. Out of new stocks in 2020: a comment on "Not all fisheries will be collapsed in 2048." Marine Policy, 33: 180-181.
Hilborn, R., and Litzinger, E. 2009. Causes of decline and potential for recovery of Atlantic cod populations. The Open Fish Science Journal, 2: 32-38.
Hilborn, R., Amoroso, R. O., Anderson, C. M., Baum, J. K., Branch, T. A., Costello, C., De Moor, C. L. et al. 2020. Effective fisheries management instrumental in improving fish stock status. Proceedings of the National Academy of Sciences, 117: 2218-2224.
Hutchings, J. A. 1999. Influence of growth and survival costs of reproduction on Atlantic cod, Gadus morhua, population growth rate. Canadian Journal of Fisheries and Aquatic Sciences, 56: 1612-1623.
Hutchings, J. A. 2014. Renaissance of a caveat: allee effects in marine fishes. ICES Journal of Marine Science, 71: 2152-2157.
Hutchings, J. A. 2015. Thresholds for impaired species recovery. Proceedings of the Royal Society B, 282: 0654.
Hutchings, J. A., and Myers, R. A. 1994. What can be learned from the collapse of a renewable resource? Atlantic cod, Gadus morhua, of Newfoundland and Labrador. Canadian Journal of Fisheries and Aquatic Sciences, 51: 2126-2146.
Hutchings, J. A., and Myers, R. A. 1995. The biological collapse of Atlantic cod off Newfoundland and Labrador: an exploration of historical changes in exploitation, harvesting technology, and management. In The North Atlantic Fishery: Strengths, Weaknesses, and Challenges, pp. 37-93. Ed. by Arnason, R., and Felt, L. F. Institute of Island Studies, University of Prince Edward Island, Charlottetown, PEI.
Hutchings, J. A., Walters, C., and Haedrich, R. L. 1997. Is scientific inquiry incompatible with government information control? Canadian Journal of Fisheries and Aquatic Sciences, 54: 1198-1210.
Hutchings, J. A., and Rangeley, R. W. 2011. Correlates of recovery for Canadian Atlantic cod (Gadus morhua). Canadian Journal of Zoology, 89: 386-400.
Hutchings, J. A., Rose, G. A., and Shelton, P. A. 2021. The flawed new plan to rebuild Canada's iconic Northern cod. Policy Options, Available at: https://policyoptions.irpp.org/magazines/march-202 1/the-flawed-new-plan-to-rebuild-canadas-iconic-northern-cod/ [Accessed 23 March 2021]
Innis, H. A. 1940. The Cod Fisheries: The History of an International Economy. Univ. Toronto Press, Toronto.
Jackson, J. B., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H. et al. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science, 293: 629-637.
Lilly, G. R., Wieland, K., Rothschild, B. J., Sundy, S., Drinkwater, K. F., Brander, K., Ottersen, G. et al. 2008. Decline and recovery of Atlantic cod (Gadus morhua) stocks throughout the North Atlantic. In Resiliency of Gadid Stocks to Fishing and Climate Change, pp. 39-66. Ed. by Kruse, G. H., Drinkwater, K., Ianelli, J. N., Link, J. S., Stram, D. L., Wespestad, V., and Woodby, D. Alaska Sea Grant College program, Fairbanks, AK.
Lleonart, J., Lloret, J., Touzeau, S., Salat, J., Recasens, L., Sardà, F., Fromentin, J. et al. 1998. Mediterranean fisheries, an overview. SAP meeting 13-17/10/98, Barcelona. 17pp.
MacKenzie, B. R., Alheit, J., Conley, D. J., Holm, P., and Kinze, C. C. 2002. Ecological hypotheses for a historical reconstruction of upper trophic level biomass in the Baltic Sea and Skagerrak. Canadian Journal of Fisheries and Aquatic Sciences, 59: 173-190.
Manx Heritage Foundation. 1991. Manx Sea Fishing 1600-1990's. Manx Heritage Foundation, Douglas, Isle of Man. 40pp., xII Cards.
Maroto, J. M., and Moran, M. 2014. Detecting the presence of depensation in collapsed fisheries: the case of the Northern cod stock. Ecological Economics, 97: 101-109.
Martell, S., and Froese, R. 2013. A simple method for estimating MSY from catch and resilience. Fish and Fisheries, 14: 504-514.

Morgan, M. J. 2019. Changes in Productivity of Northern Cod (Gadus morhua) stock in NAFO Divisions 2J3KL. DFO Can. Sci. Advis. Sec. Res. Doc. 2019/052. vi +12 pp.
Millar, R. B., and Meyer, R. 2000. Non-linear state space modelling of fisheries biomass dynamics by using Metropolis-Hastings withinGibbs sampling. Journal of the Royal Statistical Society: Series C (Applied Statistics), 49: 327-342.
Minto, C., Myers, R. A., and Blanchard, W. 2008. Survival variability and population density in fish populations. Nature, 452: 344-347.
Myers, R. A., Barrowman, N. J., Hutchings, J. A., and Rosenberg, A. A. 1995. Population dynamics of exploited fish stocks at low population levels. Science, 269: 1106-1108.
Myers, R. A., Hutchings, J. A., and Barrowman, N. J. 1996. Hypotheses for the decline of cod in the North Atlantic. Marine Ecology Progress Series, 138: 293-308.
Myers, R. A., Mertz, G., and Fowlow, P. S. 1997. Maximum population growth rates and recovery times for Atlantic cod, Gadus morhua. Fishery Bulletin, 95: 762-772.
NAFO. 2021. Northwest Atlantic Fisheries Organization Annual Fisheries Statistics Databases. Available at: https://www.nafo.int/Data/ Catch-Statistics. [Accessed 22 March 2021]
NCAR. 2021. The climate data guide: SST data: HadiSST v1.1. Available at: https://climatedataguide.ucar.edu/climate-data/sst-dat a-hadisst-v11. [Accessed 10 January 2021] Also available at:: https://www.st.nmfs.noaa.gov/copepod/time-series/ca-50601/ht $\mathrm{ml} /$ zoom-psr2020box.html.
Neubauer, P., Jensen, O. P., Hutchings, J. A., and Baum, J. K. 2013. Resilience and recovery of overexploited marine populations. Science, 340: 347-349.
Neuenhoff, R. D., Swain, D. P., Cox, S. P., McAllister, M. K., Trites, A. W., Walters, C. J., and Hammill, M. O. 2019. Continued decline of a collapsed population of Atlantic cod. Canadian Journal of Fisheries and Aquatic Sciences, 76: 168. https://doi.org/10.1139/cjfas-2017-0 190.

Palomares, M. L., Froese, R., Derrick, B., Nöel, S., Tsui, G., Woroniak, J., and Pauly, D. 2018. A preliminary global assessment of the status of exploited marine fish and invertebrate populations. A report prepared by the Sea Around Us for OCEANA. 60pp.
Pauly, D. 1995. Anecdotes and the shifting baseline syndrome of fisheries. Trends in Ecology \& Evolution, 10: 430.
Pauly, D., and Zeller, D. 2016. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nature Communications, 7: 10244. https://doi.org/10.1038/ncomms 10244.

Pauly, D., Christensen, V., Guénette, S., Pitcher, T. J., Sumaila, U. R., Walters, C. J., Watson, R. et al. 2002. Towards sustainability in world fisheries. Nature, 418: 689-695.
Perälä, T., and Kuparinen, A. 2017. Detection of Allee effects in marine fishes: analytical biases generated by data availability and model selection. Proceedings of the Royal Society B: Biological Sciences, 284: 20171284.

Préfontaine, R. 2009. Shifting baselines in marine fish assessments: implications for perception of management and conservation status. Honours Bachelor Thesis. Dalhousie University, Halifax.
Ricard, D., Minto, C., Jensen, O. P., and Baum, J. K. 2012. Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. Fish and Fisheries, 13: 380-398.
Rose, G. A. 2004. Reconciling overfishing and climate change with stock dynamics of Altantic cod (Gadus morhua) over 500 years. Canadian Journal of Fisheries and Aquatic Sciences, 61: 1553-1557.
Rose, G. A. (Ed.). 2019. Atlantic cod: a bio-ecology. John Wiley and Sons.
Rose, G. A., and O'Driscoll, R. L. 2002. Capelin are good for cod: can the northern stock rebuild without them? ICES Journal of Marine Science, 59: 1062-1071.
Rose, G. A., and Rowe, S. 2015. Northern cod comeback. Canadian Journal of Fisheries and Aquatic Sciences, 72: 1789-1798.

Rose, G. A., and Walters, C. J. 2019. The state of Canada's iconic Northern cod: a second opinion. Fisheries Research, 219: 105314. https: //doi.org/10.1016/j.fishres.2019.105314.
Schaefer, M. B. 1957. A study of the dynamics of the fishery for yellowfin tuna in the eastern tropical Pacific Ocean. Inter-American Tropical Tuna Commission Bulletin, 2: 243-285.
Schaefer, M. B. 1954. Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. Inter-American Tropical Tuna Commission Bulletin, 1: 23-56.
Shelton, P. A. 1998. A comparison between a fixed and a variable fishing mortality control rule used to manage the cod stock off southern Labrador and the east coast of Newfoundland. Fisheries Research, 37: 275-286.

Swartz, W., Sala, E., Tracey, S., Watson, R., and Pauly, D. 2010. The spatial expansion and ecological footprint of fisheries (1950 to present). Plos One, 5: e15143.
Thorson, J. T., Branch, T. A., and Jensen, O. P. 2012. Using model-based inference to evaluate global fisheries status from landings, location, and life history data. Canadian Journal of Fisheries and Aquatic Sciences, 69: 645-655.
Winter, A., and Hutchings, J. A. 2020. Impediments to fisheries recovery in Canada: policy and institutional constraints on developing management practices compliant with the precautionary approach. Marine Policy, 121: 104161. https://doi.org/10.1016/j.marpol.2020. 104161.

[^0]: © International Council for the Exploration of the Sea 2021. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

