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Phyto- and zooplankton in Arctic and sub-Arctic seas show very strong seasonal
changes in diversity and biomass. Here we document the seasonal variability in the
mesozooplankton community structure in a sub-Arctic fjord in Northern Norway based
on monthly sampling between November 2018 and February 2020. We combined
traditional morphological zooplankton identification with DNA metabarcoding of a 313
base pair fragment of the COI gene. This approach allowed us to provide the most
detailed mesozooplankton species list known for this region across an entire year,
including both holo- and meroplankton. The zooplankton community was dominated
by small copepods throughout the sampling period both in terms of abundance
and relative sequence counts. However, meroplankton was the most diverse group,
especially within the phylum polychaeta. We identified four distinct periods based
on the seasonal analysis of the zooplankton community composition. The pre-spring
bloom period (February–March) was characterized by low abundance and biomass of
zooplankton. The spring bloom (April) was characterized by the presence of Calanus
young stages, cirripedia and krill eggs. The spring-summer period (May–August) was
characterized by a succession of meroplankton and a relatively high abundance of
copepods of the genus Calanus spp. Finally, the autumn-winter period (September–
December) was characterized by a high copepod diversity and a peak in abundance
of small copepods (e.g., Oithona similis, Acartia longiremis, Pseudocalanus acuspes,
Pseudocalanus elongatus, Pseudocalanus moultoni, Pseudocalanus minutus). During
this period, we also observed an influx of boreal warm-water species which were
notably absent during the rest of the year. Both the traditional community analysis and
metabarcoding were highly complementary and with a few exceptions showed similar
trends in the seasonal changes of the zooplankton community structure.
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INTRODUCTION

Marine ecosystems in Arctic and sub-Arctic regions are governed
by strong seasonality in incoming solar radiation, leading to
distinct seasonal peaks in primary production. Additionally,
nutrient availability, relevant to algal growth, is governed by
stratification and mixing of water masses, which again are affected
by the seasonality in snow and ice melt, river run-off, wind
mixing and solar radiation, in addition to algal nutrient uptake
dynamics. Herbivorous zooplankton, which plays an essential
role in marine ecosystems at high latitudes, tunes their life
cycle to the seasonality in primary production, often using lipid
stores to survive the non-productive period. The relatively short
and intense growing season necessitates a good synchronization
between life history events in zooplankton grazers (such as
reproduction and growth) and the productive periods of the
primary producers. This synchronization allows the acquisition
and accumulation of energy and an efficient energy transfer
to higher trophic levels. The dark winter season is particularly
poorly studied for activity of phyto- and zooplankton, although
recent research demonstrated that this season is by no means a
period of inactivity, and several trophic levels remain active and
complete important parts of the life cycles in the dark season
(Berge et al., 2020; Johnsen et al., 2020).

Mesozooplankton is a key link in the energy transfer between
primary producers and higher trophic levels (Steele, 1974;
Arnkvaern et al., 2005). They include animals that permanently
live in the water column (holoplankton) and those who
only spend their larval stage as plankton (meroplankton).
Zooplankton abundance, diversity and distribution are
considered good indicators of the state of marine ecosystems
(Hughes, 2000; Taylor et al., 2002; Hays et al., 2005). They
are strongly influenced by hydrography and currents, with
advection being an important mode of transport and dispersal,
and any changes in the hydrographic regime may affect their
distribution and fitness dramatically. Most zooplankton species
are not commercially harvested, so changes in distribution
and abundance reflect changes in fitness due to environmental
forcing (e.g., changes in food availability, predator pressure, and
abiotic factors) rather than exploitation, although they can also
be influenced by eutrophication and pollution. Furthermore,
planktonic life cycles are often short and their population
dynamics are not affected by the individual’s ability to persist
over many years, so plankton populations rapidly respond to
environmental changes (Hays et al., 2005).

Fjords are semi enclosed systems that are a characteristic
feature of the Norwegian coastline (Stone, 1980; Cottier et al.,
2010). Despite being coastal locations, they can have depths of
200–2000 m and provide habitats for deep-sea communities.
Fjords that are separated from the open ocean by a shallow
sill are more influenced by local processes, as advection from
outside the fjord is reduced. Northern Norwegian fjords can
be highly affected by freshwater inflow from either glacial or
river discharges and snow melt, causing periods of partial
coverage of sea ice. Many northern Norwegian fjords, however,
are characterized by weak stratification and are also often
influenced by Atlantic water masses (Eilertsen et al., 1981a;

Reigstad and Wassmann, 1996) allowing them to remain mostly
ice free. Due to their unique properties and often easy accessibility
by small vessels, fjords provide excellent long-term sites to
study seasonality in community composition and population
structure of marine fauna. Most studies on fjord populations
have, however, focused on either only single seasons or on
specific groups or species, such as Calanus spp., or krill (e.g.,
Matthews et al., 1978; Bagoien et al., 2000; Niehoff and Hirche,
2005; Skreslet et al., 2015), and there are surprisingly few
studies describing the seasonal variability in the zooplankton
communities of Norwegian fjords or sub-Arctic fjords elsewhere.

The pelagic ecosystem of Balsfjord is one of the best studied
among northern Norwegian fjords (Hopkins et al., 1989) mostly
due to numerous studies conducted there in the 1980s (e.g.,
Eilertsen et al., 1981a; Falk-Petersen and Hopkins, 1981; Tande
and Hopkins, 1981; Hopkins et al., 1984). Although located above
the Arctic Circle, Balsfjord is not influenced by Arctic water
masses and can be regarded as a sub-Arctic fjord. However
Balsfjord is one of the coldest fjords in northern Norway due
to the presence of a sill at the mouth of the fjord that limits
the exchange of deep water (Oug and Høisœter, 2000). Since
the 1990’s, seasonal studies of zooplankton in this region have
been limited (Wexels Riser et al., 2010; Svensen et al., 2018;
Barth-Jensen et al., 2020; Trudnowska et al., 2020; Ershova et al.,
In revision). The mesozooplankton community in Balsfjord has
been defined as poor in diversity but high in biomass (Hopkins,
1981; Hopkins et al., 1989). It was found to be dominated by
copepods in terms of species numbers and abundance (Hopkins,
1981), but euphausiids can also be abundant, forming large sound
scattering layers (Hopkins et al., 1978) and play an important
role in the vertical carbon flux (Wexels Riser et al., 2010).
However, despite being a relatively well studied fjord system,
seasonal zooplankton investigations in Balsfjord, as elsewhere,
have been significantly biased toward a few organisms that
are easily identified, i.e., large copepods and euphausiids. For
example, the seasonal variability in the population structure, sex-
ratio and gonad maturation, body weight, carbon and nitrogen
content, and enzyme activities have been well studied for Calanus
finmarchicus (Tande and Hopkins, 1981; Tande and Slagstad,
1982; Tande, 1982; Tande and Gronvik, 1983) and Metridia
longa (Tande and Gronvik, 1983; Grønvik and Hopkins, 1984;
Hopkins et al., 1984; Båmstedt et al., 1985), as have the seasonal
changes in lipid composition (Falk-Petersen, 1981; Sargent and
Falk-Petersen, 1981; Falk-Petersen et al., 1982; Falk-Petersen,
1985) and population dynamics (Falk-Petersen and Hopkins,
1981) in euphausiids in Balsfjord. However, only a few studies
have focused on other parts of the zooplankton community
in Balsfjord, such as population dynamics and overwintering
strategies in small copepod species (Norrbin et al., 1990; Barthel
et al., 1995; Svensen et al., 2018; Barth-Jensen et al., 2020), or
the role of zooplankton in the vertical carbon flux (Reigstad and
Wassmann, 1996; Pasternak et al., 2000). Even less is known
about the meroplankton community (Falk-Petersen, 1982), as
the benthic community, and especially their larval stages, are
generally much less studied (Oug, 1977; Michelsen et al., 2017).

One challenge of working with mesozooplankton is
the complexity of accurate identification to species level.
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Zooplankton species identification is time consuming and
requires specialist taxonomic expertise (Pan et al., 2008). In
addition, the presence of cryptic species, and difficulties to
morphologically identify even the most common copepod
species complexes, such as Calanus or Pseudocalanus (Gabrielsen
et al., 2012; Choquet, 2017; Choquet et al., 2017, 2018), severely
limit our ability to document zooplankton biodiversity or
identify species-specific life history strategies. For example,
recent advances using molecular tools have revealed that
the Calanus communities in Northern Norwegian fjords are
not, as previously assumed, largely to exclusively dominated
by C. finmarchicus (Choquet et al., 2017) but by a mix of
C. finmarchicus and Calanus glacialis, demonstrating our lack of
understanding of the Calanus species complex in this region. This
also raises the question in how far previous studies on population
structure and reproductive strategies of C. finmarchicus in
Balsfjord (and elsewhere) (Tande and Hopkins, 1981; Tande
and Slagstad, 1982; Tande, 1982; Tande and Gronvik, 1983) are
biased by the undetected presence of other Calanus species in the
fjord. Morphological species identification, of meroplankton in
particular is almost impossible due to the small size and lack of
species-specific morphological differences between many larval
and juvenile stages. Meroplanktonic organisms are therefore
often only identified to phylum and little is known about
species-, or even family-, specific seasonal variability within the
meroplankton community (Michelsen et al., 2017).

Over the last decades, advances in high-throughput DNA
sequencing technology have improved our ability to identify
the “hidden” diversity in plankton communities (Lindeque
et al., 2013). Metabarcoding allows for a large-scale taxonomic
identification of community samples by analysis of one
or more barcode regions (Lindeque et al., 2013; Bucklin
et al., 2016). Barcoded sequences are grouped in molecular
operational taxonomic units (MOTU) and can be identified
to the species level when compared to sequences stored
in genetic libraries. Metabarcoding has the advantage of
being faster than sorting samples under the microscope
and is rapidly becoming more cost-effective compared to
traditional morphological approaches. It can provide more
detailed assessment of species diversity (Lindeque et al., 2013;
Gran-Stadniczeñko et al., 2019), including groups that do
not retain their morphological features in preservatives or
lack them altogether, like most larval forms. Although the
quantitative value of metabarcoding is still disputed (Bucklin
et al., 2016), protocols are emerging that allow to use the
numbers of sequence reads as a semi-quantitative proxy of
organism’s biomass (Ershova et al., In revision). This semi-
quantitative approach is particularly useful for seasonal studies,
allowing to document the succession and seasonal changes
in the contribution of different species of both holo- and
meroplankton. However, metabarcoding cannot provide details
on the developmental stage composition of a population, or
the size composition within a zooplankton community. Thus,
it appears essential to combine traditional microscopic analysis
with metabarcoding to understand the variability in species
diversity and zooplankton community structure in relation to
seasonal changes in hydrography.

Here we used the combination of both approaches to (1)
provide a complete species zooplankton inventory, (2) describe
the seasonal variability in zooplankton community structure in
relation to seasonal changes in hydrography and the availability of
microalgae, and (3) described the population dynamics of sibling
species of common copepods species that are difficult to identify
based on morphology alone (i.e., Calanus spp. and Pseudocalanus
spp.) in Ramfjord, a side arm of Balsfjord (Figure 1). A sill at
30 m at Balsfjord mouth separates the Balsfjord system from
the open sea limiting the deep-water exchange and enabling
us to observe seasonal patterns in the zooplankton community
relatively undisturbed by exchange of water and organisms
between the Balsfjord system and the open sea.

MATERIALS AND METHODS

Study Area
The study was conducted in Ramfjord (Figure 1), northern
Norway, a 13 km-long and 1 km-wide fjord, which consists of
two basins. At their deepest, the innermost and the outermost
basins are 50 and 130 m deep, respectively. The fjord can be
partly ice-covered as the inner part of the fjord is heavily affected
by freshwater inflow between October and April. The sampling
station (125 m water depth; location 69◦31′49.9N, 19◦02′11.9E)
was located close to the deepest point of the outer basin, which
was ice-free for the entire sampling period.

Field Sampling
Hydrography
Monthly sampling was conducted between November 2018
and February 2020 (Table 1) on board of R/V Hyas. Vertical
temperature and salinity profiles were measured during each
sampling event with a conductivity-temperature-depth (CTD)
profiler (CTD SBE 19plus). In addition, temperature, salinity and
in situ chlorophyll fluorescence (relative values not comparable
with fluorescence value from other studies) were measured
continuously at hourly intervals from 18th March 2019 to 11th
June 2020 from a moored underwater observatory (69◦32.005′N,
19◦02.904′E,115 m water depth) which included a CTD (Seabird
Electronics SBE 16) at 18 m depth and 10 temperature loggers
(SBE 65) at 10–15 m intervals between 17 and 107 m water depth
along the mooring cable.

Chlorophyll a Concentration and Phytoplankton
Community
Chlorophyll a (Chl a) concentration was measured at 13 sampling
events (Table 1, note missing data in August, September 2019 and
February 2020) from water samples taken with a 5 L Niskin bottle
at 5 and 30 m. About 250 mL triplicate samples were filtered
onto GF/F filters (Whatman plc, Maidstone, United Kingdom)
in the dark and frozen at –20◦C until processing. Chl a was
extracted in 96% Ethanol for about 24 h at 4◦C. The extracts
were measured on a Turner Trilogy AU-10 fluorometer (Turner
Designs, 2019) before and after acidification with 5% HCl. Chl
a and phaeophytin concentrations were calculated based on
calibrations done with a Chl a standard (Sigma S6144).
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FIGURE 1 | Map of study area. Red dot marks the main study site at the entrance of Ramfjord.

TABLE 1 | Overview of sampling date, method used and data available for each sampling point.

Date Net meshsize (µm) Taxonomy Metabarcoding run Extraction kit Chl a conc. Algae taxonomy CTD

18.11.2018 64 x x E.Z.N.A. Mollusc x NA x

11.12.2018 64 x x E.Z.N.A. Mollusc x X x

09.01.2019 64 NA x E.Z.N.A. Mollusc x NA x

06.02.2019 64 x x E.Z.N.A. Mollusc x X x

13.03.2019 64 x x E.Z.N.A. Mollusc x X x

01.04.2019 180 x x E.Z.N.A. Mollusc x X x

14.04.2019 180 x NA E.Z.N.A. Mollusc x X NA

14.05.2019 180 x x E.Z.N.A. Mollusc x NA x

13.06.2019 180 x x E.Z.N.A. Mollusc x X x

20.08.2019 180 x x E.Z.N.A. Mollusc NA NA x

03.09.2019 180 x x E.Z.N.A. Mollusc NA NA x

25.09.2019 180 x x E.Z.N.A. Mollusc x X x

14.10.2019 180 X x PowerSoil x X x

14.11.2019 180 X x PowerSoil x NA x

03.12.2019 180 X x PowerSoil x NA x

04.02.2020 180 X x PowerSoil NA X x

x indicate that data are available, whiles NA indicate that the data are not available.

Nine phytoplankton samples (Table 1) were taken with a
phytoplankton net (KC Denmark) with 10 µm mesh size from 35
to 0 m depth. The samples were fixed in 2% (final concentration)
neutral Lugol and stored in a dark borosilicate glass bottle until
counting. Phytoplankton taxa were identified in a 2 mL well plate
using an inverted microscope (Zeiss Primovert, Carl Zeiss AG,
Germany) and taxa were identified using Throndsen et al. (2007).

Zooplankton Sampling
A WP2 net (Hydro-bios, Kiel, Germany) with a closing
mechanism and an opening of 0.25 m2 was used to sample
zooplankton. Between November 2018 and March 2019, a net
with a mesh size of 64 µm was used and from April 2019 on
the mesh size was changed to 180 µm. Three net hauls were
taken at each of the 15 sampling events (Table 1). One sample
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was taken from 115 to 50 m and one from 50 to 0 m. Both
were preserved in 4% formaldehyde-in-seawater solution. These
samples were used to analyze the community composition based
on morphology. The third tow was taken from 115 to 0 m and
immediately preserved in 96% ethanol. Every net haul was taken
with a towing speed ranging between 0.4 and 0.5 m s−1.

Zooplankton Sample Analyses
Morphological Mesozooplankton Community
Analysis
For each formalin-preserved sample, the community
composition was determined under a Zeiss Discovery V20
stereo microscope (Zeiss, Oberkochen, Germany). First, large
(>5 mm) and conspicuous organisms were picked out from
the entire sample using fine forceps, identified and counted.
Then, the remaining sample was diluted to a known volume
and 5 ml subsamples were taken with an automatic pipette with
the pipette tip cut at 5 mm diameter to allow free collection of
mesozooplankton. The number of subsamples were determined
to count at least 100 Calanus spp. copepodites which usually
corresponded to more than 100 counted individuals of the
most common genera in the same sample (Oithona similis,
Microcalanus pusillus, Pseudocalanus spp., Acartia longiremis).
Copepods were identified to the lowest taxonomic level possible
based on morphological traits. The developmental stages
were determined for Calanus spp. individuals. Non-copepods
were identified to phylum. Abundance (individuals m−2) was
estimated by dividing the number of species per sample with the
mouth opening area assuming 100% net filtration efficiency.

For further analyses, the abundance from the two depth layers
was combined to one depth integrated abundance (115–0 m).

The copepods were classified into two groups, according
to their adult prosome length, with copepods with an adult
size < 1.5 mm being classified as “small copepods” while the rest
were classified as “large copepods” (Table 2).

Dry Weight and Biomass
After being analyzed, each sample was split in two parts using
a Motoda box splitter. One half was archived. The other half
was used to determine the biomass in terms of dry weight (DW)
by removing excess water using a 180 µm sieve, washing the
sample with fresh water, drying it for at least 24 h at 50◦C
and then weighing it with a microbalance (Sartorius BP 615;
precision 0.1 mg).

Metabarcoding
The ethanol-preserved sample was split into two parts using
Motoda box splitter. One split was homogenized for 30–60 s
using a 1000 W blender and allowed to settle for 3–4 h. Excess
ethanol was removed by centrifugation and three replicates
(±0.3 g) of the homogenized sample were transferred to 2 ml
microcentrifuge tubes. DNA was extracted from each replicate
using the E.Z.N.A. Mollusc DNA Kit (Omega-Pro) (samples
from November 2018 to September 2019) or the PowerSoil
DNA Extraction Kit (Qiagen, October 2019–February 2020)
(Table 1) following the manufacturer’s protocols. Leray-XT
primers containing sample tags (Wangensteen et al., 2018),

including the forward primer mlCOIintF-XT 5′-
GGWACWRGWTGRACWITITAYCCYCC-3′ and reverse
primer jgHCO2198 5′-TAIACYTCIGGRTGICCRAARAAYCA-
3′ (Geller et al., 2013) were used to amplify a 313 base pair (b.p.)
region of the mitochondrial cytochrome c oxidase (COI) gene.
The PCR protocol was 10 min at 95◦C, followed by 35 cycles
of: 94◦C for 1 min, 45◦C for 1 min, and 72◦C for 1 min, and a
final extension of 5 min at 72◦C. The tagged PCR products were
pooled into a single library and cleaned using Minelute PCR
purification columns1. The Illumina library was prepared from
the DNA pool using the NextFlex PCR-free library preparation
kit (Perkin-Elmer), quantified using the NEBNext Library Quant
Kit for Illumina (New England BioLabs) and was sequenced on
an Illumina MiSeq using a V3 2× 250 bp kit.

Bioinformatics
Initial quality filtering of the sequencing data was conducted
using OBITools v1.01.22 (Boyer et al., 2016). Illuminapairedend
was used for aligning paired end sequences and filtering out
those with an alignment score < 40. ngsfilter was used for
demultiplexing and removal of primer sequences. Reads with
a length of 299–300 b.p. were selected using obigrep and
dereplicated using obiuniq. Chimeric sequences were then
removed using the uchime_denovo algorithm (Edgar et al.,
2011) in vsearch v1.10.1 (Rognes et al., 2016). Step-by-step
clustering was performed in SWARM 2.1.13 (Mahé et al.,
2015) using a distance value of d = 13 (Antich et al., 2021)
to cluster individual sequences into Molecular Operational
Taxonomic Units (MOTUs). After removing singletons (MOTUs
with abundance of 1 read), taxonomic assignment of the
representative sequence of remaining MOTUs was then
performed using ecotag (Boyer et al., 2016) against DUFA-
Leray v.2020-06-10, a custom reference database (publicly
available from github.com/uit-metabarcoding/DUFA), which
includes Leray fragment sequences extracted from BOLD
and Genbank, completed with in-house generated sequences.
Putative pseudogene sequences in the resulting dataset were then
removed using LULU (Frøslev et al., 2017). MOTUs assigned to
Prokaryotes and clearly non-planktonic organisms (e.g., insects,
mammals) were removed, and a second taxonomy check of the
remaining MOTUs was conducted using BOLD (Barcode of
Life Database2). A species level identification was assigned with
a minimum of 97% similarity. Finally, only MOTU’s observed
in a minimum of two sample replicates and accounting for
at least 0.01% of the total reads of any sample were kept in
the final dataset.

Diversity Index
Specific richness was defined as the number of taxa identified
by metabarcoding. The specific richness was calculated using
the entire metabarcoding data set (total specific richness) as
well as using only the data set excluding phytoplankton and
fish species (zooplankton specific richness) and the data set
including only the copepod species (copepod specific richness).

1www.qiagen.com
2www.boldsystems.org
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TABLE 2 | List of all species identified using metabarcoding, how they were categorized, and if or to what level they were identified in the visual inspection.

Phylum/Subphylum Class/Order Species Category Visually identified as

Bryozoa Gymnolaemata Membranipora membranacea Meroplankton Bryozoa larvae

Chaetognatha Sagittoidea Eukrohnia hamata Non-copepod holoplankton Eukrohnia hamata

Chaetognatha Sagittoidea Parasagitta elegans Non-copepod holoplankton Parasagitta elegans

Chordata Ascidiacea Ascidiacea indet Meroplankton Ascidia larvae

Chordata Ascidiacea Ascidiella aspersa Meroplankton Ascidia larvae

Cnidaria Anthozoa Actiniaria indet. Meroplankton Not observed

Cnidaria Anthozoa Urticina felina Meroplankton Not observed

Cnidaria Hydrozoa Clytia hemisphaerica Non-copepod holoplankton Not observed

Cnidaria Hydrozoa Corymorpha sp Non-copepod holoplankton Not observed

Cnidaria Hydrozoa Euphysa aurata Non-copepod holoplankton Not observed

Cnidaria Hydrozoa Lizzia blondina Non-copepod holoplankton Not observed

Cnidaria Hydrozoa Melicertum octocostatum Non-copepod holoplankton Not observed

Cnidaria Hydrozoa Mitrocomella polydiademata Non-copepod holoplankton Not observed

Cnidaria Hydrozoa Nanomia cara Non-copepod holoplankton Not observed

Cnidaria Hydrozoa Obelia geniculata Non-copepod holoplankton Not observed

Cnidaria Hydrozoa Obelia longissima Non-copepod holoplankton Not observed

Cnidaria Hydrozoa Plotocnide borealis Non-copepod holoplankton Not observed

Cnidaria Hydrozoa Rathkea octopunctata Non-copepod holoplankton Not observed

Cnidaria Scyphozoa Aurelia aurita Non-copepod holoplankton Not observed

Cnidaria Scyphozoa Cyanea sp. RUYNKAR Non-copepod holoplankton Not observed

Crustacea Amphipoda Themisto abyssorum Non-copepod holoplankton Not observed

Crustacea Cirripedia Akentrogonida indet Meroplankton Cirripedia nauplii

Crustacea Cirripedia Balanus balanus Meroplankton Cirripedia nauplii

Crustacea Cirripedia Balanus sp. Meroplankton Cirripedia nauplii

Crustacea Cirripedia Semibalanus balanoides Meroplankton Cirripedia nauplii

Crustacea Cirripedia Verruca stroemia Meroplankton Cirripedia nauplii

Crustacea Cladocera Evadne nordmanni Non-copepod holoplankton Not observed

Crustacea Cladocera Podon leuckartii Non-copepod holoplankton Podon leuckartii

Crustacea Copepoda Acartia longiremis Small copepod Acartia longiremis

Crustacea Copepoda Calanus finmarchicus Large copepod Calanus spp.

Crustacea Copepoda Calanus glacialis Large copepod Calanus spp.

Crustacea Copepoda Calanus helgolandicus Large copepod Not observed

Crustacea Copepoda Calanus hyperboreus Large copepod Calanus hyperboreus

Crustacea Copepoda Candacia armata Small copepod Not observed

Crustacea Copepoda Centropages hamatus Small copepod Not observed

Crustacea Copepoda Centropages typicus Small copepod Centropages typicus

Crustacea Copepoda Cyclopoida indet. Small copepod Cyclopoida indet.

Crustacea Copepoda Diaixis hibernica Small copepod Not observed

Crustacea Copepoda Harpacticoida indet. Small copepod Harpacticoida indet.

Crustacea Copepoda Longipedia coronata Small copepod Not observed

Crustacea Copepoda Longipedia sp. Small copepod Not observed

Crustacea Copepoda Metridia longa Large copepod Metridia spp.

Crustacea Copepoda Metridia lucens Large copepod Metridia spp.

Crustacea Copepoda Microcalanus pusillus Small copepod Microcalanus pusillus

Crustacea Copepoda Microsetella norvegica Small copepod Microsetella norvegica

Crustacea Copepoda Oithona similis Small copepod Oithona similis

Crustacea Copepoda Triconia borealis Small copepod Oncaea borealis

Crustacea Copepoda Paracalanus parvus Small copepod Not observed

Crustacea Copepoda Paraeuchaeta norvegica Large copepod Paraeuchaeta norvegica

Crustacea Copepoda Pseudocalanus acuspes Small copepod Pseudocalanus spp.

Crustacea Copepoda Pseudocalanus elongatus Small copepod Pseudocalanus spp.

Crustacea Copepoda Pseudocalanus mimus Small copepod Pseudocalanus spp.

Crustacea Copepoda Pseudocalanus minutus Small copepod Pseudocalanus spp.

Crustacea Copepoda Pseudocalanus moultoni Small copepod Pseudocalanus spp.

(Continued)
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TABLE 2 | Continued

Phylum/Subphylum Class/Order Species Category Visually identified as

Crustacea Copepoda Temora longicornis Small copepod Temora longicornis

Crustacea Decapoda Meroplankton Decapod larvae

Crustacea Decapoda Eualus pusiolus Meroplankton Decapod larvae

Crustacea Decapoda Hyas coarctatus Meroplankton Decapod larvae

Crustacea Decapoda Munida sarsi Meroplankton Decapod larvae

Crustacea Decapoda Pagurus pubescens Meroplankton Decapod larvae

Crustacea Decapoda Pandalus borealis Meroplankton Decapod larvae

Crustacea Decapoda Pandalus sp. Meroplankton Decapod larvae

Crustacea Decapoda Sabinea septemcarinata Meroplankton Decapod larvae

Crustacea Euphausiacea Meganyctiphanes norvegica Non-copepod holoplankton Euphausiacea

Crustacea Euphausiacea Thysanoessa inermis Non-copepod holoplankton Euphausiacea

Crustacea Euphausiacea Thysanoessa raschii Non-copepod holoplankton Euphausiacea

Crustacea Isopoda Non-copepod holoplankton Isopoda indet.

Ctenophora Ctenophora Ctenophora indet. Non-copepod holoplankton Not observed

Echinodermata Asteroidea Asterias rubens Meroplankton Echinoderm larvae

Echinodermata Asteroidea Ctenodiscus australis Meroplankton Echinoderm larvae

Echinodermata Asteroidea Solaster endeca Meroplankton Echinoderm larvae

Echinodermata Echinoidea Echinocardium cordatum Meroplankton Echinoderm larvae

Echinodermata Echinoidea Echinus esculentus Meroplankton Echinoderm larvae

Echinodermata Echinoidea Strongylocentrotus droebachiensis Meroplankton Echinoderm larvae

Echinodermata Echinoidea Strongylocentrotus pallidus Meroplankton Echinoderm larvae

Echinodermata Holothuroidea Cucumaria frondosa Meroplankton Echinoderm larvae

Echinodermata Holothuroidea Labidoplax buskii Meroplankton Echinoderm larvae

Echinodermata Holothuroidea Thyonidium drummondii Meroplankton Echinoderm larvae

Echinodermata Ophiuroidea Ophiocten affinis Meroplankton Echinoderm larvae

Echinodermata Ophiuroidea Ophiopholis aculeata Meroplankton Echinoderm larvae

Echinodermata Ophiuroidea Ophiura albida Meroplankton Echinoderm larvae

Echinodermata Ophiuroidea Ophiura robusta Meroplankton Echinoderm larvae

Mollusca Bivalvia Hiatella sp. Meroplankton Bivalve larvae

Mollusca Gastropoda Aporrhais pespelecani Meroplankton Gastropod larvae

Mollusca Gastropoda Eubranchus exiguus Meroplankton Gastropod larvae

Mollusca Gastropoda Gastropoda Meroplankton Gastropod larvae

Mollusca Gastropoda Lacuna vincta Meroplankton Gastropod larvae

Mollusca Gastropoda Limapontia capitata Meroplankton Gastropod larvae

Mollusca Gastropoda Microchlamylla gracilis Meroplankton Gastropod larvae

Mollusca Gastropoda Oenopota sp. Meroplankton Gastropod larvae

Mollusca Gastropoda Placida dendritica Meroplankton Gastropod larvae

Mollusca Gastropoda Velutina velutina Meroplankton Gastropod larvae

Mollusca Polyplacophora Tonicella marmorea Meroplankton Not observed

Nematoda Non-copepod holoplankton Not observed

Nemertea Malacobdella grossa Meroplankton Not observed

Nemertea Micrura varicolor Meroplankton Not observed

Platyhelminthes Non-copepod holoplankton Not observed

Polychaeta Amphinomida Paramphinome jeffreysii Neroplankton Polychaete larvae

Polychaeta Capitellida Capitella capitata Meroplankton Polychaete larvae

Polychaeta Capitellida Meroplankton Polychaete larvae

Polychaeta Eunicida indet. Meroplankton Polychaete larvae

Polychaeta Eunicida Dorvilleidae indet. Meroplankton Polychaete larvae

Polychaeta Eunicida Nothria conchylega CMC02 Meroplankton Polychaete larvae

Polychaeta Maldanidae Euclymene zonalis Meroplankton Polychaete larvae

Polychaeta Maldanidae Maldane sarsi Meroplankton Polychaete larvae

Polychaeta Orbiniidae Scoloplos armiger Meroplankton Polychaete larvae

Polychaeta Phyllodocida Meroplankton Polychaete larvae

(Continued)
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TABLE 2 | Continued

Phylum/Subphylum Class/Order Species Category Visually identified as

Polychaeta Phyllodocida Aglaophamus malmgreni Meroplankton Polychaete larvae

Polychaeta Phyllodocida Antinoella finmarchica Meroplankton Polychaete larvae

Polychaeta Phyllodocida Bylgides sarsi Meroplankton Polychaete larvae

Polychaeta Phyllodocida Eunoe oerstedi Meroplankton Polychaete larvae

Polychaeta Phyllodocida Gyptis mackiei Meroplankton Polychaete larvae

Polychaeta Phyllodocida Harmothoe sarsi Meroplankton Polychaete larvae

Polychaeta Phyllodocida Harmothoe sp. CMC01 Meroplankton Polychaete larvae

Polychaeta Phyllodocida Lepidonotus squamatus Meroplankton Polychaete larvae

Polychaeta Phyllodocida Nereimyra punctata Meroplankton Polychaete larvae

Polychaeta Phyllodocida Pholoe baltica Meroplankton Polychaete larvae

Polychaeta Phyllodocida Phyllodoce grenlandica Meroplankton Polychaete larvae

Polychaeta Phyllodocida Phyllodoce sp. Meroplankton Polychaete larvae

Polychaeta Phyllodocida Tomopteris sp. Non-copepod holoplankton Tomopteris sp.

Polychaeta Sabellida Hydroides elegans Meroplankton Polychaete larvae

Polychaeta Sabellida Meroplankton Polychaete larvae

Polychaeta Scalibregmatidae Scalibregma inflatum Meroplankton Polychaete larvae

Polychaeta Spionida Spionidae indet. Meroplankton Polychaete larvae

Polychaeta Spionida Meroplankton Polychaete larvae

Polychaeta Spionida Laonice cirrata Meroplankton Polychaete larvae

Polychaeta Spionida Scolelepis sp. Meroplankton Polychaete larvae

Polychaeta Spionida Spio sp. Meroplankton Polychaete larvae

Polychaeta Spionida Spiophanes kroyeri Meroplankton Polychaete larvae

Polychaeta Spionida Spiophanes sp. Meroplankton Polychaete larvae

Polychaeta Terebellida Ampharete finmarchica Meroplankton Polychaete larvae

Polychaeta Terebellida Amphitrite cirrata Meroplankton Polychaete larvae

Polychaeta Terebellida Chaetozone setosa Meroplankton Polychaete larvae

Polychaeta Terebellida Flabelligera affinis Meroplankton Polychaete larvae

Polychaeta Terebellida Lanassa venusta Meroplankton Polychaete larvae

Polychaeta Terebellida Melinna elisabethae Meroplankton Polychaete larvae

Polychaeta Terebellida Neoamphitrite grayi Meroplankton Polychaete larvae

Polychaeta Terebellida Pectinaria koreni Meroplankton Polychaete larvae

Polychaeta Terebellida Pista maculata Meroplankton Polychaete larvae

Polychaeta Terebellida Polycirrus medusa Meroplankton Polychaete larvae

Polychaeta Terebellida Polycirrus sp. Meroplankton Polychaete larvae

Polychaeta Terebellida Terebellidae indet. Meroplankton Polychaete larvae

Polychaeta Terebellida Thelepus cincinnatus Meroplankton Polychaete larvae

Polychaeta Terebellida Meroplankton Polychaete larvae

Rotifera Ploima Non-copepod holoplankton Not observed

Pisces Gadiformes Melanogrammus aeglefinus Fish Not observed

Pisces Pleuronectiformes Hippoglossoides platessoides Fish Not observed

Pisces Pleuronectiformes Microstomus kitt Fish Not observed

Chlorophyta Mamiellales Bathycoccus prasinos Phytoplankton NA

Haptophyta Prymnesiophyceae Phaeocystis spp. Phytoplankton NA

Ochrophyta Bacillariophyceae Chaetoceros spp. Phytoplankton NA

Ochrophyta Bacillariophyceae Phytoplankton NA

Pyrrophycophyta Dinophyceae indet. Phytoplankton NA

Pyrrophycophyta Phytoplankton NA

The iNEXT R package (Hsieh et al., 2016) was used to ensure
that the richness saturation plateau was reached for all samples
(Supplementary Figure 3).

Data Analysis
We used the metabarcoding data as a semi-quantitative
estimate of relative biomass of zooplankton taxa
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(Ershova et al., In revision) by multiplying the total zooplankton
biomass with the proportion of the sequence reads for
each species for each corresponding month to calculate
biomass-weighted sequence reads (BWSR, mg DW m−2).

Multivariate analyses of the community composition were
performed on morphological identification data (abundance).
An estimation of the abundance of C. finmarchicus, C. glacialis,
C. helgolandicus, P. acuspes, P. elongatus, P. minutus, and
P. moultoni was calculated based on the relative composition
obtained with metabarcoding, by multiplying the genus
abundance by the proportion of the targeted species, and add to
the data set used for the multivariate analysis. As metabarcoding
data were missing in mid-April, the abundances estimation at
this sampling point was estimated as the average of estimated
abundance over the entire period. Abundance data were fourth-
root transformed in order to reduce the impact of super abundant
and rare species. Copepod nauplii, Microsetella norvegica and
rare copepods species were excluded from the analyses since
abundance estimates of these taxa were likely biased due to the
change of the net mesh size over the study period. Chi-squared
distances were calculated and used to perform hierarchical
cluster analysis.

To elucidate the relationships between zooplankton
community structure across seasons and environmental
parameters, a Canonical Correspondence Analysis (CCA) was
performed using the previously described data set. Explanatory
variables included average water column temperature salinity
and algal fluorescence obtained from the CTD profile as well as
the Chl a concentrations from water samples. The significance
of the overall model and individual terms was calculated using
permutation tests [ANOVA function in the R package vegan;
Oksanen et al., 2020)] at a significance level of p < 0.05 and only
significant constraining factors were retained. Missing CTD data
in mid-April were assumed to be similar to the ones obtained
14 days before in early April. Missing measurements of Chl a
concentrations in August, early September and February 2020
were replaced by the average Chl a concentration over the study
period. All analyses were preformed using R (version 4.0.1) (R
Core Team, 2020) and the package vegan (Oksanen et al., 2020).

RESULTS

Hydrography
The water column was cold, and well mixed from January to mid-
May. The lowest temperatures were observed between March
and May (0–2◦C) (Figure 2A). The surface started to warm in
mid-May, and from mid-May to August, the water column was
stratified with warm water (5–10◦C) in the uppermost 40 m
and colder water (around 4◦C) below 70 m. By September, the
entire water column had warmed to >6◦C and highest surface
temperatures (12◦C) were observed in early September. The
water column started to cool down in November, and for the
rest of the year the water was well mixed. From mid-December
the water temperature was between 2 and 4◦C (Figure 2A).
Salinity varied between 32 and 33.5 throughout the year in most
samples (Figure 2B). A relative fresh surface layer (salinity < 25)

was observed starting in mid-May, coinciding with the onset of
snowmelt on land resulting in increased freshwater runoff.

Chlorophyll and Phytoplankton
Community
In situ concentrations of Chl a were low from November to
March (Figure 2C). The abundance of microalgae was low,
and the community consisted mainly of pennate diatoms and
dinoflagellates during the polar night and in February 2019,
while flagellates dominated in February 2020 (Figure 2D). Chl a
concentration and fluorescence increased strongly in early April
(10.2 mg m−3 at 5 m) and the algae community was dominated by
centric diatoms (mainly Chaetoceros socialis; Figure 2D). By mid-
April, the prymnesiophyte Phaeocystis pouchetii dominated, but
Chl a concentration and fluorescence were low. Fluorescence at
18 m depth peaked in early May (∼20 mg m−3), coinciding with
the onset of stratification, and in July (∼50 mg m−3). However,
no Chl a and phytoplankton data are available in those periods.
In June, flagellates, mainly Chrysochromulina sp. dominated
the phytoplankton community, and the fluorescence and Chl a
concentrations (3 mg m−3) were relatively low (Figures 2C,D).
Very high Chl a concentrations at the end of September (22 mg
m−3) and in October (29 mg m−3) at both depth, indicate
the occurrence of an intense autumn phytoplankton bloom
dominated by centric diatoms (Chaetoceros sp.). Interestingly,
this signal was not caught by the fluorescence sensors on
the mooring in 18 m depth. From late November 2019 the
fluorescence sensor did not provide reliable readings due to
biofouling and in situ Chl a concentrations were low.

Seasonal Variability in the Zooplankton
Community
Mesozooplankton Diversity
Thirty-five unique taxa were identified morphologically over the
study period. Of these, 25 belonged to holoplankton, including 13
species of copepods: nine species or genera of small copepods and
four species or genera of large copepods (Table 2). Ten taxonomic
groups (class or phylum) of meroplankton were identified. The
highest specific richness was observed in late April, and the
lowest in February (2020). Only five copepod taxa were present
throughout the entire study (i.e., Calanus spp., Pseudocalanus
spp., Microcalanus pusillus, Oithona similis, Acartia longiremis),
while all other taxa were absent during some months.

Metabarcoding revealed a total of 490 MOTUs, which
corresponded to 154 unique taxa (Table 2). Hundred and
fourteen of these were identified to species level, 17 to genus,
and 22 to family or broader. Of the 154 unique identified taxa,
121 were present in more than four samples (Supplementary
Table 1). Twenty-six species were present during every month,
but only two of them (Pseudocalanus acuspes and M. pusillus)
represented more than 1% of the sequence reads every month.
Seven species represented at least 1% of the sequence reads during
most of the months. These included A. longiremis, Calanus
finmarchicus, C. glacialis, O. similis, Pseudocalanus moultoni,
Nanomia cara, and Parasagitta elegans.
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FIGURE 2 | Seasonal variation (November 2018–January 2020) in temperature (A) and salinity (B) based on CTD profiles taken at each sampling event (dates
indicated by white vertical lines), fluorescence at 18 m and Chl a concentration at 5 and 30 m (C), and taxonomic composition of phytoplankton community (D). No
CTD data available in (A,B) from 15 June to 18 August. Gap in (A) is filled with temperature measurements from mooring located close to the sampling site (with
horizontal lines indicating depth of sensors along the mooring line). Fluorescence data available starting 15 March 2019; no fluorescence data after mid November
2019 due to biofouling of sensor. Seasonal changes in light climate is indicated in (C) with dark shaded areas corresponding to number of hours of darkness each
day.

Of the 154 identified taxa, 36% (55) belonged to the
holoplankton, while 58% (90) are known as benthic species and
were therefore categorized as meroplankton. The remaining nine
belong to fish and phytoplankton groups. Polychaeta presented
the highest species richness with 46 taxa identified. Copepods
were second in terms of number of taxa with 27 taxa identified
over the study period (Table 2). Cnidaria and echinodermata
were well represented as well, with respectively 15 and 14 taxa
identified (Table 2). However, half of the identified cnidarians
were present during only 1–4 months. Other groups such
as bivalvia, amphipoda, ctenophora or chitonida were only
detected as single taxa, generally identified at taxonomic levels
above species (Table 2). Metabarcoding indicated that species
richness was highest between December 2018 and February
2019 with a maximum number of species (110) in February
(Table 3). It is noteworthy that during this period, sampling
was conducted using a smaller mesh size. Between April and
late September, the species richness varied between 80 and 104.
Species richness was lowest between October 2019 and February
2020, when a different DNA extraction kit was used (Table 1 and
Supplementary Figure 2B), with around 50 taxa identified, while
between 80 and 110 taxa were identified in the other months

(Table 3). The use of a different DNA extraction kit reduced
the diversity that we were able to identified (Supplementary
Figure 2), However, it did not impacted the diversity of
Copepoda taxa that we were able to detect (Supplementary
Figure 2B). A maximum Copepoda species richness of 26–28 was
reached between November 2018 and February 2019 (Table 3)
when we used the smallest net mesh size (Table 1). However,
it reached the same number in September (Table 3) when the
largest net mesh size was used (Table 1).

Mesozooplankton Biomass, Abundance, and
Community Structure
Total mesozooplankton abundance and biomass in Ramfjord
varied between 1.2 × 104 to 23 × 104 ind m−2 and 174 to
2609 mg DW m−2, respectively. Lowest abundance and biomass
were measured between December and March during both winter
seasons, while the highest values were recorded in summer/early
autumn between August and October (Figures 3A,B). The
mesozooplankton community was dominated in terms of
abundance and biomass by small copepods (adult size < 1.5 mm)
all year-round (Figures 3C,D). Small copepods represented up
to 97% of the community in terms of abundance and up to
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TABLE 3 | Species richness in Ramfjord based on metabarcoding analysis.

Date Total
species richness

Zooplankton
species richness

Copepod species
richness

18.11.2018 89 80 26

11.12.2018 108 99 27

09.01.2019 107 98 28

06.02.2019 109 100 26

13.03.2019 94 85 23

01.04.2019 103 94 24

14.04.2019 NA NA NA

14.05.2019 92 83 24

13.06.2019 84 75 24

20.08.2019 79 90 21

03.09.2019 90 81 26

25.09.2019 100 91 25

14.10.2019 52 43 22

14.11.2019 57 48 22

03.12.2019 55 46 20

04.02.2020 47 38 19

The total species richness included all species or taxa identified. For the
zooplankton species richness phytoplankton and fish species were removed.

94% in terms of sequence read (Figures 3C,D). Non-copepod
holoplankton (Figure 3 and Table 2), consisting mainly of
chaetognaths and krill, dominated in terms of sequence reads
in November and December 2018, although their abundance
was negligible (<1%). In late April, a high number of krill eggs
was observed (64920 ind m−2). The estimated BWSR of non-
copepods varied between 0.44 mg DW m−2 in November 2019
and 690.96 mg DW m−2 in late September, which accounts for
<0.1% to 55% of the total biomass (Figure 3D).

Large copepods (>2 mm at adult stage) were present year
around, with highest abundance observed between April and
June (Figure 3C). In terms of abundance, they represented a
maximum of 27% of the zooplankton community in May, but
only 2% in early September (Figure 3C). High abundances
of copepod nauplii were recorded in February and March,
accounting for up to 49% of the total abundance (Figure 3C).
The highest BWSR of large copepods was observed in June
(253 mg DW m−2), and their contribution to the sequence
reads varied between 1 and 25%, in November 2019 and June,
respectively (Figure 3D).

Small copepods
The lowest proportion of small copepods, in terms of abundance,
was observed in late April when only 20% of the community
consisted of small copepods, while they represented between
50 and 90% of the community during the rest of the year
(Figure 3C). The BWSR of small copepods varied between
0.35 mg DW m−2 in early April and 1359 mg DW m−2 in
late September. The small copepods community had a relatively
high diversity with nine species identified morphologically
and 24 species detected using metabarcoding (Table 2).
Acartia longiremis, M. pusillus, O. similis and four species of
Pseudocalanus (P. acuspes, P. elongatus, P. minutus, P. moultoni)
were present in Ramfjord year-round (Supplementary Table 1).
These species represented more than 1% of all the sequence
reads, together with Paracalanus parvus and Temora longicornis.
We combined these species as the main representatives of the
small copepod community (Figure 4). Paracalanus parvus was
not observed visually, likely due to its morphological similarity
to Pseudocalanus spp. at juvenile stages (Table 2 and Figure 4).

The abundance of small copepods was relatively low between
November and May (<3.104 ind m2) (Figure 4). Only

FIGURE 3 | Seasonal changes in the total zooplankton biomass (A), total zooplankton abundance (B), proportions of main taxonomic groups based on
morphological analysis (C), and metabarcoding (D) in Ramfjord during November 2018–February 2020.
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FIGURE 4 | Seasonal changes in small copepod BWSR (mg DW m−2, left column) and abundance (individuals m−2, right column) in Ramfjord between
November 2018 and February 2020. The first row represents the relative proportion of the main small copepod species to the small copepod community remaining
rows represent the seasonal variation of the main small copepod species.

Microsetella norvegica had a peak in abundance during this
time, dominating the community in terms of abundance in
February and March 2019 with up to 39 × 103 ind m2.
However, the number of sequence reads of M. norvegica was

negligible (less than 1% of the total sequence reads) during the
entire study period.

From May, the abundance of small copepods increased and
reached its maximum in September (23 × 104 ind m−2).
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O. similis dominated the small copepod community throughout
most of the study period in terms of abundance, contributing up
to 65% and with a maximum abundance of 11 × 104 ind m−2

in September (Figure 4). In terms of sequence reads, O. similis
represented a low portion of the small copepod community, with
a maximum of 20% in November 2019 (Figure 4), and its BWSR
varied from 1 mg DW m−2 to 192 mg DW m−2.

Between November 2018 and January 2019, the small copepod
community as estimated by BWSR was represented by all the
main species depicted in Figure 4. The contribution of O. similis
and M. pusillus BWSR was slightly higher, contributing 24 and
27%, respectively, while the other species contributed 1–15%
to the small copepod BWSR (Figure 4). Between February and
August P. acuspes dominated the community in terms of BWSR
(up to 73%), which varied between 33 mg DW m−2 and 441 mg
DW m−2 (Figure 4). The rest of the BWSR was composed of
A. longiremis (between 5 and 41%) and M. pusillus (between
1.7 and 28%) (Figure 4). From late September to the end of
the study, copepods of the genus Pseudocalanus dominated the
small copepod community in terms of the BWSR (Figure 4).
P. minutus had the highest proportion of sequence reads, up to
35% in October, with a BWSR varying from 1.94 mg DW m−2

to 113 mg DW m−2. Pseudocalanus elongatus contributed least
to the Pseudocalanus biomass, representing only between 2 and
12% of the small copepod BWSR between late September and
December 2019 (Figure 4).

Meroplankton community
Eight groups of meroplankton, the six presented in Figure 3
plus Bryozoa and Decapoda, were identified during the
entire study period.

Meroplankton accounted for only 0.5–12% of the total
zooplankton abundance between November 2018 and
August 2019, and the abundance was negligible during the
study period except in April when Chl a concentrations
were high (Figure 3C). However, meroplankton BWSR
varied between 1.81 mg DW m−2 in late September
and 312 mg DW m−2 in March, which represented
respectively 3.1 and 46% of the BWSR. The highest
proportion of meroplankton, in terms of BWSR, was
observed in early April when it accounted for 86% of the
total BWSR (Figure 3C).

The composition of the meroplankton community estimated
by metabarcoding followed the overall trends provided by
morphological analysis, but with a higher taxonomic resolution.
Polychaeta larvae and juveniles were present year-round in
Ramfjord (Figure 5) and made up a high proportion of the
meroplankton community in terms of abundance, contributing
between 9% in October and 82% in December 2019 (Figure 5).
The highest abundance of polychaeta larvae was observed in
mid-April (4360 ind m−2) (Figure 5). They dominated the
meroplankton community in terms of BWSR between November
2018 and March 2019 and between October and December
2019 when they accounted for 14–80% of the meroplankton
BWSR (Figure 5). Cirripedia larvae dominated the meroplankton
community in terms of abundance and BWSR in April with
a peak in abundance (19 × 103 ind m−2) in mid-April

(Figure 5). In June, echinoderm larvae accounted for 89% of the
meroplankton abundance and 70% of the meroplankton BWSR
(Figure 5). Their maximum abundance, 8.2 × 103 ind m−2, was
also observed in June (Figure 5).

Juveniles bivalves dominated the meroplankton community
between November 2018 and February 2019 (23–68% of
meroplankton) (Figure 5), and between August and November
2019 (up to 70%; Figure 5), with a peak in abundance in August
(62 × 102 ind m−2). However, their BWSR was low or negligible
over the entire study period (Figure 5). Likewise, the BWSR of
gastropod larvae was low, never contributing more than 7% to
the meroplankton community (Figure 5). However, in terms of
abundance they represented up to 43% of the community in
February 2019 (Figure 5).

Calanus spp. species and stage composition
Based on morphological characteristics, only Calanus
hyperboreus copepodite stage III (CIII)-adults could be identified
with confidence and their abundance was overall very low
(maximum 80 ind. m−2 in May). We did not identify other
Calanus individuals to species morphologically and defined
them as Calanus spp. Abundance of Calanus spp. was relatively
low between November and early April (around 1000 ind.
m−2) and reached a maximum of 20 820 ind. m−2 in May
(Figure 6A). In March and April, adult stages dominated the
Calanus spp. population, with females contributing 77% in
March and 66% in early April (Figure 6B). In mid- April, males
were the dominating stage, representing 50% of the population
(Figure 6B). Young copepodite stages (CI, CII, and CIII) started
to appear in March, and were dominating the population in
May (Figure 6B). Older copepodite stages (CIV and CV) were
present in later winter (February–March), reappeared in higher
proportions in May and were dominating the population from
June on for the rest of the year (Figure 6B). CVs contributed up
to 93% of the population between June and October (Figure 6B).
A second peak in Calanus spp. abundance (10428 ind. m−2)
was observed in late September (Figure 6A). In October and
November, CIIIs were detected again, representing 20 and 40%
of the population, respectively (Figure 6B).

Metabarcoding detected the presence of four species of the
genus Calanus: C. hyperboreus, C. finmarchicus, C. glacialis, and
C. helgolandicus (Figure 6C). C. finmarchicus and C. glacialis
dominated the Calanus community in Ramfjord for most part of
the year, contributing equally in September, while C. finmarchicus
dominated in February and March, and from October to
December, and C. glacialis in January, and from April to June. In
contrast to the low abundance observed, C. hyperboreus BWSR
was relatively high between November 2018 and January 2019
and from April to August, when they represented between 0.3 and
64% of the Calanus sequence reads (Figure 6C). The contribution
of C. helgolandicus to the Calanus community was low year-
round (from 0 to 19%), with higher proportion observed during
autumn-winter months (between 0.1 and 19%) (Figure 6C).

Seasonality of zooplankton community in Ramfjord
Hierarchical cluster analysis of abundance data of the entire
zooplankton community, identified four main assemblages:
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FIGURE 5 | Seasonal changes in the meroplankton BWSR (mg DW m−2, left column) and abundance (individuals m−2, right column) in Ramfjord between
November 2018 and February 2020. The first row represents the relative proportions of the main meroplankton groups to the meroplankton community; the
remaining rows represent the seasonal variation of the main meroplankton groups.

spring bloom (SB), spring/summer (SS), Autumn/winter (AW),
and pre-spring bloom (PS) (Supplementary Figure 1).

The CCA models was significant (p < 0.05) with temperature
and fluorescence as significant constraining factors (p < 0.05),
while salinity and Chl a were insignificant. The resulting CCA
model for abundance explained 29% of the total inertia (variance)
in the abundance data, with 21% accounted for by the first
axis (Figure 7). The results of the CCA were consistent with
the cluster analysis, showing a clear separation of the samples
based on season. The two April samples formed their own

group (SB), being distinguished by the presence of cirripedia
nauplii, euphausiid larvae and decapod larvae (Figure 7), and
a high abundance of krill eggs (1333 ind m−2) The SB and
PSB assemblages were most distinct on the ordination, while
SS and AW grouped closer together (Figure 7). The SS group
was distinguished by relatively high fluorescence and water
temperatures (Figure 7), and a higher abundance of Calanus spp.
(Figure 7), particularly C. hyperboreus and C. glacialis (Figure 7),
as well as echinoderm larvae and A. longiremis. The AW group
was characterized by a wide range of water temperatures and low
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FIGURE 6 | Seasonal changes in Calanus spp. Abundance (A), stage composition (B), and species composition (based on metabarcoding) (C) in Ramfjord
November 2018–February 2020.

FIGURE 7 | Canonical correspondence analysis (CCA) of fourth-root transformed abundance data. The eigenvalues as percentages are provided for dimensions I
and II with a total of 30.8% and variance explained. Colors correspond to the assemblages obtained by the hierarchical cluster analysis (Supplementary Figure 1).
The abbreviations used in this analysis are explained in Table 4.
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fluorescence. Furthermore, high abundance of small copepods
(e.g., O. similis, Pseudocalanus spp., M. pusillus), Metridia longa,
Paraeuchaeta norvegica, gastropoda larvae, chaetognatha and a
relatively low abundance of Calanus spp. were characteristic

TABLE 4 | List of abbreviation used in the CCAs and their meaning.

Abbreviation Meaning

C_fin Calanus finmarchicus

C_gla Calanus glacialis

C_hel Calanus helgolandicus

Oith Oithona similis

Micr Microcalanus pusillus

Pseu Pseudocalansu spp.

Ps_el Pseudocalnaus elongatus

Ps_mi Pseudocalanus minutus

Ps_mo Pseudocalanus moultoni

Ps_ac Pseudocalanus acuspes

Tri Triconia sp.

Met Metridia spp.

Aca Acartia longicornis

Par Paraeuchaeta spp.

Tem Temora longiremis

C_hyp Calanus hyperboreus

Amp Amphipoda

Lar Appemdicularia

Asc Ascidia

Biv Bivalves juvenille

Bry Bryozoa

Chae Chaetognatha

Cirr Cirripedia

Ost Ostracoda

Dec Decapod

Echi Echinodermata

Gast Gastropoda

Iso Isopoda

Krill Krill larvae

Nudi Nudibranche

Poly Polychaeta larvae

Zoe Zoea

nov November 2018

dec December 2018

jan January 2019

feb February 2019

mar March 2019

apr Early April 2019

ap2 Mid-April 2019

may May 2019

jun June 2019

aug August 2019

sep Early September 2019

se2 Late September 2019

oct October 2019

nov.1 November 2019

dec.1 December 2019

feb.1 February 2020

for AW. The PS group, which included February and March
samples, was characterized by low temperatures and fluorescence.
Zooplankton abundance was overall low within this group, with
a higher relative contribution of nudibranch larvae and Triconia
sp. Although they were not included in the multivariate analyses,
during this season we also registered a high abundance of
copepod nauplii (23348 ind m−2 in February and 53908 ind
m−2 in March).

DISCUSSION

The present study is one of only a few studies combining
metabarcoding and morphological identification to study the
seasonal variability of a zooplankton community with relatively
high temporal resolution (Gran-Stadniczeñko et al., 2019;
Schroeder et al., 2020). This approach enabled us to describe
the seasonal variability of the zooplankton community in
Ramfjord with high quantitative and taxonomical accuracy,
while at the same time also linking the detected changes to
environmental variables.

The Zooplankton Community Diversity
Using metabarcoding, we identified 154 taxa in Ramfjord over
the study period, which was four times as many taxa as using
the morphological identification alone. The mesozooplankton
diversity in this fjord system has previously been described as low
(Hopkins, 1981) although the authors did not specify compared
to what this assessment was made. Mesozooplankton diversity
is rarely fully described, but compared to other well-studied
high latitude fjords, such as Kongsfjorden (97 taxa over 20-
year-long time series, Hop et al., 2019b), Rijpfjorden (42 taxa
over 8 months) (Weydmann et al., 2013) and Dolgaya Bay (33
taxa in July, Dvoretsky and Dvoretsky, 2010), the zooplankton
community in Ramfjord does not appear to be particularly
low in diversity. However, the majority of taxa identified in
our study can be categorized as meroplankton (i.e., larvae
and juveniles of 90 benthic adult taxa), which are usually not
identified to lower taxonomic level. Of the 55 holoplanktonic
taxa, copepods accounted for 27, which is low compared to
Kongsfjorden (52 species), but diverse compared to Rijpfjorden
and Dolgoya Bay as well as Hudson Bay (Estrada et al., 2012)
(13, 15, and 13 species, respectively). The lower number of
copepod species from studies relying on visual identification are,
however, only comparable to the number of copepod species we
identified morphologically (13), strongly supporting the concept
of combining metabarcoding with morphological identification.

Meroplankton diversity in Ramfjord exceeded estimates from
other northern Norwegian locations (including Balsfjord) that
were based on morphology. Here, meroplankton species richness
varied between 37 (Porsangerfjord) and 65 taxa (Vesterålen)
(Falk-Petersen, 1982; Andersen, 1984; Fetzer and Arntz, 2008;
Silberberger et al., 2016; Michelsen et al., 2017). Meroplankton
diversity was also higher than the diversity of benthic organisms
previously assessed in Ramfjord (Oug, 1977), particularly with
regard to polychaetes and echinoderms. However, the benthic
communities of Ramfjord and Balsfjord are poorly studied
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(Oug and Høisœter, 2000), which makes it difficult to conclude
whether the meroplankton species identified in Ramfjord were
part of local populations or present due to advection. Among
meroplankton, polychaetes were the most diverse group. This
is not surprising, since polychaetes are the most diverse group
of benthic organisms in other Arctic, sub-Arctic and Norwegian
fjords (Holte, 1998; Ellingsen and Gray, 2002; Bluhm et al., 2011).
Oug and Høisœter (2000) found that polychaetes represented
97% of all species of the soft-bottom macrofauna community
in Balsfjord (of a total of 78 species). Little is known about
the biodiversity of taxa usually associated with hard bottom
communities in our study area. The presence of larval stages
of cirripedia and ascidia has been reported previously in this
fjord system (Falk-Petersen, 1982). Sandnes and Gulliksen (1980)
identified the sea urchins Strongylocentrotus droebachiensis and
S. pallidus as key species in the system, controlling the abundance
of sessile organisms such as the barnacle Semibalanus balanoides
and the limpet Testudinalia testudinalis. Larval stages of these
species were present in our study (Table 2 and Supplementary
Table 1) while the gastropods and bivalves mentioned by Sandnes
and Gulliksen (1980) did not show up in our species inventory.
Bivalvia were the only group whose diversity of larval stages was
lower than the diversity of adult forms previously described in
the study area (Oug, 1977; Sandnes and Gulliksen, 1980; Vahl,
1980; Drent, 2002) with only one MOTU of bivalve identified. For
juvenile bivalves we also found the largest difference between the
visual analysis and metabarcoding. While high abundance was
observed in summer, bivalves hardly featured in the BWSR. This
underestimation of bivalve diversity can be explained by a lack
of relevant data in the reference database, PCR bias using our
chosen primer set, or problems with DNA extraction. Molluscs
are notoriously hard to extract DNA from Pereira et al. (2011)
presumably due to the presence of polysaccharides that inhibit
DNA polymerase, and although we used an extraction kit tailored
for molluscs during most of our study period, this demonstrates
the ongoing challenges for this taxonomic group.

Most of the holoplankton taxa identified using metabarcoding
(Table 2 and Supplementary Table 1) are species common to
boreal and Arctic zooplankton communities (e.g., Dvoretsky
and Dvoretsky, 2010; Estrada et al., 2012; Weydmann et al.,
2013; Hop et al., 2019b). Particularly for Calanus and
Pseudocalanus, metabarcoding provided a more detailed insight
into the species composition than previous studies. Since
life cycles and life strategies may differ even in closely
related species within the same genus (McLaren et al., 1989;
Lischka and Hagen, 2005; Ershova et al., 2021), correct species
identification is crucial for describing species specific life
history strategies and for documenting changes in population
dynamics (see below). Pseudocalanus lacks easily distinguishable
morphological features that would aid species identification,
particularly when it comes to the early life stages, and they
are therefore often reported as Pseudocalanus spp. Only two
species of Pseudocalanus, i.e., P. acuspes and P. minutus
(Norrbin, 1993, 1994) and one species of Calanus, i.e., Calanus
finmarchicus (Hopkins et al., 1989) have previously been reported
from Ramfjord/Balsfjord, while we revealed the presence of
four species of each genus coexisting in Ramfjord, (i.e.,

C. finmarchicus, C. glacialis, Calanus helgolandicus, Calanus
hyperboreus, Pseudocalanus acuspes, Pseudocalanus elongatus,
Pseudocalanus minutus, Pseudocalanus moultoni, Table 2 and
Supplementary Table 1).

While morphological features such as size (e.g., Daase and
Eiane, 2007) or coloration (Nielsen et al., 2014) may enable
species identification of Calanus spp. with some degree of
accuracy in the high Arctic, they are not reliable in populations
along the Norwegian coast (Choquet et al., 2017). This can
lead to an under representation of C. glacialis in particular
and explains the lack of records of these species in Norwegian
fjords (included Balsfjord) in most previous studies. The Arctic
C. hyperboreus on the other hand, is easily distinguishable from
the other Calanus species due to its large size and a clear
morphological feature (a spine on the last prosome segment)
in the older copepodite stages and in adults. Metabarcoding
revealed a relatively high proportion of C. hyperboreus in
Ramfjord, while only very few individuals were recorded by
visual identification. This discrepancy between molecular and
visuals tools could be explained by the fact that the number
of sequence reads is a proxy of the biomass (Lindeque et al.,
2013; Ershova et al., In revision). Because of its large size,
C. hyperboreus (prosome length up to 5 mm) can represent a
substantial part of the biomass, even if the abundance is low.
However, we only identified very few C. hyperboreus individuals
per sample visually (1 or 2 per sample) compared to Calanus in
the size range of C. finmarchicus and C. glacialis (2–4 mm, 100-
5000 per sample), thus even in terms of BWSR C. hyperboreus
should not contribute to the Calanus weighted sequence reads
in such high proportion. If C. hyperboreus was present in high
numbers as young copepodite stages (CI -II) they could have
been misidentified, as size differences of young stages are less
pronounced between the different Calanus species. However,
the sequence reads indicate highest relative contribution of
C. hyperboreus in June and August when the Calanus population
was dominated by late copepodite stages and young stages were
rare. Thus, further studies are needed, e.g., using mock samples,
to investigate the relationship between C. hyperboreus biomass,
abundance and relative sequence reads.

Seasonality in the Zooplankton
Community in Ramfjord
Long term data on hydrographic conditions are not available
for the Ramfjord/Balsfjord system. However, the hydrographic
conditions we observed in Ramfjord during our study were
similar to observations from Balsfjord in 1976–1977 (Eilertsen
et al., 1981a) and 2013–2014 (Svensen et al., 2018), with
temperature peaking between 8 and 12◦C in the surface during
summer, and otherwise varying between 2 and 4◦C at depth
during summer and throughout the water column during winter
and spring. We also observed salinity in a similar range to
observations from Balsfjord (32 -33), with lower salinity in
surface waters during snow melt and heavy snow fall (Eilertsen
et al., 1981a; Svensen et al., 2018). We concluded that no strong
differences in hydrographic settings was evident between the
current and historical data.
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A tight coupling of seasonal changes in zooplankton
community structure and the strong seasonality in
phytoplankton biomass and production, driven by the light
regime, is typical for polar and sub-polar areas (e.g., Pertsova
and Kosobokova, 2003; Weydmann et al., 2013; McKinstry
and Campbell, 2018). In Ramfjord, the seasonal variability in
the zooplankton community structure was manifested in four
distinct periods (Figure 8), characterized by differences in overall
abundance, presence of meroplankton, and shifts in diversity.

The pre-spring bloom (PS) period (February–March)
was characterized by increasing day length but low water
temperatures and an overall low phytoplankton and zooplankton
abundance. However, the high abundance of copepod nauplii
indicates that reproduction had started and given the low Chl a
concentration, most of this effort was likely fueled by internal
energy reserves, indicating a dominance of capital breeders
among the reproducing copepods (Varpe, 2009) (see below).

April was initiated with a peak in Chl a concentration,
marking the start of the spring bloom (SB). A succession
from a dominance of diatoms such as Chaetoceros socialis
and Thalassiosira spp. to a dominance of Phaeocystis pouchetii
has previously been observed in Ramfjord and other areas
including, e.g., the Barents Sea and the marginal ice zone in the

Greenland sea (Eilertsen et al., 1981b; Tande and Bamstedt, 1987;
Gradinger and Baumann, 1991; Orkney et al., 2020). We did not
observe P. pouchetii beyond late April and thus lack data to
assess how long it dominated the spring bloom in Ramfjord
and its importance during the rest of the year as we may have
underestimated the presence of the single cell stage of P. pouchetii
for most parts of the year using a 10 µm phytoplankton net,
which may only collect larger colonies that form during periods
of high abundance.

The spring bloom fueled reproduction and development in
the zooplankton and benthos community, as indicated by an
increasing dominance of nauplii and juvenile stages. Adults and
early developmental stage of Calanus spp. were abundant as well,
as were krill nauplii and eggs, and within the meroplankton
community, cirripedia nauplii and polychaete larvae reached
their peak abundance. The SS period, starting in May, was
characterized by low Chl a concentration and fluorescence,
indicating a post bloom situation, dominated by flagellates as
previously observed by Gaarder (1938) and Eilertsen et al.
(1981b). We unfortunately lack data on Chl a and microalgae
taxonomy from July to September to properly describe seasonal
changes in the phytoplankton community throughout summer.
The fluorescence measurements at 18 m depth indicate the

FIGURE 8 | Conceptual understanding of the seasonality variability in the zooplankton community in Ramfjord. The size of the boxes is proportional to the
abundance of the organisms, but size of boxes is not comparable between the different compartments.
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presence of microalgae throughout summer with a potential
bloom event in July. Thus, algal food was available throughout
summer, and a succession of different meroplankton taxa
characterized the SS period. Cirripedia nauplii and polychaete
larvae had disappeared from the water column by June, while the
abundance of echinoderm larvae increased in June followed by
an increase of juvenile bivalves in August. A similar succession in
meroplankton has previously been described in Ramfjord (Falk-
Petersen, 1982) and corresponds to observations from Arctic
fjords in Svalbard (Kuklinski et al., 2013; Kwasniewski et al., 2013;
Stübner et al., 2016) and Greenland (Nielsen et al., 2007).

Algal bloom dynamics in boreal and sub-Arctic regions
typically include at least two seasonal peaks, one in spring and
one in autumn (Eilertsen et al., 1981b; Eilertsen and Frantzen,
2007), and the AW period (AW, mid-September–January) in
Ramfjord commenced with an autumn bloom dominated by
diatoms (a mix of Chaetoceros species) similar to observations
by Eilertsen et al. (1981b). Particularly high Chl a concentration
measured in October far exceeded those during the spring bloom.
This autumn bloom coincided with highest copepod diversity
and peak in zooplankton abundance but also a steep decline in
zooplankton biomass from September to October, largely driven
by the decrease in abundance of the large Calanus species. Small
copepods thus became the main contributors to the zooplankton
community not only in terms of abundance but also in terms of
BWSR, and biomass remained relatively constant throughout the
AW period, even when temperature and light decreased, and Chl
a concentration remained low. Hansen et al. (1999) hypothesized
that the descent to overwintering depth of the large Calanus
species creates a free niche in upper water layers that benefits
small copepods, such as Oithona similis, Microcalanus pusillus,
Acartia longiremis, and Pseudocalanus spp. These predominately
omnivorous species (Saiz and Kiørboe, 1995; Castellani et al.,
2005; Cleary et al., 2016) thus become the dominating functional
group in the zooplankton community during AW.

The occurrence of species regarded as Atlantic/boreal, such as
the copepods C. helgolandicus, P. elongatus, Temora longicornis,
P. minutus, and P. elongatus and other species such as Themisto
abyssorum and Evadne normanni, was restricted to AW when
strong south-west winds often prevail in the Tromsø area
(Eilertsen et al., 1981a), forcing water of Atlantic origin into the
fjord system. Those species were likely advected into the fjord
system and do not have established populations in the fjord.

Life History Strategies of Common
Copepods
Except for Calanus spp., we did not identify copepodite stages of
most common copepod species, thus we lack data to discuss the
population dynamics of these species. However, changes in the
total and relative abundance throughout the seasons nevertheless
allow us to draw some conclusions about their life history
strategies in Ramfjord. As observed in Disko Bay, Greenland
(Madsen et al., 2008), the small copepods peak in Autumn in
Ramfjord. This abundance peak of small copepod was prior
or simultaneously to the second phytoplankton bloom, while it
occurred after the algal bloom in Disko Bay (Madsen et al., 2008).

The ubiquitous O. similis is known to actively feed and
reproduce all year-round (Svensen et al., 2011; Zamora-Terol
et al., 2014). Similar to observations from Kongsfjorden (Lischka
and Hagen, 2005; Hop et al., 2019b), Greenland (Digby, 1954;
Madsen et al., 2008), Malangen (Falkenhaug et al., 1997), and
Kola Bay (Dvoretsky and Dvoretsky, 2009), we observed the
highest abundance between August and December with peaks
in September and November, thus coinciding with periods of
relative warm water temperature that may affect recruitment
and development rates positively (Svensen et al., 2011; Zamora-
Terol et al., 2014). The life cycles and life history strategies
of A. longiremis, T. longicornis, and M. pusillus are overall
not well studied. A. longiremis is a neritic species commonly
observed in Arctic and sub-arctic zooplankton communities
(e.g., Hopcroft et al., 2010; Estrada et al., 2012; Ershova and
Kosobokova, 2019; Hop et al., 2019a). In Ramfjord, A. longiremis
was present year-round, indicating that it has established a
population here, although its abundance sharply peaked during
October. Falkenhaug et al. (1997) also observed a peak of Acartia
spp. at the same period in Malangen, however the authors did
not discuss this increase of abundance. We suggest a possible
advective source as well. T. longicornis, a temperate, brackish
water weakly selective herbivorous species whose reproduction is
coupled to the phytoplankton spring bloom (Peters et al., 2013),
appeared only during the autumn bloom, suggesting that the
population was not established in Ramfjord but was the result
of advection. M. pusillus represented a substantial proportion
of the small copepod community particularly in spring and
summer, with a peak of abundance in August. This is similar to
Microcalanus pygmaeus in west Greenland (Digby, 1954) but in
contrast to observations from Kongsfjorden (Hop et al., 2019b),
east Greenland (Ussing, 1938) and the Amundsen Gulf (Darnis
and Fortier, 2014), where Microcalanus spp. abundance peaked in
later autumn and winter, indicating different strategies in the sub-
Arctic Microcalanus populations compared to the high Arctic.

Pseudocalanus Species Complex
The peak in Pseudocalanus abundance in October coincided with
a change in the Pseudocalanus species composition, although we
cannot discount the possibility of a bias related to a change in
DNA extraction kit coinciding with this change. While P. acuspes
dominated in spring/summer and only P. moultoni was found in
addition, P. minutus and P. elongatus appeared in autumn when
all four species were found in more or less equal proportions.
A similar succession has been recently observed in Svalbard
(Ershova et al., 2021) indicating species specific differences in life
history strategies. The pronounced annual cycle in abundance
in P. acuspes, peaking during summer and declining in winter,
indicates a dependence on the spring bloom for growth and
development. This is in agreement with recent observations
from Svalbard (Ershova et al., 2021) and previous studies in
the Baltic sea (Peters et al., 2006; Renz and Hirche, 2006),
Balsfjord (Norrbin, 1991) and Nova Scotia (McLaren et al.,
1989). P. acuspes life cycle is described as mostly annual, but
the P. acuspes population can also produce a second generation
(McLaren et al., 1989; Norrbin, 1991; Peters et al., 2006) and
such a second reproductive effort could explain the second peak
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in BWSR in autumn. It has been suggested that P. moultoni
has a more boreal distribution where it reproduces year-round
(McLaren et al., 1989), but little is known of P. moultoni life
cycle in Arctic and sub-Arctic waters as it has been misidentified
for a long time (Aarbakke et al., 2017; Hop et al., 2019b). Our
study confirmed that this species is established in Ramfjord year-
round, and thus likely can reproduce successfully in sub-Arctic
fjords. P. minutus the largest of the observed species, has a strictly
annual life cycle in other parts of the world, spending most of
its life as C4–C5 copepodites and relying on lipid stores more
than its sibling species (McLaren et al., 1989). The distribution
of P. minutus is generally restricted to ice-covered Arctic shelf
seas (Melnikov et al., 2005; Persson et al., 2012; Ershova and
Kosobokova, 2019) or the deep Atlantic Ocean (Wiborg, 1955;
Aarbakke et al., 2017). In Isfjorden, a Svalbard fjord heavily
influenced by Atlantic advection and lacking a seasonal ice
cover, P. minutus failed to complete its life cycle and was only
advected into the fjord during the summer months (Ershova
et al., 2021). Similarly, we observed P. minutus in Ramfjord only
between September and March, together with other non-resident
species, suggesting an Atlantic origin. Likewise, P. elongatus
is a warm water boreal species (Unal et al., 2006) and was
present in Ramfjord only during the fall and the winter, likely
due to advection.

Calanus Life Cycle
The co-existence of several Calanus species is not unusual for
Arctic and sub-Arctic locations where sympatric populations of
C. glacialis, C. finmarchicus and C. hyperboreus are common (e.g.,
Madsen et al., 2001; Arnkvaern et al., 2005; Darnis and Fortier,
2014; Choquet et al., 2017). These species differ in life history
strategies such as timing of reproduction, life cycle duration
and overwintering stages (Tande et al., 1985; Arnkvaern et al.,
2005; Falk-Petersen et al., 2009) even when living in the same
habitat. Our data do not allow us to distinguish life history
strategies of the different Calanus species in Ramfjord. Higher
sampling resolution around the spawning event as well as genetic
identification of nauplii and the young copepodite stages are
needed to describe the life cycles of the different Calanus species
in Ramfjord more precisely.

Development from egg to nauplii and CV takes around
60 days at temperatures observed in Ramfjord (McLaren, 1978;
Campbell et al., 2001; Daase et al., 2011). Since we observed
high abundance of copepod nauplii in February and March, and
CI were recorded in high abundance in early April, spawning
of Calanus spp. probably started in February and thus before
the phytoplankton spring bloom. Spawning prior to the spring
bloom is common in C. glacialis (Daase et al., 2013), while
C. finmarchicus is often described to follow an income breeding
strategy (i.e., being dependent of the spring bloom for gonad
maturation and reproduction (Varpe et al., 2009). Previous
studies from Balsfjord described a close synchronization of
spawning with the phytoplankton bloom in C. finmarchicus
(Tande and Hopkins, 1981; Tande, 1982; Grønvik and Hopkins,
1984; Hopkins et al., 1984). However, Hirche et al. (2001)
observed CI and CII C. finmarchicus in the water column
before the spring bloom in the Norwegian Sea, indicating that

C. finmarchicus is able to start reproduction ahead of the
bloom, and we suggest that nauplii and young copepodites likely
consisted of both C. glacialis and C. finmarchicus in Ramfjord.

An increase in abundance of young copepodites prior to
the autumn bloom in October suggested a second spawning
event, most likely by C. finmarchicus who can produce a second
generation as previously described in the Scotian shelf (McLaren
et al., 2001) and the Norwegian Sea (Wiborg, 1954; Marshall and
Orr, 1955; Matthews et al., 1978; Strand et al., 2020).

We suggest that the C. finmarchicus/glacialis population in
Ramfjord has a 1-year life cycle as the population was dominated
by CV for large parts of the year, a common overwintering
stage of both C. finmarchicus and C. glacialis (Tande, 1982;
Arnkvaern et al., 2005). For C. glacialis, a 1–2 years life cycle
(e.g., Kosobokova, 1999; Arnkvaern et al., 2005; Daase et al., 2013)
and for C. finmarchicus a 1-year life cycle is commonly described
for Svalbard fjords (Kwasniewski et al., 2003; Arnkvaern et al.,
2005), the Barents Sea (Tande et al., 1985), as well as in sub-Arctic
locations (Wiborg, 1954; Marshall and Orr, 1955; McLaren,
1978; Gislason and Astthorsson, 1998; Astthorsson and Gislason,
2003) including Balsfjord (Tande, 1982). In Ramfjord, Calanus
spp. had disappeared from the upper 50 m by August (data
not shown) except for the young stages observed in October
and November 2019. The generally low abundance of Calanus
throughout the water column in autumn and winter suggests that
the population either suffered high mortality already at the start
of the overwintering period, or that they do not overwinter in
Ramfjord but seek refuge elsewhere. Relatively low abundance
and high mortality of C. finmarchicus have been observed in
other Norwegian fjords during winter (Bagoien et al., 2001;
Skreslet et al., 2015), although deep fjords can be suitable for
overwintering (Hirche, 1983; Espinasse et al., 2016). Due to its
shallowness, Ramfjord is likely not a good overwintering habitat
for Calanus spp., whose overwintering population is generally
found at greater depth, particular in oceanic populations of
C. finmarchicus and C. hyperboreus (600–2000 m, Hirche, 1991;
Heath et al., 2004). These deep habitats provide not only refuge
from predation and physiological advantages (lower metabolic
cost in cold water), but also affect the buoyancy of lipid rich
copepods with implications on their energy budget during
diapause. Changes in wax ester chemistry reduces the buoyancy
when descending below 500 m (Pond and Tarling, 2011), thus
affecting buoyancy control during overwintering. Calanus spp. in
shallow waters such as Ramfjord cannot reach a depth where they
are neutrally buoyant, thus may have to work actively to remain at
depth, which can be energetically demanding and reduce fitness.

Methodical Considerations
While metabarcoding provides a much more detailed species
inventory than visual inspection, how the proportion of
frequency reads relates to the actual proportion of species in the
community and how sequences reads can be used to quantify
species biomass is still in debate. A meta-analyses of 22 studies
looking at a wide variety of biological communities ranging from
land plants to fish investigated to which degree metabarcoding
is quantitative (Lindeque et al., 2013; Lamb et al., 2019) and
showed a weak correlation between the number of reads and
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biomass with a large degree of uncertainties. However, only
two of those examined studies looked at marine zooplankton,
and neither of those used the primer set that we employed in
this work. The quantitative value of our approach is described
in detail in Ershova et al. (In revision) and has shown robust
correlations between relative biomass and sequence read counts
in high latitude marine zooplankton communities, although with
biases toward certain taxonomic groups. The higher quantitative
value of this method is obtained by the application of universal
primers with a high level of degeneracy and the absence of
a second PCR step at the library preparation stage. However,
it is important to highlight that the BWSR measure that we
use in this study remains semi-quantitative, meaning that it is
useful in the context of seasonal comparisons of taxa-specific
biomass in a single study, but likely not for comparing biomass
estimates using other methods. It is noteworthy that in our
study taxonomy and metabarcoding generally showed similar
trends in the seasonal changes of the zooplankton community
structure. BWSR captured the same seasonal peaks in O. similis,
Microcalanus spp., A. longiremis, and T. longicornis as the
abundance estimates. Only for Pseudocalanus and M. norvegica
did the two methods show different patterns. The high BWSR
of P. acuspes between May and August contradicted the low
abundance of Pseudocalanus spp. in that period, although this
could have been biased by the presence of nauplii which
also peak during this time period (Vazyulya et al., 2001) and
were not identified to genus. Low abundance but high BWSR
would indicate a dominance of older stages and adults (few
individuals but high individual biomass), but given P. acuspes life
history (see above) the population should have been composed
mainly of young stages with low individual biomass during that
time period, and high abundance of those would have been
recognized during the visual inspection. Microsetella norvegica is
not sampled effectively by traditional zooplankton nets (Svensen
et al., 2018) and was likely underestimated, especially after
the change in mesh size when abundance decreased markedly.
Despite its low individual biomass, we would have expected a
higher proportion of sequence reads at the early part of the study
when we used the smaller mesh size, but the number of sequence
reads of M. norvegica were almost negligible year-round.

The increase in mesh size from April did not only result in
an underestimation of M. norvegica but likely also other smaller
organisms, such as small meroplankton and young copepodite
stages, particularly those of small copepods (Vinogradov and
Shushkina, 1987; Nielsen and Andersen, 2002; Tseng et al., 2011).
Consequently, their abundances and the species richness between
November 2018 and April are not directly comparable with the
rest of the study. There is however little evidence that larger
copepods and older life stage of smaller copepods (including
copepodites stage CIII-adults of Calanus and Pseudocalanus) are
caught less efficiently with a mesh size of 64 µm compared to
180 µm (e.g., Nichols and Thompson, 1991; Di Mauro et al., 2009;
Altukhov et al., 2015; Chen et al., 2016). Thus, we are confident
that the seasonal patterns we observed in the morphological data
are not severely biased by the change in mesh size, especially
when we take the change of mesh size into consideration in our
data interpretation. Furthermore, despite the use of the 180 µm

mesh, we did observe a strong increase of the abundance of most
of the small copepod. Even if their abundance is underestimated,
our data provide clear evidence of seasonal changes, such as a
strong increase in abundance in autumn. Finally, the application
of two different DNA extraction kits during the course of the
study highlights the biases that can be introduced at this stage
of the analysis. The EZNA Mollusc DNA Kit recovered, on
average, 44% higher diversity than the Qiagen PowerSoil Kit,
especially among the meroplankton and non-crustacean taxa
(Supplementary Figure 2). Unfortunately, the lack of a temporal
overlap in the application of the two kits precludes a more
concrete analysis of the taxonomic biases of either and remains
to be resolved in future studies.

One of the main concerns of the effect of climate warming
on plankton communities is the potentially negative effect of
changes in the algal bloom phenology related to zooplankton
life history strategies. These changes may alter the energy
transfer through the pelagic food web and potentially also
impact benthic invertebrates through their pelagic early life
stages. Furthermore, biogeographical distributional shifts may
change community composition with repercussions on energy
transfer and ecosystem structure (Beaugrand et al., 2009; Chust
et al., 2013). In order to document changes and to be able
to distinguish between natural seasonal variability and climate
change impacts on ecosystems structure and functioning, we
need to establish baselines, such as detailed species inventories
and how community composition varies seasonally. Species
specific changes in life histories can only be observed if species
are correctly identified, as even closely related species may
vary in their annual routines and their role in the ecosystem
structure. Our study demonstrates that the combination of
both morphological and metabarcoding approaches is providing
the necessary quantitative and qualitative detail to document
seasonal changes in community composition and population
structure. While our study focused on mesozooplankton, future
studies are needed to fully describe the community composition
of the microplankton and macrozooplankton community.

CONCLUSION

There are few studies from sub-Arctic locations describing the
seasonal variability in the zooplankton community structure. The
combination of traditional methods of identification and state-of-
the-art molecular tools allowed us to provide high-resolution data
on seasonal variability in zooplankton abundance and diversity
at a much higher taxonomic resolution. Both methods were
highly complementary, with metabarcoding providing the most
extensive species list of mesozooplankton from a Norwegian
fjord to date, particular in terms of the meroplankton which
are rarely identified to species in most zooplankton studies.
154 unique taxa were identified in Ramfjord over the study
period, 58% were meroplankton organisms. Seasonality in the
zooplankton community structure was driven by the seasonal
changes in temperature and algae biomass and was manifested
not only by changes in abundance and biomass but also by
changes in diversity, although methodological shortcomings
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limits our ability to identify seasonal changes in diversity to
some extent. The succession of meroplankton was an important
factor driving the seasonal changes in the mesozooplankton
community over summer. An assessment of the diversity of
the benthic community is needed to determine the role of
advection and local production of the meroplankton community
in the Ramfjord/Balsfjord system, and how seasonal changes
in meroplankton composition and abundance are linked to
difference in the life history strategies of the various species.
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Choquet, M., Kosobokova, K., Kwaśniewski, S., Hatlebakk, M., Dhanasiri, A. K. S.,
Melle, W., et al. (2018). Can morphology reliably distinguish between the
copepods Calanus finmarchicus and C. glacialis, or is DNA the only way?
Limnol. Oceanogr. Methods 16, 237–252. doi: 10.1002/lom3.10240

Chust, G., Castellani, C., Licandro, P., Ibaibarriaga, L., Sagarminaga, Y., and
Irigoien, X. (2013). Are Calanus spp. shifting poleward in the North Atlantic? A
habitat modelling approach. ICES J. Mar. Sci. 71, 241–253. doi: 10.1093/icesjms/
fst147

Cleary, A. C., Durbin, E. G., Rynearson, T. A., and Bailey, J. (2016). Feeding by
Pseudocalanus copepods in the Bering Sea: trophic linkages and a potential
mechanism of niche partitioning. Deep Sea Res. 2 Top. Stud. Oceanogr. 134,
181–189. doi: 10.1016/j.dsr2.2015.04.001

Cottier, F., Nilsen, F., Skogseth, R., Tverberg, V., Skarðhamar, J., and Svendsen, H.
(2010). Arctic fjords: a review of the oceanographic environment and dominant
physical processes. Geol. Soc. Lond. Spec. Publ. 344, 35–50. doi: 10.1144/
SP344.4

Daase, M., and Eiane, K. (2007). Mesozooplankton distribution in northern
Svalbard waters in relation to hydrography. Polar Biol. 30, 969–981. doi: 10.
1007/s00300-007-0255-5

Daase, M., Falk-Petersen, S., Varpe, Ø, Darnis, G., Søreide, J. E., Wold, A., et al.
(2013). Timing of reproductive events in the marine copepod Calanus glacialis:
a pan-Arctic perspective. Can. J. Fish. Aquat. Sci. 70, 871–884. doi: 10.1139/
cjfas-2012-0401

Daase, M., Søreide, J. E., and Martynova, D. (2011). Effects of food quality on
naupliar development in Calanus glacialis at subzero temperatures. Mar. Ecol.
Prog. Ser. 429, 111–124. doi: 10.3354/meps09075

Darnis, G., and Fortier, L. (2014). Temperature, food and the seasonal vertical
migration of key arctic copepods in the thermally stratified Amundsen Gulf
(Beaufort Sea, Arctic Ocean). J. Plankton Res. 36, 1092–1108. doi: 10.1093/
plankt/fbu035

Di Mauro, R., Capitanio, F., and Viñas, M. D. (2009). Capture efficiency for small
dominant mesozooplankters (Copepoda, Appendicularia) off Buenos Aires
Province (34◦S-41◦S), Argentine Sea, using two plankton mesh sizes. Braz. J.
Oceanogr. 57, 205–214.

Digby, P. S. B. (1954). The biology of the marine planktonic copepods of scoresby-
sound, East Greenland. J. Anim. Ecol. 23, 298–338. doi: 10.2307/1984

Drent, J. (2002). Temperature responses in larvae of Macoma balthica
from a northerly and southerly population of the European distribution
range. J. Exp. Mar. Biol. Ecol. 275, 117–129. doi: 10.1016/s0022-0981(02)
00141-7

Dvoretsky, V. G., and Dvoretsky, A. G. (2009). Life cycle of Oithona similis
(Copepoda: Cyclopoida) in Kola Bay (Barents Sea). Mar. Biol. 156, 1433–1446.
doi: 10.1007/s00227-009-1183-4

Dvoretsky, V. G., and Dvoretsky, A. G. (2010). Mesozooplankton structure in
Dolgaya Bay (Barents Sea). Polar Biol. 33, 703–708. doi: 10.1007/s00300-009-
0748-5

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. (2011).
UCHIME improves sensitivity and speed of chimera detection. Bioinformatics
27, 2194–2200. doi: 10.1093/bioinformatics/btr381

Eilertsen, H. C., Falk-Petersen, S., Hopkins, C., and Tande, K. (1981a). Ecological
investigations on the plankton community of Balsfjorden, northern Norway:
program for the project, study area, topography, and physical environment.
Sarsia 66, 25–34. doi: 10.1080/00364827.1981.10414517

Eilertsen, H. C., and Frantzen, S. (2007). Phytoplankton from two sub-Arctic
fjords in northern Norway 2002–2004: I. Seasonal variations in chlorophyll a
and bloom dynamics. Mar. Biol. Res. 3, 319–332. doi: 10.1080/1745100070163
2877

Eilertsen, H. C., Schei, B., and Taasen, J. (1981b). Investigations on the plankton
community of Bals-fjorden, Northern Norway: the phytoplankton 1976–1978.
Abundance, species composition, and succession. Sarsia 66, 129–141. doi: 10.
1080/00364827.1981.10414530

Ellingsen, K., and Gray, J.s. (2002). Spatial patterns of benthic diversity: is there a
latitudinal gradient along the Norwegian continental shelf? J. Anim. Ecol. 71,
373–389. doi: 10.1046/j.1365-2656.2002.00606.x

Ershova, E. A., and Kosobokova, K. N. (2019). Cross-shelf structure and
distribution of mesozooplankton communities in the East-Siberian Sea and
the adjacent Arctic Ocean. Polar Biol. 42, 1353–1367. doi: 10.1007/s00300-019-
02523-2

Ershova, E. A., Nyeggen, M. U., Yurikova, D. A., and SØreide, J. E. (2021).
Seasonal dynamics and life histories of three sympatric species of Pseudocalanus
in two Svalbard fjords. J. Plankton Res. 43, 209–223. doi: 10.1093/plankt/fba
b007

Ershova, E. A., Wangensteen, O. S., Descoteaux, R., Barth-Jensen, C., and Præbel,
K. (In revision). Metabarcoding as a quantitative tool for estimation biodiversity
and relative biomass of marine zooplankton. ICES.

Espinasse, B., Basedow, S. L., Tverberg, V., Hattermann, T., and Eiane, K. (2016).
A major Calanus finmarchicus overwintering population inside a deep fjord in
northern Norway: implications for cod larvae recruitment success. J. Plankton
Res. 38, 604–609. doi: 10.1093/plankt/fbw024

Estrada, R., Harvey, M., Gosselin, M., Starr, M., Galbraith, P. S., and Straneo,
F. (2012). Late-summer zooplankton community structure, abundance, and
distribution in the Hudson Bay system (Canada) and their relationships with
environmental conditions, 2003-2006. Prog. Oceanogr. 101, 121–145. doi: 10.
1016/j.pocean.2012.02.003

Falkenhaug, T., Tande, K., and Timonin, A. (1997). Spatio-temporal patterns in
the copepod community in Malangen, northern Norway. J. Plankton Res. 19,
449–468.

Falk-Petersen, I.-B. (1982). Ecological investigations on the zooplankton
community of Balsfjorden, northern Norway. Sarsia 67, 69–78. doi: 10.1080/
00364827.1982.10421335

Falk-Petersen, S. (1981). Ecological investigation on the zooplankton community
of Balsfjorden, Northern Norway: seasonal changes in body weight and the
main biochemical composition of Thysanoessa inermis (Krøyer), T. raschii (M.
Sars) and Meganyctiphanes norvegica (M. Sars) in relation to environmental
factors. J. Exp. Mar. Biol. Ecol. 49, 103–120. doi: 10.1016/0022-0981(81)
90065-4

Falk-Petersen, S. (1985). Growth of the euphausiids Thysanoessa inermis,
Thysanoessa raschii, and Meganyctiphanes norvegica in a subarctic fjord, North
Norway. Can. J. Fish. Aquat. Sci. 42, 14–22. doi: 10.1139/f85-002

Falk-Petersen, S., and Hopkins, C. C. E. (1981). Ecological investigations on the
zooplankton community of Balsfjorden, northern Norway: population dynamic
of the euphaciids Thysanoessa inermis (Kröyer), Thysanoessa raschii (M.Sars)

Frontiers in Marine Science | www.frontiersin.org 23 August 2021 | Volume 8 | Article 705042

https://doi.org/10.1093/plankt/fbaa039
https://doi.org/10.1111/j.1365-2486.2009.01848.x
https://doi.org/10.1007/s12526-010-0078-4
https://doi.org/10.1111/1755-0998.12428
https://doi.org/10.1093/plankt/fbw023
https://doi.org/10.3354/meps221161
https://doi.org/10.3354/meps221161
https://doi.org/10.3354/meps288173
https://doi.org/10.1098/rsbl.2017.0588
https://doi.org/10.1002/lom3.10240
https://doi.org/10.1093/icesjms/fst147
https://doi.org/10.1093/icesjms/fst147
https://doi.org/10.1016/j.dsr2.2015.04.001
https://doi.org/10.1144/SP344.4
https://doi.org/10.1144/SP344.4
https://doi.org/10.1007/s00300-007-0255-5
https://doi.org/10.1007/s00300-007-0255-5
https://doi.org/10.1139/cjfas-2012-0401
https://doi.org/10.1139/cjfas-2012-0401
https://doi.org/10.3354/meps09075
https://doi.org/10.1093/plankt/fbu035
https://doi.org/10.1093/plankt/fbu035
https://doi.org/10.2307/1984
https://doi.org/10.1016/s0022-0981(02)00141-7
https://doi.org/10.1016/s0022-0981(02)00141-7
https://doi.org/10.1007/s00227-009-1183-4
https://doi.org/10.1007/s00300-009-0748-5
https://doi.org/10.1007/s00300-009-0748-5
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1080/00364827.1981.10414517
https://doi.org/10.1080/17451000701632877
https://doi.org/10.1080/17451000701632877
https://doi.org/10.1080/00364827.1981.10414530
https://doi.org/10.1080/00364827.1981.10414530
https://doi.org/10.1046/j.1365-2656.2002.00606.x
https://doi.org/10.1007/s00300-019-02523-2
https://doi.org/10.1007/s00300-019-02523-2
https://doi.org/10.1093/plankt/fbab007
https://doi.org/10.1093/plankt/fbab007
https://doi.org/10.1093/plankt/fbw024
https://doi.org/10.1016/j.pocean.2012.02.003
https://doi.org/10.1016/j.pocean.2012.02.003
https://doi.org/10.1080/00364827.1982.10421335
https://doi.org/10.1080/00364827.1982.10421335
https://doi.org/10.1016/0022-0981(81)90065-4
https://doi.org/10.1016/0022-0981(81)90065-4
https://doi.org/10.1139/f85-002
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-705042 August 2, 2021 Time: 14:35 # 24

Coguiec et al. Seasonal Variability in Zooplankton Community

and Meganyctiphanes norvegica (M.Sars) in 1976 and 1977. J. Plankton Res. 3,
177–191. doi: 10.1093/plankt/3.2.177

Falk-Petersen, S., Mayzaud, P., Kattner, G., and Sargent, J. (2009). Lipids and
life strategy of Arctic Calanus. Mar. Biol. Res. 5, 18–39. doi: 10.1080/
17451000802512267

Falk-Petersen, S., Sargent, J. R., Hopkins, C. C. E., and Vaja, B. (1982). Ecological
investigations on the zooplankton community in Balsfjorden, Northern
Norway: lipids in Euphasiids Thysanoessa raschi and T. inermis during spring.
Mar. Biol. 68, 97–102. doi: 10.1007/BF00393147

Fetzer, I., and Arntz, W. E. (2008). Reproductive strategies of benthic invertebrates
in the Kara Sea (Russian Arctic): adaptation of reproduction modes to cold
water. Mar. Ecol. Prog. Ser. 356, 189–202. doi: 10.3354/meps07271

Frøslev, T. G., Kjøller, R., Bruun, H. H., Ejrnæs, R., Brunbjerg, A. K., Pietroni,
C., et al. (2017). Algorithm for post-clustering curation of DNA amplicon
data yields reliable biodiversity estimates. Nat. Commun. 8:1188. doi: 10.1038/
s41467-017-01312-x

Gaarder, K. R. (1938). Phytoplankton Studies from the Tromsø District, 1930-31.
Tromsø: Tromsø museum.

Gabrielsen, T., Merkel, B., Søreide, J., Johansson-Karlsson, E., Bailey, A., Vogedes,
D., et al. (2012). Potential misidentifications of two climate indicator species of
the marine arctic ecosystem: Calanus glacialis and C. finmarchicus. Polar Biol.
35, 1621–1628. doi: 10.1007/s00300-012-1202-7

Geller, J., Meyer, C., Parker, M., and Hawk, H. (2013). Redesign of PCR primers
for mitochondrial cytochrome c oxidase subunit I for marine invertebrates
and application in all−taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861.
doi: 10.1111/1755-0998.1238

Gislason, A., and Astthorsson, O. S. (1998). Seasonal variations in biomass,
abundance and composition of zooplankton in the subarctic waters north of
Iceland. Polar Biol. 20, 85–94. doi: 10.1007/s003000050280

Gradinger, R., and Baumann, M. (1991). Distribution of phytoplankton
communities in relation to the large-scale hydrographical regime in the Fram
Strait. Mar. Biol. 111, 311–321. doi: 10.1007/BF01319714

Gran-Stadniczeñko, S., Egge, E., Hostyeva, V., Logares, R., Eikrem, W., and
Edvardsen, B. (2019). Protist diversity and seasonal dynamics in Skagerrak
plankton communities as revealed by metabarcoding and microscopy.
J. Eukaryot. Microbiol. 66, 494–513. doi: 10.1111/jeu.12700

Grønvik, S., and Hopkins, C. C. E. (1984). Ecological investigations of the
zooplankton community of Balsfjorden, Northern Norway: generation cycle,
seasonal vertical distribution and seasonal variations in body weight and carbon
and nitrogen content of the copepod Metridia longa (Lubbock). J. Exp. Mar.
Biol. Ecol. 80, 93–107. doi: 10.1016/0022-0981(84)90096-0

Hansen, B. W., Nielsen, T. G., and Levinsen, H. (1999). Plankton community
structure and carbon cycling on the western coast of Greenland during the
stratified summer situation. III. Mesozooplankton. Aquat. Microb. Ecol. 16,
233–249. doi: 10.3354/ame016233

Hays, G. C., Richardson, A. J., and Robinson, C. (2005). Climate change and marine
plankton. Trends Ecol. Evol. 20, 337–344. doi: 10.1016/j.tre.2005.03.004

Heath, M. R., Boyle, P. R., Gislason, A., Gurney, W. S. C., Hay, S. J., Head, E. J. H.,
et al. (2004). Comparative ecology of over-wintering Calanus finmarchicus in
the northern North Atlantic, and implications for life-cycle patterns. ICES J.
Mar. Sci. 61, 698–708. doi: 10.1016/j.icesjms.2004.03.013

Hirche, H. J. (1983). Overwintering of Calanus finmarchicus and Calanus
helgolandicus. Mar. Ecol. Prog. Ser. 11, 281–290.

Hirche, H. J. (1991). Distribution of dominant calanoid copepod species in
the Greenland Sea during late fall. Polar Biol. 11, 351–362. doi: 10.1007/
BF00239687

Hirche, H. J., Brey, T., and Niehoff, B. (2001). A high-frequency time series
at ocean weather ship station M (Norwegian Sea): population dynamics of
Calanus finmarchicus. Mar. Ecol. Prog. Ser. 219, 205–219. doi: 10.3354/meps21
9205

Holte, B. (1998). The macrofauna and main functional interactions in the sill basin
sediments of the pristine holandsfjord, Northern Norway, with autecological
reviews for some key-species. Sarsia 83, 55–68. doi: 10.1080/00364827.1998.
10413669

Hop, H., Assmy, P., Wold, A., Sundfjord, A., Daase, M., Duarte, P., et al. (2019a).
Pelagic ecosystem characteristics across the Atlantic water boundary current
from Rijpfjorden, Svalbard, to the Arctic ocean during summer (2010–2014).
Front. Mar. Sci. 6:181. doi: 10.3389/fmars.2019.00181

Hop, H., Wold, A., Vihtakari, M., Daase, M., Kwasniewski, S., Gluchowska, M.,
et al. (2019b). “Zooplankton in Kongsfjorden (1996–2016) in relation to climate
change,” in The Ecosystem of Kongsfjorden, Svalbard, eds H. Hop and C.
Wiencke (Cham: Springer International Publishing), 229–300.

Hopcroft, R. R., Kosobokova, K. N., and Pinchuk, A. I. (2010). Zooplankton
community patterns in the Chukchi Sea during summer 2004. Deep Sea Res.
2 Top. Stud. Oceanogr. 57, 27–39. doi: 10.1016/j.dsr2.2009.08.003

Hopkins, C. (1981). Ecological investigations on the zooplankton community of
Balsfjorden, northern Norway: changes in zooplankton abundance and biomass
in relation to phytoplankton and hydrography, March 1976–February 1977.
Kiel. Meeresforsch. 5, 124–139.

Hopkins, C. C. E., Falk-Petersen, S., Tande, K., and Eilertsen, H. C. (1978).
A preliminary study of zooplankton sound scattering layers in Balsfjorden:
structure, energetics and migrations. Sarsia 63, 255–264.

Hopkins, C. C. E., Grotnes, P. E., and Eliassen, J.-E. (1989). Organization of a fjord
community at 70 North: the pelagic food web in Balsfjord, northern Norway.
Rapports et proces-verbaux des reunions conseil permanent International pour
l’. Explor. de la Mer 188, 146–153.

Hopkins, C. C. E., Tande, K. S., and Grønvik, S. (1984). Ecological investigations
of the zooplankton community of Balsfjorden, Northern Norway. An analysis
of growth and overwintering tactics in relation to niche and environment
in Metridia longa (Lubbock), Calanus finmarchicus (Gunnerus), Thysanoessa
inmeris (Krøyer) and T. raschi (M. Sars). J. Exp. Mar. Biol. Ecol. 82,
77–99.

Hsieh, T., Ma, K., and Chao, A. (2016). iNEXT: an R package for rarefaction
and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 7,
1451–1456.

Hughes, L. (2000). Biological consequences of global warming: is the signal already
apparent? Trends Ecol. Evol. 15, 56–61. doi: 10.1016/S0169-5347(99)01764-4

Johnsen, G., Leu, E., and Gradinger, R. (2020). “Marine micro-and macroalgae in
the polar night,” in POLAR NIGHT Marine Ecology, eds J. Berge, G. Johnsen,
and J. Cohen (Cham: Springer), 67–112.

Kosobokova, K. N. (1999). The reproductive cycle and life history of the Arctic
copepod Calanus glacialis in the White Sea. Polar Biol. 22, 254–263. doi: 10.
1007/s003000050418

Kuklinski, P., Berge, J., McFadden, L., Dmoch, K., Zajaczkowski, M., Nygård,
H., et al. (2013). Seasonality of occurrence and recruitment of Arctic marine
benthic invertebrate larvae in relation to environmental variables. Polar Biol.
36, 549–560. doi: 10.1007/s00300-012-1283-3

Kwasniewski, S., Hop, H., Falk-Petersen, S., and Pedersen, G. (2003). Distribution
of Calanus species in Kongsfjorden, a glacial fjord in Svalbard. J. Plankton Res.
25, 1–20. doi: 10.1093/plankt/25.1.1

Kwasniewski, S., Walkusz, W., Cottier, F. R., and Leu, E. (2013). Mesozooplankton
dynamics in relation to food availability during spring and early summer in a
high latitude glaciated fjord (Kongsfjorden), with focus on Calanus. J. Mar. Syst.
11, 83–96. doi: 10.1016/j.jmarsys.2012.09.012

Lamb, P. D., Hunter, E., Pinnegar, J. K., Creer, S., Davies, R. G., and Taylor, M. I.
(2019). How quantitative is metabarcoding: a meta-analytical approach. Mol.
Ecol. 28, 420–430. doi: 10.1111/mec.14920

Lindeque, P. K., Parry, H. E., Harmer, R. A., Somerfield, P. J., and Atkinson, A.
(2013). Next generation sequencing reveals the hidden diversity of zooplankton
assemblages. PLoS One 8:e81327. doi: 10.1371/journal.pone.0081327

Lischka, S., and Hagen, W. (2005). Life histories of the copepods Pseudocalanus
minutus, P. acuspes (Calanoida) and Oithona similis (Cyclopoida) in the Arctic
Kongsfjorden (Svalbard). Polar Biol. 28, 910–921. doi: 10.1007/s00300-005-
0017-1

Madsen, S. D., Nielsen, T. G., and Hansen, B. W. (2001). Annual population
development and production by Calanus finmarchicus, C. glacialis and
C. hyperboreus in Disko Bay, western Greenland. Mar. Biol. 139, 75–93. doi:
10.1007/s002270100552

Madsen, S. D., Nielsen, T. G., and Hansen, B. W. (2008). Annual population
development and production by small copepods in Disko Bay, western
Greenland. Mar. Biol. 155, 63–77. doi: 10.1007/s00227-008-1007-y

Mahé, F., Rognes, T., Quince, C., de Vargas, C., and Dunthorn, M. (2015). Swarm
v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3:e1420. doi:
10.7717/peerj.1420

Marshall, S. M., and Orr, A. P. (1955). The Biology of a Marine Copepod (Calanus
finmarchicus Gunnerus). Edinburgh: Oliver & Boyd.

Frontiers in Marine Science | www.frontiersin.org 24 August 2021 | Volume 8 | Article 705042

https://doi.org/10.1093/plankt/3.2.177
https://doi.org/10.1080/17451000802512267
https://doi.org/10.1080/17451000802512267
https://doi.org/10.1007/BF00393147
https://doi.org/10.3354/meps07271
https://doi.org/10.1038/s41467-017-01312-x
https://doi.org/10.1038/s41467-017-01312-x
https://doi.org/10.1007/s00300-012-1202-7
https://doi.org/10.1111/1755-0998.1238
https://doi.org/10.1007/s003000050280
https://doi.org/10.1007/BF01319714
https://doi.org/10.1111/jeu.12700
https://doi.org/10.1016/0022-0981(84)90096-0
https://doi.org/10.3354/ame016233
https://doi.org/10.1016/j.tre.2005.03.004
https://doi.org/10.1016/j.icesjms.2004.03.013
https://doi.org/10.1007/BF00239687
https://doi.org/10.1007/BF00239687
https://doi.org/10.3354/meps219205
https://doi.org/10.3354/meps219205
https://doi.org/10.1080/00364827.1998.10413669
https://doi.org/10.1080/00364827.1998.10413669
https://doi.org/10.3389/fmars.2019.00181
https://doi.org/10.1016/j.dsr2.2009.08.003
https://doi.org/10.1016/S0169-5347(99)01764-4
https://doi.org/10.1007/s003000050418
https://doi.org/10.1007/s003000050418
https://doi.org/10.1007/s00300-012-1283-3
https://doi.org/10.1093/plankt/25.1.1
https://doi.org/10.1016/j.jmarsys.2012.09.012
https://doi.org/10.1111/mec.14920
https://doi.org/10.1371/journal.pone.0081327
https://doi.org/10.1007/s00300-005-0017-1
https://doi.org/10.1007/s00300-005-0017-1
https://doi.org/10.1007/s002270100552
https://doi.org/10.1007/s002270100552
https://doi.org/10.1007/s00227-008-1007-y
https://doi.org/10.7717/peerj.1420
https://doi.org/10.7717/peerj.1420
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-705042 August 2, 2021 Time: 14:35 # 25

Coguiec et al. Seasonal Variability in Zooplankton Community

Matthews, J. B. L., Hestad, L., and Bakke, J. L. W. (1978). Ecological studies in
Korsfjorden, Western Norway–generations and stocks of Calanus hyperboreus
and Calanus finmarchicus in 1971-1974. Oceanol. Acta 1, 277–284.

McKinstry, C. A. E., and Campbell, R. W. (2018). Seasonal variation of zooplankton
abundance and community structure in Prince William Sound, Alaska, 2009–
2016. Deep Sea Res. 2 Top. Stud. Oceanogr. 147, 69–78. doi: 10.1016/j.dsr2.2017.
08.016

McLaren, I. A. (1978). Generation lengths of some temperate marine copepods–
estimation, prediction and implications. J. Fish. Res. Board Can. 35, 1330–1342.
doi: 10.1139/f78-208

McLaren, I. A., Head, E., and Sameoto, D. D. (2001). Life cycles and seasonal
distributions of Calanus finmarchicus on the central Scotian Shelf. Can. J. Fish.
Aquat. Sci. 58, 659–670. doi: 10.1139/f01-007

McLaren, I. A., Laberge, E., Corkett, C. J., and Sevigny, J. M. (1989). Life-cycles
of 4 species of Pseudocalanus in Nova-Scotia. Can. J. Zool. 67, 552–558. doi:
10.1139/z89-078

Melnikov, I., Dikarev, S., Egorov, V., Kolosova, E., and Zhitina, L. (2005). Structure
of the coastal ice ecosystem in the zone of sea-river interactions. Oceanology 45,
511–519.

Michelsen, H. K., Svensen, C., Reigstad, M., Nilssen, E. M., and Pedersen, T. (2017).
Seasonal dynamics of meroplankton in a high-latitude fjord. J. Mar. Syst. 168,
17–30. doi: 10.1016/j-marsys.2016.12.001

Nichols, J. H., and Thompson, A. B. (1991). Mesh selection of copepodite and
nauplius stages of four calanoid copepod species. J. Plankt. Res. 13, 661–671.

Niehoff, B., and Hirche, H. J. (2005). Reproduction of Calanus glacialis
in the Lurefjord (western Norway): indication for temperature-induced
female dormancy. Mar. Ecol. Prog. Ser. 285, 107–115. doi: 10.3354/meps28
5107

Nielsen, T., and Andersen, C. (2002). Plankton community structure and
production along a freshwater-influenced Norwegian fjord system. Mar. Biol.
141, 707–724.

Nielsen, T. G., Kjellerup, S., Smolina, I., Hoarau, G., and Lindeque, P. (2014). Live
discrimination of Calanus glacialis and C. finmarchicus females: can we trust
phenological differences? Mar. Biol. 161, 1299–1306. doi: 10.1007/s00227-014-
2419-5

Nielsen, T. G., Ottosen, L. D., and Hansen, B. W. (2007). “Structure and function
of the pelagic ecosystem in Young Sound, NE Greenland,” in Carbon Cycling in
Arctic Marine Ecosystems: Case Study Young Sound, eds S. Rysgaard and R. N.
Glud (Copenhagen: Danish Polar Center), 88–107.

Norrbin, F. (1994). Overwintering Strategies of Small Copepods in High-Latitude
Marine Environments. Ph. D. thesis. Gothenburg: Goteborgs universitet.

Norrbin, F. M. (1993). Skewed sex ratios in overwintering copepodites of
Pseudocalanus in Norwegian Fjords—a result of sex-specific selection? Bull.
Mar. Sci. 53, 204–215.

Norrbin, M. F. (1991). Gonad maturation as an indication of seasonal cycles for
several species of small copepods in the Barents Sea. Polar Res. 10, 421–432.
doi: 10.1111/j.1751-8369.1991.tb00663.x

Norrbin, M. F., Olsen, R.-E., and Tande, K. S. (1990). Seasonal variation in lipid
class and fatty acid composition of two small copepods in Balsfjorden, northern
Norway. Mar. Biol. 105, 205–211. doi: 10.1007/BF01344288

Oksanen, J., Guillaume Blanchet, F., Kindt, R., Legendre, P., Minchin, P. R.,
O’Hara, R. B., et al. (2020). “vegan: Community Ecology Package”. R package
version 2.5-6 ed.

Orkney, A., Platt, T., Narayanaswamy, B. E., Kostakis, I., and Bouman, H. A. (2020).
Bio-optical evidence for increasing Phaeocystis dominance in the Barents Sea.
Philos. Trans. R. Soc. A 378:20190357. doi: 10.1098/rsta.2019.0357

Oug, E. (1977). Faunal distribution close to sediment of a shallow marine-
environment. Sarsia 63, 115–121. doi: 10.1080/00364827.1977.1041
1329

Oug, E., and Høisœter, T. (2000). Soft-bottom macrofauna in the high-latitude
ecosystem of Balsfjord, northern Norway: species composition, community
structure and temporal variability. Sarsia 85, 1–13. doi: 10.1080/00364827.2000.
10414551

Pan, M., McBeath, A. J., Hay, S. J., Pierce, G. J., and Cunningham, C. O. (2008).
Real-time PCR assay for detection and relative quantification of Liocarcinus
depurator larvae from plankton samples. Mar. Biol. 153, 859–870. doi: 10.1007/
s00227-007-0858-y

Pasternak, A., Arashkevich, E., Riser, C. W., Ratkova, T., and Wassmann, P. (2000).
Seasonal variation in zooplankton and suspended faecal pellets in the subarctic
Norwegian Balsfjorden, in 1996. Sarsia 85, 439–452. doi: 10.1080/00364827.
2000.10414593

Pereira, J. C., Chaves, R., Bastos, E., Leitão, A., and Guedes-Pinto, H. (2011). An
efficient method for genomic DNA extraction from different molluscs species.
Int. J. Mol. Sci. 12, 8086–8095. doi: 10.3390/ijms12118086

Persson, J., Stige, L. C., Stenseth, N. C., Usov, N., and Martynova, D. (2012). Scale-
dependent effects of climate on two copepod species, Calanus glacialis and
Pseudocalanus minutus, in an Arctic-boreal sea. Mar. Ecol. Prog. Ser. 468, 71–83.
doi: 10.3354/meps09944

Pertsova, N. M., and Kosobokova, K. N. (2003). Zooplankton of the White
Sea: features of the composition and structure, seasonal dynamics, and the
contribution to the formation of matter fluxes. Oceanology 43, S108–S122.

Peters, J., Dutz, J., and Hagen, W. (2013). Trophodynamics and life-cycle strategies
of the copepods Temora longicornis and Acartia longiremis in the Central Baltic
Sea. J. Plankton Res. 35, 595–609. doi: 10.1093/plankt/fbt004

Peters, J., Renz, J., van Beusekom, J., Boersma, M., and Hagen, W. (2006).
Trophodynamics and seasonal cycle of the copepod Pseudocalanus acuspes in
the Central Baltic Sea (Bornholm Basin): evidence from lipid composition. Mar.
Biol. 149, 1417–1429. doi: 10.1007/s00227-006-0290-8

Pond, D. W., and Tarling, G. A. (2011). Phase transitions of wax esters adjust
buoyancy in diapausing Calanoides acutus. Limnol. Oceanogr. 56, 1310–1318.
doi: 10.4319/lo.2011.56.4.1310

R Core Team (2020). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Reigstad, M., and Wassmann, P. (1996). Importance of advection for pelagic-
benthic coupling in north Norwegian fjords. Sarsia 80, 245–257. doi: 10.1080/
00364827.1996.10413599

Renz, J., and Hirche, H.-J. (2006). Life cycle of Pseudocalanus acuspes Giesbrecht
(Copepoda, Calanoida) in the Central Baltic Sea: I. Seasonal and spatial
distribution. Mar. Biol. 148, 567–580. doi: 10.1007/s00227-005-0103-5

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: a
versatile open source tool for metagenomics. PeerJ 4, e2584. doi: 10.7717/peerj.
2584

Saiz, E., and Kiørboe, T. (1995). Predatory and suspension feeding of the copepod
Acartia tonsa in turbulent environments. Mar. Ecol. Prog. Ser. 122, 147–158.
doi: 10.3354/meps122147

Sandnes, O., and Gulliksen, B. (1980). Monitoring and manipulation of a
sublittoral hard bottom biocoenosis in Balsfjord, northern Norway. Helgoländer
Meeresuntersuchungen 33, 467–472. doi: 10.1007/BF02414771

Sargent, J. R., and Falk-Petersen, S. (1981). Ecological investigations on the
zooplankton community in Balsfjorden, Northern Norway–lipids and fatty
acids in Meganyctiphanes norvegica, Thysanoessa raschi and Thysanoessa
inermis during mid-winter. Mar. Biol. 62, 131–137. doi: 10.1007/BF00388175
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