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A B S T R A C T   

For several fish species, age and other important biological information is manually inferred from visual scru
tinization of scales, and reliable automatic methods are not widely available. Here, we apply Convolutional 
Neural Networks (CNN) with transfer learning on a novel dataset of 9056 images of Atlantic salmon scales for 
four different prediction tasks. We predicted fish origin (wild/farmed), spawning history (previous spawner/non- 
spawner), river age, and sea age. We obtained high prediction accuracy for fish origin (96.70%), spawning 
history (96.40%), and sea age (86.99%), but lower accuracy for river age (63.20%). Against six human expert 
readers with an additional dataset of 150 scales, the CNN showed the second-highest percentage agreement for 
sea age (94.00%, range 87.25±97.30%), but the lowest agreement for river age (66.00%, range 66.00– 84.68%). 
Estimates of river age by expert readers exhibited higher variance and lower levels of agreement compared to sea 
age and may indicate why this task is also more difficult for the CNN. Automatic interpretation of scales may 
provide a cost- and time-efficient method of predicting fish age and life-history traits.   

1. Introduction 

Aquatic science is based on collecting and analysing large volumes of 
data. Management of large marine ecosystems depend increasingly on 
efficient analysis of these data, and it has been argued that the heavy 
reliance on traditional manual data processing methods may be a major 
bottleneck in ecosystem assessment frameworks (Malde et al., 2020). 
Parallel to the increase in data volume and complexity, it is paramount 
that efficient data processing and automated analysis methods are 
developed. 

The age structure of a fish population provides important informa
tion relating to population dynamics, which is essential for fisheries and 
conservation management (Niemelä et al., 2006b; Ricker, 1975). For 
many fish species, hard structures such as their scales or otoliths, can be 
analysed to infer age. For example, the complex life history of Atlantic 
salmon (Salmo salar L. 1758) can be inferred from analysing fish scale 
patterns. Salmon scales have been used for over a century to estimate 
age and growth (Dahl, 1911), but the extraction of biological informa
tion still requires manual expertise, since there are no reliable auto
mated techniques presently in use. 

Atlantic salmon occur in the temperate and subarctic regions of the 
North Atlantic ecosystem (Aas et al., 2011) and provide a range of 
ecosystem services and are considered an economically valuable species 
(Butler et al., 2009). Complex life history and high divergence of their 
habitats make the management and conservation of this species difficult 
(Crozier et al., 2004). Most salmon populations are anadromous, 
adapted to living in both fresh and seawater, with a juvenile phase in 
rivers along various Atlantic coastlines lasting one to six years (Otero 
et al., 2012a, 2012b) before migrating into the ocean for feeding 
(Erkinaro et al., 2019; Hansen and Quinn, 1998). After between one and 
eight years in the sea, Atlantic salmon migrate back to their juvenile 
freshwater habitat to spawn (Niemelä et al., 2006a). Many Atlantic 
salmon populations have been negatively affected by several factors (e. 
g. freshwater habitat degradation, pollution, diseases and over
exploitation), influencing both the river and marine phase of their life 
cycles (Hansen and Quinn, 1998). Some of these changes are related to 
the salmon farming industry, which has grown dramatically on a global 
scale since the late 1970s (Ford and Myers, 2008; McGinnity et al., 
2003). The ecological and economical importance of this species makes 
efficient methods facilitating the monitoring of wild salmon stocks even 
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more important. 

1.1. Scales as indicators 

The complex life history of Atlantic salmon is reflected in how their 
scales grow. By careful examination of their scales, researchers can 
determine important characteristics such as river and sea age (i.e. the 
years spent in the respective phases), spawning history, and whether or 
not they originated in wild or in farmed fish stocks (Francis, 1990). As 
scales grow, concentric rings are formed on the surface of each scale, and 
the growth rate of these rings is proportional to the somatic growth of 
the fish (Fisher and Pearcy, 1990; Panfili et al., 2002). The scale has two 
main growth zones, the freshwater zone and the marine zone (Fig. 1). In 
the temperate regions, seasonal changes in the somatic growth cause 
differences in the patterns on the scale: narrow winter circuli appear as 
darker bands formed when water temperature and food supply are low, 
and wider summer circuli appear as brighter bands, characteristic of fast 
growth, when water temperatures and food availability are high 
(Shearer, 1989, but see Thomas et al., 2019). Paired darker and brighter 
bands form annual ‘growth marks’, which can be used for reliable and 
accurate fish ageing (Ibáñez et al., 2008, Spurgeon et al., 2015). Fish age 
in years is estimated based on the number of winter bands (Fig. 1). 

Scales can also provide information relating to the life history of the 
fish. For instance, previous spawning activity can be inferred from 
spawning marks identified on scales (Niemelä et al., 2006a). Recogni
tion of certain scale features can also help discriminate between wild 
and farmed fish (Stokesbury, 1997). For example, circuli spacings tend 
to be more uniform in farmed Atlantic salmon due to more regular food 
supply when compared to their wild counterparts (ICES, 2011). 

1.2. Automated scale analysis 

Considering all the factors contributing to shaping the complex 
patterns that form on scales, it is easy to appreciate that in-depth ana
lyses of these patterns are nontrivial. Manually extracting biological 
information from scales requires skilled expertise that takes years to 
acquire. Automating the extraction of information from scale images 

could, as a first step, complement current practices. The usefulness of 
automated fish ageing based on scales or otoliths has long been recog
nized as an important goal in fishery science (Boehlert, 1985). Different 
pattern recognition systems have been proposed for the ageing purposes 
based on growth increments in scales, otoliths, or other biological hard 
structures. One-dimensional analysis of the intensity profiles extracted 
along a given reading axis or methods incorporating a two-dimensional 
perspective have already been developed (Fablet, 2006a; Fisher and 
Hunter, 2018). Besides image-based information, some methods addi
tionally incorporate independent growth data to constrain the classifi
cation algorithms and discriminate true growth increment patterns from 
false ‘checks’ (Fablet, 2006b, 2006a; Robertson and Morison, 1999). 
These techniques all require explicit incorporation of specific knowledge 
from biological expertise. Historically, AI systems have also primarily 
relied on explicit inbuilt expert knowledge until the successes of deep 
learning during the last decade broke this paradigm. The remarkable 
advantage of deep neural networks are their ability to develop their own 
expertise by learning to detect and respond to relevant features at many 
levels of abstraction, obviating the need for explicit feature engineering 
(LeCun et al., 2015; Schmidhuber, 2015). 

In recent years, deep learning techniques, especially deep Convolu
tional Neural Networks (CNN), have become the dominating computer 
vision technology and have successfully been applied to a range of 
complex image classification problems (LeCun et al., 2015). After 
Krizhevsky et al. in 2012 (Krizhevsky et al., 2012) won the annual 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition 
(Russakovsky et al., 2015), CNNs have become the dominant class of 
deep neural network architectures for image classification, and subse
quent winners have employed increasingly complex network architec
tures with larger numbers of parameters, e.g. the 2014 ILSVRC winner, 
GoogleNet (Szegedy et al., 2015), used 6.8 million parameters, whilst 
the 2018 winner, GPipe, used 557 million parameters (Huang et al., 
2018). This implies a correlation between accuracy and network size, 
limited only by available memory and computational resources. A 
recently proposed network architecture called EfficientNet aims to scale 
up networks more efficiently and provide state-of-the-art accuracy 
within a given computing budget (Tan and Quoc, 2019). 

Fig. 1. An example of an expert reader 
analysis of an adult salmon scale image. 
Image taken from the 150-image test set. The 
freshwater zone and the marine zone are 
shown. In the freshwater zone, the year 
zones are labelled with red lines. In the ma
rine zone, both winter and summer growth 
zones are shown. Where 1SS (1. Sea Sum
mer), SW (1. Sea Winter), 2SS (2. Sea Sum
mer) 2SW (2. Sea Winter). CNNs predicted a 
river age of 2.68 and sea age of 1.998. (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the web version of this article.)   
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In this paper, we utilise recent advances in deep CNNs and use an 
implementation of EfficientNet to analyse salmon scale images. Our 
main objective is to explore whether extraction of biological information 
from scale images can be automated using a CNN. This task differs from 
typical image classification tasks that most network architectures were 
developed for, but a previous work successfully used a neural network 
for age classification of Greenland Halibut otoliths (Moen et al., 2018), 
indicating that the flexibility of these systems is sufficient. We take 
advantage of transfer learning by starting our training process with an 
EfficientNet based CNN pre-trained on an existing open-access image 
database (ImageNet) and train different CNN models to predict the age, 
origin (wild/farm escapee) and spawning history of Atlantic salmon 
based on images of scales. We then evaluate the performance of the 
CNNs by comparing CNN-based predictions with manual-based esti
mates made by six expert human readers. 

2. Methods 

2.1. CNN training data 

Norwegian authorities have initiated a large-scale surveillance pro
gram comprising eight research institutes and commercial actors to 
monitor the impact of farmed salmon on wild salmon populations 
(Anon., 2019). The program samples salmon annually from around 200 
Norwegian rivers. The dataset used in this study consist of a total of 9056 
high-resolution images of salmon scales sampled by the Institute of 
Marine Research in Bergen (IMR), Norway (from 2015 to 2018), and 
Rådgivende Biologer (from 2016 to 2017) in rivers along the coast of 
Norway. These images were already analysed and labelled by expert 
readers with biological information, including the origin of the fish (wild 
or farmed), the spawning history (previous spawner or non-spawner) 
and the number of years spent in rivers (river age) and at sea (sea 
age), within those respective years. These readings followed stand
ardised procedures for age reading. In general the IMR scales are always 
analysed independently by at least two age readers with high agreement. 
For cases where readers do not agree, an expert reader at Rådgivende 
Biologer is sometimes consulted to reach agreement, calibrate readings 
between institutes and maintain consistent age reading. Scales with low 
quality are discarded. There were three different age readers involved in 
establishing the 9056 image dataset (one from Rådgivende Biologer and 
two from IMR). Technical details of this dataset and the reading can be 

found through the link given in the last section of this paper (Data 
availability). 

However, not all of the biological information was provided for every 
image. In cases where some information can be interpreted, but not all, 
this information was included in the dataset. In total, 8286 images were 
annotated with sea age, 6238 images were annotated with river age, 
5919 were annotated as either wild or farmed, and all 9056 images were 
annotated as either previous spawner or non-spawner. This provided 
four separate and partly overlapping datasets (Fig. 2). The dataset is 
dominated by non-spawners (97.4% vs 2.6% previous spawners) and by 
wild (91.7% vs 8.3% farmed) and contain a large fraction of unknown 
fish (unknown origin). The sea age dataset is dominated by two years 
(50.6%), one years (27.9%) and three years (17.4%) while the river age 
dataset is dominated by three years (56.5%) and two years (33.6%). 
Images that did not include estimates of river/sea age (not available 
(NA) in Fig. 2) were used in the binary classifications (origin and the 
spawning history) but omitted from the regression analysis of fish age. 

2.2. Convolutional neural network architecture 

In this study, we used both classification and regression CNNs to 
automate four manual tasks that each extracted biological information 
from salmon scale images: a classification task distinguishing wild 
salmon from farmed, a classification task distinguishing previous 
spawners from non-spawners, and two regression tasks predicting river 
and sea age. For all tasks, we used the EfficientNet–B4 architecture and 
each CNN was trained using transfer learning as EfficientNet–B4 was 
available with pre-trained weights, pre-trained using ImageNet data 
(Deng et al., 2009). EfficientNet uses a compound scaling method for 
network depth, width and image input resolution by first finding an 
optimal baseline combination called EfficientNet–B0 and then scaling 
up to bigger networks denoted EfficientNet–B1 through EfficientNet–B7 
with increasing numbers of parameters. This process determines an 
optimal image resolution and by default, EfficientNet–B4 uses an input 
image resolution of 380 × 380 pixels. Despite the possibility benefits of 
using higher image resolution in order to reveal finer scale details in the 
salmon scales, we decided to follow the EfficientNet-B4 default archi
tecture and the images were scaled accordingly. For binary classification 
of farmed/wild and previous spawner/non-spawner salmon, we used an 
output layer with a two-value softmax output and cross entropy loss. For 
the regression tasks of sea and river age, we used a linear output unit and 

Fig. 2. Age distribution for river (a) and sea (b) age. The colour of the bar indicates the origin of the individual fish and the shade shows spawning history. NA 
indicates that age information was not available. The total number of samples in each age class is given. 
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MSE loss. Each of the four distinct CNNs were trained separately, and in 
each case, scale images were pruned from the dataset when the output 
class/value was missing. 

2.3. Implementation and training 

The CNN was implemented using the Keras (Chollet, 2015) and 
TensorFlow (Abadi et al., 2016) software packages implemented in 
Python, and computation was performed using CUDA version 9.1 and 
CuDNN with Nvidia (Nvidia Corp., Santa Clara, California) P100 
accelerator cards with 12 GB of GPU memory. We used a Keras imple
mentation of EfficientNet–B4 called EfficientNet V1.1.0 (https://github. 
com/qubvel/efficientnet). The pre-trained weights used for transfer 
learning were available through this API. 

Augmentation was applied to the entire training dataset. The images 
were augmented using rotations between 0 and 360 degrees, reflected 
by the vertical axis, and vertically shifted by +/− 5 pixels. In addition, 
standard image normalization for CNNs was applied, mapping the 8 bit 
pixel values to floating-point values between 0 and 1. The dataset was 
then randomly split into training, validation, and test sets, containing 
70%, 15% and 15% of the images, respectively. The validation set was 
used to control (and terminate) the training process, while final per
formance metrics were estimated using the test set. 

To compensate for unbalanced class abundances, the loss function 
was weighted, using weights obtained from the compute_class_weight 
function in the sklearn python package (Pedregosa et al., 2011). For 
instance, since only 8.5% of the scale images in the origin dataset were 
labelled as farmed salmon, a weight of 5.85 was assigned to the images 
of farmed fish and a weight of 0.54 to wild salmon images. Similarly, 
previous spawner and non-spawner salmon were weighted 19 and 0.5, 
respectively, as the dataset contains only 2.6% scales from previous 
spawners. All layers were set to trainable during training. 

Performance of the CNN models were assessed using four different 
metrics (test loss, mean squared error - MSE, mean average percentage 
error – MAPE and accuracy - Acc). Accuracy of the regression tasks was 
calculated by rounding the prediction to the nearest integer age and 
comparing it with the ground truth. The labelling provided by human 
readers are treated as the ground truth, and accuracy and other per
formance metrics relates directly to this. 

The CNN hyperparameters configurations used for all four networks 
during training are shown in Table 1. During training we use minibatch 
gradient descent. 

2.4. Comparing the CNN and six expert readers using an independent 
dataset 

To evaluate the performance of the trained CNNs relative to human 
experts, an additional dataset of 150 salmon scale images were scored 
simultaneously by six expert readers and by the regression CNNs. The 
images were selected from 12 different salmon rivers in Norway and 

were sampled between May and October 2019. Following the standard 
age reading exchange method for Atlantic salmon (Anon., 2008; ICES, 
2013; Shearer, 1989; Shearer, 1992), these 150 images were read 
independently by each participant to determine river age and sea age. In 
addition to the scale images, auxiliary background information was 
utilised during the reading, including catch location and date, body 
length and sex of the fish. The expert readers were also allowed to use a 
second magnified image when encountering difficult samples. This 
dataset and the results of the human readings are available (Husebø 
et al., 2020). The river and sea age regression CNNs only used the im
ages, with no auxiliary information. We investigated the precision of the 
age estimates made by all the expert readers and the predictions by the 
CNNs (rounded to the nearest integer) using the coefficient of variation 
(CV) and percentage agreement (PA) (Campana, 2001). We evaluated 
relative bias of the expert-derived age estimates by comparing them 
with their modal age (calculated from all the expert readers and the 
CNNs) and visualized the results using age bias plots (Campana et al., 
1995). In addition, we calculated mean squared error using non-rounded 
CNN output. 

3. Results 

3.1. Results of classification and regression tasks 

The two binary classification tasks achieved high accuracy, with 
origin (farmed/wild) reaching an accuracy of 96.7% and the spawning 
history 96.4%. The sea age CNN performed excellent with MSE of 0.157 
and an accuracy of 87%, far better than the river age CNN with MSE of 
0.336 and 63.2% accuracy (Table 2, Fig. 3, Fig. 4). Note that during 
training we use class weighting in the loss calculation for the binary 
classification CNNs (see 2.4). This prevents the CNNs to “detect” the 
skewed distributions (non-spawners and farmed dominating), and the 
different classes are therefore perceived by the CNN as uniformly 
distributed. The performance of the CNNs for the binary classification 
tasks are therefore very good compared to a random classifier of 50% 
accuracy. No class weighting was done for the regression CNNs during 
training; therefore, their performance should be compared to a random 
weighted sampler. While a purely random classifier would have an ac
curacy of 1/(NClasses), a weighted random sampler would randomly 
guess classes according to their occurring frequency. Calculating this for 
the regression CNNs gave the following accuracies: river age (43.7%) 
and sea age (36.5%). Both regression CNNs therefore perform much 
better than what can be expected by weighted random sampling. 

To explore the benefits of transfer learning, we also trained the CNN 
for predicting sea age using random initialization. This gave an accuracy 
of 49.6%, a MAPE of 54% and a MSE of 1.1, which is relatively poor 
performance compared to our results using transfer learning (Table 2, 
87%, 8.6% and 0.157 respectively). Training with pre-trained weights 
was also twice as fast. 

Table 1 
Hyperparameter configuration used. An epoch is one cycle through the 
training data.  

Hyper 
parameter 

Value Description 

Batch size 8 The number of images processed in parallel when 
training the network 

Learning rate 7*10− 5 The step size for parameter updates. 
Optimiser Adam Algorithm for using the gradient to update parameters. 
Steps per 

epoch 
1600 Number of batches run before validation error is 

calculated 
Maximum 

epochs 
150 Maximum epochs before training terminates 

Patience 20 Number of epochs without improvement in validation 
error before training will terminate early  

Table 2 
CNN performance metrics. MSE is the mean square error, MAPE is the mean 
average percentage error, and Acc% is the average accuracy. In addition, the 
number of images in the dataset (set size) for each task and the weighting of 
classes are given. The × indicates that the performance metric is not applicable 
to the specific CNN.  

Predicting Test 
loss 

MSE MAPE Acc 
% 

Set 
size 

Weighting classes 

River Age 0.336 0.336 17.34 63.20 6238 – 
Sea Age 0.157 0.157 8.64 86.99 8286 – 
Spawning 0.113 × × 96.40 9056 Non-spawner: 0.5, 

Previous 
spawner:19 

Farmed 0.187 × × 96.70 5919 Farmed: 5.87, 
Wild:0.54  
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3.2. Experts estimates and CNN predictions for river and sea age 

Estimates of sea and river age made by human readers using the 
additional 150 image dataset were compared with predictions from the 
regression CNNs. The sea age CNN performed better than the river age 
CNN (Table 3, Fig. 5), which is consistent with the main analysis 

(Table 2 and Figs. 3 and 4). All human expert readers performed better 
than the CNN with respect to predicting river age (Fig. 5), with agree
ment among expert readers varying between 73.72% and 84.68%. CNN 
agreement (rounding predictions to the nearest integer) was lower with 
a value of 66%. On average, expert reader agreement was 78% for river 
age and 92% for sea age. The sea age CNN performed better than many 

Fig. 3. Predicted versus labelled river age in years. The violin shape takes its form from a smoothed probability density of the values. The straight line indicates 
correct predictions. The numbers indicated above each distribution is the test data sample size for each age group. 

Fig. 4. Predicted versus labelled sea age in years. The violin shape takes its form from a smoothed probability density of the values. The straight line indicates 
correct predictions. The numbers indicated above each distribution is the test data sample size for each age group. 

Table 3 
Performance metrics for six expert readers and CNN for sea and river age estimation. The mean square error (MSE) is calculated using the total mean (all expert 
readers and CNN) and the CNN prediction is rounded to the nearest integer when calculating MSE. The coefficient of variation (CV) and the percentage agreement (PA) 
is calculated using the modal age of all readers and the CNN.  

Estimator Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 CNN 

MSE River 0.121 0.145 0.130 0.133 0.125 0.159 0.219 
CV River 4.19 4.70 6.32 4.78 4.31 7.04 8.97 
PA River 84.68 80.31 76.42 80.74 81.20 73.72 66.00 
MSE Sea 0.068 0.050 0.033 0.098 0.051 0.059 0.058 
CV Sea 2.75 2.64 0.84 3.9 2.01 2.08 1.87 
PA Sea 89.86 91.28 97.30 87.25 93.33 93.96 94.00  
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of the expert readers (94% agreement), ranking second overall after 
expert number 3 (Table 3). The results suggest that when a reading task 
is difficult for humans (high variance between readers) the CNN per
forms poorly, whilst when a task is easier (low variance between 
readers), the CNN performs at a level that is consistent with the best 
expert readers. 

CNN predictions were plotted against the overall mean (all expert 
readers and CNN) and the mean of the expert readers only (Fig. 6). CNN 
predictions are shown together with the deviation from the mean esti
mated age. CNN predictions are clustered around the mode of the river 
age distribution (three years), overpredicting the age of one- and two- 
year-olds and underpredicting the age of four-year-olds. 

There was notable disagreement between readers in some instances 
of sea age (scale #40–50 and #95–125 in Fig. 6). Expert readers and 
CNN predictions agree about sea age on around 45 images (#50-95 in 
Fig. 6). The deviation of CNN predictions from the mean highlights how 
the CNN performs relative to the mean. It is interesting to note that CNN 
predictions are clustered around integer ages even when there is 
disagreement between expert readers. This was also evident in the main 
analysis (Fig. 4). The CNN predicts one- and two-year-olds well for sea 
age (except for a few outliers), but the deviation increases substantially 
for three-year-olds. It is worth noting that the deviation from the mean 
for even the best expert reader increased at relatively high sea age es
timates (see Fig. 5). 

CNN predictions are clearly biased towards a river age of 3 years, 
over- and underpredicting the age of two- and four-year-olds, respec
tively (Fig. 6), and if rounded to the nearest integer, all but 15 of the 
scales would be predicted as having a river age of three years. 

4. Discussion 

We have used a state-of-the-art Convolutional Neural Network ar
chitecture, EfficientNet–B4, and adapted it to the task of classifying 
images of salmon scales. The CNN performs well on the binary classifi
cations with a high accuracy in predicting both the origin (wild or 
farmed) and the spawning history (previous spawner or non-spawner). 
Regression CNNs performed well when predicting sea age (86.99% ac
curacy) but performed relatively poorly when predicting river age 
(63.20% accuracy). 

4.1. Effect of nonuniform age distributions 

Both regression CNNs underpredicted age in the high age classes 
(Figs. 3 and 4). The river age predicting CNN also overpredicted the age 
of one-year olds. The predictions are best for one, two- and three-years 
sea age and three years river age. This is likely caused by the training 
data not being uniformly distributed over ages. In our data set (Fig. 2), 
90.2% have a river age of two or three years, while only 6% are four-year 
olds and 3% one-year olds. Sea age distribution is similarly nonuniform, 
where only 5% of the salmon are four years or older. The dataset, 
however, is not incomplete but rather reflects the natural age distribu
tion of Atlantic salmon, related to specific ecological and biological 
factors (Otero et al., 2012a, 2012b, Wedemeyer et al., 1980). For 
instance, Atlantic salmon typically spend two or three years in the river, 
and more rarely spend one year or more than four years in the river. The 
relatively small number of training examples in infrequent age classes 
can lead to lower accuracy when compared with the more abundant age 
classes. 

From our own experience, we frequently observe that CNN output is 

Fig. 5. Age bias plots. Distribution of the modal river age (a), modal sea age (b), and age bias plots for river (c) and sea age (d) reading. Mean difference between 
expert reader interpretation or CNN rounded prediction and modal age calculated from all readers and CNN is indicated (±2 s.e.) in (c) and (d). 
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biased towards the mean of the training data and we suspect that this 
bias is stronger when there is less information in the input image. The 
river age CNN predicts an age close to the average in most cases. 
Nevertheless, the CNN shows a preference for integer values (Fig. 3), so 
while it may be unable to extract useful information from individual 
images, it has learned a prior distribution around integer ages from the 
aggregate data. 

4.2. Comparing expert readers and CNNs performance 

The sea age CNN performs on par with expert readers scoring second 
best on PA and CV measures (Table 3). The relatively poorer perfor
mance of the river age CNN is likely related to the compactness and 
pattern complexity of the inner core of the scale (Figs. 1 and 7). The core 
is shaped by river growth and has more irregular growth zones. In the 
river, many additional environmental factors (like river flow 

fluctuations, density-dependent effects, higher temperature amplitudes 
etc.) can also play a role. In contrast, during foraging in the sea where 
food availability is more abundant, salmon grow both faster and more 
regularly, making the growth zones larger and easier to distinguish. The 
poor performance of the river age CNN may therefore be a consequence 
of reducing image resolution to the default EfficientNet–B4 value of 380 
× 380 pixels, resulting in a blurred core, insufficient in detail to enable 
extraction of pertinent features. The EfficientNet architecture is con
structed to optimize the combination of input image resolution, layer 
depth and width. Here, we adhere to this design, and thus we did not 
consider alternative configurations. However, this inner core density of 
the scale creates problems even for expert readers, as it becomes difficult 
to distinguish the annual growth zones (Fig. 7) (ICES, 2011). This seems 
to be the case even when expert readers have access to a much higher 
image resolution of 2560 × 1920 pixels and access to magnified images. 
This is evident from the much larger disagreement among expert readers 

Fig. 6. CNN predictions and mean age estimates for each scale in the independent 150-image test set. Top: River age estimates. Bottom: Sea age estimates. The 
fish scales are sorted by the mean of the expert readers age estimates (black dots). The scattering of the CNN predictions around the mean is indicated with crosses. 
The vertical red lines are drawn between the CNN predictions and the mean (grey dots) to highlight how the CNN deviates from the mean. For river age, around 10 
scales are not read by any expert reader and have therefore been omitted. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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when estimating river age compared to sea age, as the highest agreement 
on reading river age (84.68%, reader 1) was less than the lowest 
(87.25%, reader 4) for sea age (Table 3). In Fig. 7d, a scale with low 
disagreement among expert readers on river age is shown including a 
close-up of the inner core of the scale, where two different readers have 
indicated their evaluation of yearly growth zones. A testimony from one 
of the readers demonstrates the difficulty of estimating river age: 
Paraphrasing: “My estimate (red dots) is two years in the river because 
the river is on the south west coast of Norway where growth conditions 
are good.”. The other reader (blue dots) identified four growth zones, i.e. 
four years in the river (Fig. 7). It is reasonable to assume that the expert 
readers would have had even lower agreement if they only had access to 
a 380 × 380 resolution image. 

In addition, the expert readers had the advantage of using auxiliary 
information, including catch date, body length, back calculated smolt 
size, weight, sex and river location. Typically, growth conditions differ 
significantly from south to north and smolt size differs accordingly 
(Aronsen et al., 2019). Further, classification of a scale as farmed/wild, 
for instance, might guide the age reading because of differences in ex
pected growth patterns. No such information was given to the CNNs 
during training but it is reasonable to expect that the CNNs performance 
would increase if some extra input information were provided during 
training and prediction e.g. CNNs predictions of wild/farmed or 
spawned/not spawned were fed into the regression CNNs. It is 

encouraging to note that the sea age CNN performed relatively well 
when compared to the mean estimates of the expert readers without 
using auxiliary background information (Table 3). 

4.3. The importance of transfer learning 

We found that the use of transfer learning when training our CNNs 
was crucial for their performance. Transfer learning is a common tech
nique within deep learning, where networks trained to perform well on 
one task can be adapted with some training towards similar tasks 
(Yosinski et al., 2014). This is especially useful when datasets are sparse 
and more narrowly distributed. Often, a significant benefit can be gained 
by starting from a pre-trained network where the first and intermediate 
layers in the network already have been shaped by training on a large 
and diverse dataset. EfficientNet is available pretrained on the large 
benchmark dataset, ImageNet, containing around 1.4 million images in 
1000 classes (Deng et al., 2009), more than 100 times the number of 
labelled salmon scale images used in this study. The network's ability to 
abstract lower level but more generally useful features has then already 
been established and new datasets presented to the network will only 
have to shape the upper layers where higher feature abstraction and 
categorisation takes place. 

Transfer learning is generally more effective when the network has 
been pre-trained on a similar task, and we expect our trained CNNs can 

Fig. 7. Examples of salmon scale images with expert readers (ER) annotations of growth zones. Various combinations of bad/good CNN predictions from the 
150-image test set is shown. The annotated coloured dots are indications of growth zones, i.e. number of years in the river and the sea, shown for one of the expert 
readers and for two expert readers in the inner zone of scale #18. a) Scale #79. Bad CNN and Good ER for river age. CNN predicts 3.06 years and expert reader modal 
age is 5 years. One reader estimates 4 years (83% agreement). b) Scale #52. Bad CNN and Good ER for sea age. CNN predicts 2.02 years and expert reader modal age 
is 3 years. 5 readers estimate 3 years, one estimates 2 years (83% agreement). c) Scale #83. Good CNN and Good ER for sea age. CNN prediction is 1.00 year and 
expert reader modal age was 1 year with 100% agreement. No annotation indicated. d) Scale #18. Controversial. CNN predicts 3.22 years river age. Only 40% 
agreement among expert readers, varying between 2, 3 and 4 years. 
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provide useful starting points for automating analysis of scales from 
other species, as well as for other hard parts of organisms (e.g., otoliths, 
vertebrae). Future fish ageing laboratories handling larger datasets of 
salmon scales could also benefit from using our trained CNNs as a basis 
for improved CNNs and automated systems. 

4.4. The implications of deep learning 

Several factors contribute to the ability of a machine learning system 
to solve a particular problem. The quality and quantity of training data, 
the appropriate neural network architecture and the available GPU re
sources, are all essential. Whenever supervised learning is used, the 
quality of the labelling is also integral to the data quality. If the majority 
of the training data is based on one expert readers labelling, this may not 
be ideal. Our study shows that even highly skilled experts disagree, and 
this disagreement is likely to reflect subjective biases arising from 
different experiences and maybe different emphasis on various back
ground information. A CNN captures one reader's tendency to interpret 
images, thereby introducing some subjective bias indirectly into the 
network. In an ideal world with more resources the best labelling of an 
image would be gained from the modal reading from multiple expert 
readers. This is based on the statistical phenomena that the group 
average of several estimators – without systematic bias – of some un
known quantity tends to be closer to the truth than most of the single 
estimates. Using such a labelling approach would smoothen single 
reader biases and the trained CNN should tend to predict the group 
average. 

Given abundant GPU resources an ideal approach would also be to 
combine predictions from an ensemble of architectural similar or even 
identical CNNs. These CNNs could use the same training data but 
altering the training process slightly by shuffling the sequence of data or 
by using different batch sizes. This approach of using multi-model en
sembles to produce more reliable predictions have been explored in 
modelling studies within various fields (Kindt, 2018; Liao et al., 2014; 
Olsen et al., 2016). Future studies could exploit this, and it is expected 
that the group average prediction from several CNNs would outperform 
the performance of any single CNN in the very same group. 

But do deep learning techniques that automate manual fish scale 
analysis improve efficiency? It can be argued that the process of col
lecting and pre-processing scales is truly the time-consuming part 
compared to the manual image interpretation. However, training a 
human reader to be a skilled expert reader is very time and resource 
demanding and an automated process can be scaled up more easily to 
handle larger datasets (Mahé, 2009). One major advantage of using deep 
learning instead of classical image analysis methods is that a deep neural 
network is partly able to capture the expertise of the readers and thereby 
function as a consistent future representative of this knowledge base. 
This can serve as an important reference for quality control, as an aid for 
training new expert readers and to reduce inherent vulnerability in 
depending on a small number of highly trained experts. The search for 
more objective techniques (Robertson and Morison, 1999), reducing the 
subjective nature of the human interpretation, also comply well with 
automation. Moreover, assuming long-term accuracy of the automatic 
classification, it may allow for the identification of age-reading ‘drifts’ 
through time, which result in increasing biases relative to the earlier 
determinations (Campana, 2001). Conversely, a system for interpreting 
scales that is stable over time can help to identify long term changes in 
the biology. For instance, the appearance of ‘false checks’ in salmon 
scales is reportedly becoming more common (see e.g., Todd et al., 2021). 
These interrelations between potential errors in automatic interpreta
tion and potential errors due to human age-reading ‘drifts’ should be 
investigated with caution, and any automatic system must be regularly 
updated as data evolves. 

The CNNs trained in this study are the first deep learning system to 
be able to automate the analysis of salmon scale images. They are pro
totypes with high potential to be further improved. Improvements can 

come from new available datasets, new CNN architectures and better 
quality assurance of labelling to ensure unbiased input data. Improved 
CNNs may also need to incorporate axillary biological information in the 
training process, and base analysis on several CNN predictions to 
overcome the challenges that were identified in this study. As a second 
step such automated systems could be deployed to become an integral 
part of future fish ageing laboratories adding complementary method
ology which could help facilitate a more streamlined analysis. 

5. Conclusions 

Conservation and management of wild Atlantic salmon stocks are 
highly dependent on the biological and ecological information that can 
be extracted from fish scale features (Niemelä et al., 2006b). These 
natural markers in scales, integrated with automatic scale interpretation 
methods, offer potentially a cost-efficient and effective way of investi
gating salmon age and life-history traits. We have shown that convolu
tional neural networks can be successfully applied to extract age, origin, 
and spawning history from salmon scales, with a performance in pre
diction of sea age rivalling that of highly trained human experts. 
Although river age proved to be more difficult to predict, we believe that 
with suitable adaptations to the network and training procedure, it too 
can be adequately addressed. Deep learning offers a promising auto
mation methodology for the analysis of salmon scale images, providing 
many benefits which could improve the quality of fish age estimation 
and support the management of these biological resources. 
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