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Planktic foraminfera and shelled pteropods are important calcifying groups of
zooplankton in all oceans. Their calcium carbonate shells are sensitive to changes
in ocean carbonate chemistry predisposing them as an important indicator of
ocean acidification. Moreover, planktic foraminfera and shelled pteropods contribute
significantly to food webs and vertical flux of calcium carbonate in polar pelagic
ecosystems. Here we provide, for the first time, information on the under-ice planktic
foraminifera and shelled pteropod abundance, species composition and vertical
distribution along a transect (82◦–76◦N) covering the Nansen Basin and the northern
Barents Sea during the polar night in December 2019. The two groups of calcifiers were
examined in different environments in the context of water masses, sea ice cover, and
ocean chemistry (nutrients and carbonate system). The average abundance of planktic
foraminifera under the sea-ice was low with the highest average abundance (2 ind.
m−3) close to the sea-ice margin. The maximum abundances of planktic foraminifera
were concentrated at 20–50 m depth (4 and 7 ind. m−3) in the Nansen Basin and
at 80–100 m depth (13 ind. m−3) close to the sea-ice margin. The highest average
abundance (13 ind. m−3) and the maximum abundance of pteropods (40 ind. m−3)
were found in the surface Polar Water at 0–20 m depth with very low temperatures
(–1.9 to –1◦C), low salinity (<34.4) and relatively low aragonite saturation of 1.43–
1.68. The lowest aragonite saturation (<1.3) was observed in the bottom water in the
northern Barents Sea. The species distribution of these calcifiers reflected the water
mass distribution with subpolar species at locations and depths influenced by warm
and saline Atlantic Water, and polar species in very cold and less saline Polar Water.
The population of planktic foraminifera was represented by adults and juveniles of the
polar species Neogloboquadrina pachyderma and the subpolar species Turborotalita
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quinqueloba. The dominating polar pteropod species Limacina helicina was represented
by the juvenile and veliger stages. This winter study offers a unique contribution to
our understanding of the inter-seasonal variability of planktic foraminfera and shelled
pteropods abundance, distribution and population size structure in the Arctic Ocean.

Keywords: planktic calcifiers, the Arctic ocean, winter aragonite and calcite saturation state, pH, nutrients

INTRODUCTION

Planktic foraminifera and shelled pteropods are groups of
calcifying organisms that are ubiquitous in pelagic marine
ecosystems (e.g., Beaugrand et al., 2009; Schiebel and Hemleben,
2017). These organisms are major pelagic producers of calcite and
aragonite (most common forms of marine CaCO3), respectively,
and alongside coccolithophores play an important role in the
ocean biogeochemical cycles and the organic and inorganic
carbonate flux to the ocean floor (Milliman, 1993; Buitenhuis
et al., 1996, 2019; Schiebel, 2002; Berelson et al., 2007). Planktic
foraminifera provide 32–80% of the total calcite flux to the
global deep ocean (Schiebel, 2002), whereas pteropods being
more regionally and temporally variable, provide aragonite that
may constitute up to ∼12% of the total carbonate flux globally
(Berner and Honjo, 1981). In the polar areas, pteropods can
provide > 50% of the carbonate flux to the interior of the ocean
through the production of fecal pellets, mucous flocs and rapid
post mortem settling of aragonite shells (Howard et al., 2011).

At polar latitudes the planktic foraminifera Neogloboquadrina
pachyderma (Ehrenberg, 1861), Turborotalita quinqueloba
(Natland, 1938) and pteropods Limacina helicina (Phipps,
1774), Limacina retroversa (Fleming, 1823) dominate their
respective communities. Neogloboquadrina pachyderma and
L. helicina are polar species recorded mainly in Polar waters,
whereas L. retroversa and T. quinqueloba are considered to be
subpolar species (Bathmann et al., 1991; Volkmann, 2000). The
vertical and temporal distributions of planktic foraminifera
and pteropods in spring and summer are suggested to be
mainly determined by sea surface temperature and/or primary
production in the surface waters (Bednaršek et al., 2012a; Schiebel
and Hemleben, 2017). Regionally, these organisms constitute
a significant part of total zooplankton biomass representing
important grazers of primary producers and important prey for
zooplanktivores (Lalli and Gilmer, 1989).

In recent years, planktic foraminifera and shelled pteropods
have received widespread attention due to sensitivity to their
CaCO3 shells to ocean acidification (OA) (e.g., Comeau et al.,
2009; Moy et al., 2009; Lischka et al., 2011; Lischka and
Riebesell, 2012; Manno et al., 2012a,b, 2017; Bednaršek et al.,
2014b, 2017, 2019; Bednaršek and Ohman, 2015). Responses
of shelled pteropods (aragonite shell) to OA are documented
as a declined growth rate and calcification of shell (Comeau
et al., 2009, 2010; Lischka et al., 2011; Lischka and Riebesell,
2012; Bednaršek et al., 2014b) and the responses of planktic
foraminifera (calcitic shell) to OA are still inconclusive (Kroeker
et al., 2010; Manno et al., 2012a).

Despite their importance in the carbonate cycle, the impact
of the carbonate chemistry variability on planktic foraminifera

and shelled pteropod abundance and distribution is limited. It
has been suggested that the mortality of pteropods increase as
the seawater partial pressure of carbon dioxide (CO2) increases,
hence increasing the dissolution potential of CaCO3, but the
results of the few available experimental studies are uncertain and
contradictory (Lischka et al., 2011; Comeau et al., 2012; Lischka
and Riebesell, 2012). Until now, there is no clear evidence of a
relationship between the carbonate chemistry variables and the
abundance and distribution of these planktic calcifiers in the
natural environment.

During the Arctic winter, the ocean’s carbonate chemistry
shifts toward the highest pCO2, lowest pH and saturation
states for CaCO3 (�) due to increased CO2 solubility during
cooling, increased CO2 from respiration of organic matter,
and intensification of wind-induced vertical mixing of high-
CO2 subsurface water (e.g., Fransson et al., 2017). All these
processes cause decreases in the calcite (�Ca) and aragonite
saturation (�Ar) states (e.g., Chierici et al., 2011; Shadwick
et al., 2011; Fransson et al., 2017). Moreover, the progressing
oceanic uptake of atmospheric CO2 will reduce the carbonate
ion concentration thereby shifting the marine CO2 system toward
increased concentrations of bicarbonate ions. This reduces both
the ocean’s buffering capacity for further CO2 uptake and
the degree of CaCO3 saturation, simultaneously increasing the
solubility of CaCO3 minerals (Zeebe and Wolf-Gladrow, 2001
and references therein).

It is still under debate if Arctic pteropods, such as Limacina
helicina, slow down their metabolism and growth during
wintertime or continue the metabolic activity (Lischka and
Riebesell, 2012; Berge et al., 2020; Thibodeau et al., 2020).
Furthermore, a recent study from the west Antarctic Peninsula
has shown evidence that Limacina helicina antarctica shells
actively grow during the ice-covered winter season with
continued growth into the summer (Thibodeau et al., 2020).
The overwintering strategy is suggested to exert a domineering
impact on the ability of pteropods to counteract changes in
their environment. Polar and subpolar pteropods and planktic
foraminifera species are mainly feeding on available particulate
matter, with a diet of phytoplankton in spring and summer and
degraded organic material in late autumn and winter (Gannefors
et al., 2005; Schiebel and Hemleben, 2017). The ability to feed
on dead organic matter probably allows them to increase their
survival potential in winter.

Knowledge regarding planktic foraminifera during the polar
night is poor, apart from a few studies in the Southern Ocean
documenting the ability of N. pachyderma to overwinter in brine
channels in pack and fast ice (Dieckmann et al., 1991; Spindler,
1996). In the Barents Sea, studies of planktic foraminifera
and pteropods including abundances, vertical and temporal
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distribution and the overall importance of these species in the
marine ecosystems are scarce and restricted to a few studies from
the southern and central parts (Kacprzak et al., 2017; Pasternak
et al., 2017; Meilland et al., 2020; Ofstad et al., 2020). Moreover, all
the studies focus on data obtained from spring to autumn. Until
now, no winter data on the abundance and depth distribution
of planktic foraminifera and shelled pteropods in the seasonally
sea-ice covered northern Barents Sea exist.

The aim of this study is to provide new information linking
under-ice planktic foraminifera and pteropods abundances, their
species and size distributions to water depth and contrasting
water masses during the Arctic winter. We examine the range
of environmental variables and explore possible environmental
preferences of these small calcifying zooplankton species along
a north-south transect in the northern Barents Sea and the
Nansen Basin. The results are discussed in the context of sea-
ice cover, water masses, food limitation, nutrients, pH, �Ca
and �Ar. Additionally, we discuss the potential contribution of
these calcifiers to the organic and inorganic carbon flux during
the polar night.

Study Area
The general oceanic circulation pattern in the Barents Sea is
shown in Figure 1A. The relatively warm and saline Atlantic
Water (AW) enters the Barents Sea mainly from the southwest
at the Barents Sea Opening, where the West Spitsbergen Current
(WSC) bifurcates into two main branches (Loeng, 1991). As the
WSC flows northward through the eastern Fram Strait entering
the Arctic Ocean, a fraction of the AW follows the Eurasian
continental margin into the central Arctic Ocean, where the AW
enters the Barents Sea from northwest as a subsurface inflow
(e.g., Mosby, 1938; Lind and Ingvaldsen, 2012; Figures 1A,B).
The warm and saline AW and the cold Polar Water (PW) are
separated by the Polar Front characterized by strong temperature
and salinity gradients and differences in seasonal sea-ice cover.

In the northern Barents Sea, the PW isolates the sea-ice cover
from the subsurface AW. Along the way, the AW is gradually
mixed with PW creating a modified AW (mAW) (Pfirman et al.,
1994). The PW consist of the remnants of the mixed water formed
by cooling and brine rejection in winter (Rudels et al., 1996).
The main supply of freshwater for the winter mixed water in the
northern Barents Sea is sea-ice import from the Nansen Basin
and adjacent Kara Sea in addition to precipitation (Rudels et al.,
2004). The Barents Sea Deep Water (BSDW) is formed locally
through ice freezing and thermohaline convective processes as
well as the modification of AW through atmospheric cooling
(e.g., Lien and Trofimov, 2013).

The seasonal variability of the marine CO2 system and
nutrients in the Barents Sea follows the physical and biological
processes (Reigstad et al., 2002). The nutrient uptake is initiated
by the spring bloom, which continues to late summer, leading
to nitrate depletion and low CO2 levels (high � and pH) in the
surface waters due to photosynthetic activity by phytoplankton.
By fall, the nutrient and CO2 values increases due to the mixing
of nutrient and CO2 rich sub-surface waters to the surface
water. Biological processes (photosynthesis and respiration) are
postulated to explain much of the observed seasonal changes of

the carbonate/CO2 system in the Arctic Ocean as well as on the
air-sea CO2 exchange (Chierici et al., 2011; Tynan et al., 2016;
Fransson et al., 2017).

The sea-ice conditions in the Barents Sea show a high seasonal
and inter-annual variability (e.g., Deser et al., 2000; Vinje, 2001;
Shapiro et al., 2003; Divine and Dick, 2006). Generally, the ice
conditions are influenced by Atlantic and Polar Water masses, the
import of sea-ice from the north and by atmospheric conditions.
Usually, sea-ice coverage is at a minimum in September, whereas
maximum sea-ice cover typically occurs in April (Norwegian
Meteorological Institute, 2020). During our winter sampling,
the sea-ice concentration decreased from north (∼110 cm) to
south (∼20 cm) and only the southernmost station was ice-
free (Figure 1C).

MATERIALS AND METHODS

The research was conducted in the northern Barents Sea between
82◦3′50′ N, 28◦30′6′ E and 76◦0′ N, 31◦13′8′ E in December 2019
aboard the Norwegian icebreaking R/V Kronprins Haakon within
the Nansen Legacy project (Figure 1).

Water column temperature and salinity profiles (Figure 2)
were obtained with a conductivity-temperature-depth (CTD)
sensor system Sea-Bird SBE 911+mounted on a General Oceanic
rosette sampler equipped with 24 Niskin bottles used for seawater
sampling of chemical variables in the water column.

Seawater samples for the macronutrients nitrate [NO3
−],

phosphate [PO4
3−], and silicic acid [Si(OH)4] were drawn from

the Niskin bottles into 20 mL vials, preserved with chloroform
and stored at 4◦C. Analysis were carried out using a Flow Solution
IV analyzer from O.I. Analytical, United States, following
Grasshof et al. (2009) at the Institute of Marine Research, Bergen,
Norway. The analyzer was calibrated using reference seawater
from Ocean Scientific International Ltd., United Kingdom. The
detection limits were 0.04 mmol m−3 for [NO3

−] and 0.06 mmol
m−3 for [PO4

3−].
Seawater samples for total dissolved inorganic carbon

(DIC) and pH were collected following standard procedures
outlined in Dickson et al. (2007) and subsequently analyzed
within approximately 24-hrs at a temperature around 25◦C.
pH was measured on the total hydrogen scale (pHT) using
spectrophotometric determination according to Clayton and
Byrne (1993) and the indicator dye, meta-cresol purple. The
perturbation of the sample pH due to the dye addition was
corrected according to Chierici et al. (1999). The precision
was generally better than 0.001 units as determined from
the average standard deviation for triplicate measurements.
DIC was determined using a coulometric titration with
a Versatile Instrument for the Determination of Titration
Alkalinity (VINDTA 3D, Marianda, Germany). The procedure
is described in Dickson et al. (2007). Routine analyses of
Certified Reference Materials (CRM, provided by A. G. Dickson,
Scripps Institution of Oceanography, United States) ensured
the accuracy and precision of the DIC measurements. The
average standard deviation from triplicate CRM analyses was
within± 2 µmol kg−1.
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FIGURE 1 | (A) Schematic map of the main current systems in the Nordic Seas and the Barents Sea. The study area is indicated by a black rectangle. The Polar
Front is indicated by a white line. Solid and dashed red/blue lines show surface and subsurface ocean currents, respectively. (B) Oceanic currents in the study area
and (C) sea-ice extension, sea-ice type of the last day of sampling (12th December 2019). The transect of sampled stations is shown as black line. The sea ice map
was generated using GSHHG (Global Self-consistent, Hierarchical, High-resolution Geography Database) data from the Norwegian Meteorological Institute and ice
data were provided by the Norwegian Ice Service (MET Norway).
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FIGURE 2 | The temperature-salinity characteristics of water masses based on the CTD profiles at (A) 0–50 m water depth and (B) from 50 m water depth to
near-bottom in December 2019 at each station (symbol-coded). PsW- Polar surface Water, PW- Polar Water; wPW- warm Polar Water, AW- Atlantic Water, mAW-
modified AW, BSDW- Barents Sea Deep Water (Sundfjord et al., 2020 with a slight modification). The data for deeper stations P7 and P6 (Table 1) are shown only
for the upper 300 m of the water column.

The in situ pH and CaCO3 saturation states of aragonite
(�Ar) and calcite (�Ca) were calculated from pairs of DIC and
measured pH, together with the temperature, salinity, pressure,
Si(OH)4] and [PO4

3−] using the chemical speciation model
CO2SYS (Pierrot et al., 2006). The carbonic acid dissociation
constants of Mehrbach et al. (1973) as refitted by Dickson and
Millero (1987) were used in combination with the bisulfate
dissociation constant from Dickson (1990), and the total boron
concentration of Lee et al. (2010). The aragonite and calcite
stoichiometric solubility constants of Mucci (1983) were used
with the pressure corrections of Millero (1979) and the calcium
concentration and salinity ratio of Riley and Tongudai (1967).

Planktic foraminifera and shelled pteropods were collected
at seven stations (P7 to P1) along a north-south transect
(Figures 1B,C and Table 1) using a stratified plankton tow
(MultiNet Hydro-Bios type Midi, opening of 0.25 m2) equipped
with five net bags with 63 µm mesh gauze. Sampling was
performed at each station immediately after or before the CTD
cast. One vertical haul sampled five depth intervals (Table 1)
from the back of the ship except for station P7 and P1, where
the sampling was performed via the moonpool inside the
research vessel. Depth intervals 0–20, 20–50 m were sampled
at each station. Deeper depth intervals were determined by the
bathymetry at each station, with last depth interval close to the
sea floor except for station P7 (3,517 m water depth), where only
the upper 300 m were sampled (Table 1). Samples at station P6,
P4 and P2 were analyzed immediately after recovery on board
and samples at station P7, P5, P3 and P1 were frozen at –80◦C
until processing on land, at the NPI/IMR Fram Center laboratory,
Tromsø, Norway. The content of each cod-end was concentrated
on a cascade of 500, 250, 100 and 63 µm meshed sieves and

segregated with stream of sea water into size ranges: > 500,
500–250, 250–100, 100–63 µm. All planktic foraminifera and
pteropods were counted for each size range separately, and, if
applicable, identified to species level under a microscope [Leica
M60 (on board); Leica M80 (on land)] equipped with transmitted
light bases (Supplementary Table 1). In addition, the diameter of
pteropods > 500 µm was measured (Supplementary Table 2 and
Supplementary Figure 1). The majority of taxa was identified
to species level morphologically. However, individuals in the
smallest size ranges could not be assigned to species as they lacked
the morphological features characteristic for specific species.
This ambiguity occurred mainly for planktic foraminifera in
size range 100–63 µm and for pteropods in size range 250–
63 µm that subsequently were termed as planktic foraminifera
juveniles and small-sized Limacina (ssL), respectively. Planktic
foraminifera species in range size 250–100 µm are considered as
adults (Brummer et al., 1986; Caromel et al., 2016). Pteropods
in size ranges > 500, 500–250, 250–100 µm were classified
according to Lalli and Gilmer (1989) with slight modifications.
Life stages in our study are defined as follows: adults (>4,000 µm
for L. helicina and > 1,000 µm for L. retroversa), juveniles
(for L. helicina 4,000–500 µm and for L. retroversa 1,000–
500 µm), early juveniles-late veligers (500–250 µm), veligers
(250–100 µm) and early veligers (100–63 µm). Following the
size metric of pteropods generally used in the literature the
size of L. helicina, L. retroversa and ssL will be reported in
millimeters (mm) hereafter.

Living (cytoplasm bearing) and dead (empty shells) pteropods
and foraminifera were distinguished via the presence or absence
of cytoplasm/soft body visible through the shell, respectively.
Shells with degraded remnants of soft tissues were considered as
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TABLE 1 | Sampling locations, temperature and salinity ranges and tow information at each (P) station. Asterisk (*) indicates ice-free station.

St. Long. N Lati. E Sampling date
Water depth

(m)
Temp. (◦C)

min
max

Salinity
min
max

Depth
sampled (m)

Filtered water
volume (m3)

P7 82◦ 3′ 50′′ 28◦ 30′ 6′′ 2019-12-2 3,517 −1.81
2.70

33.19
34.96

0–20 8

20–50 11

50–100 18

100–200 34

200–300 34

P6 81◦ 32′ 32′′ 30◦ 56′ 46′′ 2019-12-5 844 −1.60
4.12

33.68
34.97

0–20 8

20–50 11

50–200 51

200–600 100

600–750 84

P5 80◦ 31′ 2′′ 34◦ 16′ 25′′ 2019-12-6 143 −1.82
0.09

33.98
34.65

0–20 8

20–50 11

50–80 11

80–100 8

100–125 10

P4 79◦ 43′ 30′′ 33◦ 59′ 28′′ 2019-12-8 344 −1.86
−0.46

34.12
34.77

0–20 8

20–50 11

50–100 18

100–200 34

200–300 34

P3 78◦ 45′ 0′′ 33◦ 59′ 35′′ 2019-12-9 305 −1.89
−1.10

34.45
34.79

0–20 8

20–50 11

50–100 18

100–200 34

200–280 28

P2 77◦ 30′ 0′′ 34◦ 0′ 7′′ 2019-12-10 190 −1.86
−0.80

34.37
34.76

0–20 8

20–50 11

50–80 11

80–100 8

100–170 24

P1* 76◦ 0′ 0′′ 31◦ 13′ 8′′ 2019-12-12 326 2.74
0.97

34.92
34.95

0–20 8

20–50 11

50–100 18

100–200 34

200–300 34

dead and only shells with a clearly visible soft body were counted
as living. As the net was trawled vertically, samples volumes
(m3) were calculated from the net mouth area and deployed
depth range (m). Results are given in absolute abundances
in number of individuals per cubic meter of filtered water
(ind. m−3).

RESULTS

Physical and Chemical Characteristics of
the Water Masses
Water mass identifications are based on the temperature-salinity
characteristics measured in December 2019 (Figures 2A,B). The
water mass definitions follow Sundfjord et al. (2020) with a

slight modification. At each station covered by sea-ice (P7–P2,
Figure 1C) a cold (near or at freezing temperatures), relatively
fresh and homogenous under-ice Polar surface Water (PsW) layer
was observed (Figures 2A, 3B, 4B). The depth of the PsW layer
varied between 10 and 60 m. Warm and saline AW was found
below the PsW at station P7, P6 and at the station P1. Below the
AW layer, a mAW and warm Polar Water (wPW) was identified
(Figures 2, 3B, 4B). The core of Atlantic water (identified by
the subsurface temperature maximum) was observed at P7 at
∼210 m and at P6 at ∼138 m water depths. At station P5,
below the surface layer, colder and less saline PW was found
(Figures 2, 3B, 4B). At stations P4, P3 and P2, below the very
cold (<–0.4◦C) and relatively low salinity PsW (34.12–34.76),
cold and more saline PW was recorded. At greater depths, vertical
temperature (T < –1.1◦C) and salinity (> 34.5) gradients indicate
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FIGURE 3 | (A) Absolute abundances (ind. m−3) and size distribution of living planktic foraminifera and pteropods species plotted against sampled depth intervals.
Numbers in pink at station P5 indicate abundances of Clione limacine. (B) temperature and salinity (from 10 m water depth), (C) inorganic nutrients concentrations
(PO4

3−, Si(OH)4, NO3
−), (D) aragonite (�Ar) and calcite (�Ca) saturation state at each station. Note different x-axis for the abundance in size range 250–100 µm at

station P2 and for size range > 500 µm at stations P2-P5. Temperature, salinity, nutrients, �Ar and �Ca at station P7 are shown for the upper 300 m of the water
column.

the occurrence of BSDW at these stations (Figures 2, 3B, 4B).
The surface water (upper ∼100 m) of the sea-ice free station P1
was occupied by warm (2.71–3.63◦C) and saline (34.95–34.79)
AW. Below 100 m depth, cooler and less saline mAW with
temperature < 2◦C and average salinity of 34.94 were found
(Figures 2, 3B, 4B).

The distribution of carbonate chemistry variables varies both
between the stations along the transect and within the vertical
gradient of the water columns (Table 2 and Figures 3D, 4C).
The � values decreased from the surface to the bottom waters.
Both �Ar and �Ca were oversaturated (� > 1) throughout

the entire water column at all stations (Figures 3D, 4C). The
maximum values (�Ar = 1.85 and �Ca = 2.95) were recorded
in the surface water at the northernmost station P7 and the
minimum values (�Ar = 1.13 and �Ca = 1.79) at station P2
close to the sea floor at ∼180 m water depth (Table 2 and
Figures 3D, 4C). The maximum pH of 8.25 was recorded at the
surface at station P7 and the minimum pH of 7.99 at the bottom
at station P2 (Table 2).

The highest concentrations of all nutrients were recorded
below 100 m at stations P6 and P2 (Table 2 and Figure 3C).
Maximum concentrations of the different nutrients were
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FIGURE 4 | (A) Absolute abundances (ind. m−3) and size distribution of dead planktic foraminifera and pteropods species (B) temperature and salinity (from 10 m
water depth) and (C) aragonite (�Ar) and calcite (�Ca) saturation state at each station plotted against sampled depth intervals. Note different x-axis for the
abundance in size ranges 250–100 µm and 100–63 µm. Temperature, salinity, �Ar and �Ca at station P7 are shown for the upper 300 m of the water column.

∼11 µmol L−1 for [NO3
−], 6.5 µmol L−1 for [Si(OH)4] and

∼0.8 µmol L−1 for [PO4
3−]. The lowest concentrations were

observed in the surface water at station P7 with 2.6 µmol L−1

of [NO3
−], 1.7 µmol L−1 of [Si(OH)4] and 0.3 µmol L−1 of

[PO4
3−] (Table 2 and Figure 3C). The low concentrations of

nutrients and � ware mainly found in the PW (stations P4, P3,
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P2) and the relatively high nutrients and � concentrations are
observed in the AW mass and its admixture.

Abundance and Species Distribution of
Living Planktic Foraminifera and
Pteropods
Living planktic foraminifera integrated for the upper 200 m of
the water column was generally very low with highest abundance
of 2.3 ind. m−3 recorded at station P2 where water depth
was 170 m (Figure 5). At the northernmost stations, planktic
foraminifera were found in the upper 50 m of the water column
with abundances reaching up to 2.6 ind. m−3 at station P7 and
6.8 ind. m−3 at station P6. At P5, the distribution was rather
uniform within the upper 100 m of the water column. At station
P2, the highest abundance of planktic foraminifera of 2.3 ind.
m−3 occurred in the deeper between 50 and 170 m water depth
(Figure 3A). The polar species N. pachyderma dominated at all
stations except for station P6 and P1 where the subpolar species
T. quinqueloba dominated (Figure 5).

Highest average abundance of pteropods was observed at
station P5 (12.5 ind. m−3) where the abundance was estimated
for the upper 125 m water depth and P4 (8.5 ind. m−3)
where the abundance was estimated for the 0–200 m interval
of the water column (Figure 5). Pteropods were absent or
close to absent at AW influenced stations such as stations P7
and P1 (Supplementary Table 1). The polar species L. helicina
dominated at all stations (100%) except for station P6 and P5
where the subpolar species L. retroversa was still low (0.3 ind.
m−3 and 0.2 ind. m−3) but constituted 80 and 1.2% of the
total pteropod relative abundance, respectively (Figure 5). At
station P5, the majority of L. helicina were distributed in the
upper 50 m of the water column and at stations P4 and
P3 the depth distribution of this species was rather uniform,
coinciding with the distribution of the PW (Figures 3A,B). At
station P2, most of this species occurred below 50 m water
depth (Figure 3A). While living ssL (0.25–0.063 mm) were
scarce, early juveniles-late veligers of L. helicina (0.5–0.25 mm)
accounted for > 35% of the total abundance at all stations
of occurrence (Figure 3A). Vertical distribution of juveniles
of L. retroversa (>0.5 mm) at station P6 and P5 was also
limited to upper 50 m water depth. Adults of L. retroversa
(> 1 mm) were found at stations P6 and P5 in the upper
20 m of the water column and at the 50–100 m water depth
interval. Clione limacina that is known as the predator of
L. helicina (Lalli, 1970; Conover and Lalli, 1974; Norekian
and Satterlie, 1996; Böer et al., 2005) was recorded only at
station P5 (0.13 ind. m−3) at 20–50 and 80–100 m water
depth with abundances of 0.5 ind. m−3 and 0.2 ind. m−3,
respectively (Figure 3A).

Abundance and Species Distribution of
Dead Planktic Foraminifera and
Pteropods
The concentration of dead planktic foraminifera (empty
shells) in the upper 200 m water depth varied between
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FIGURE 5 | Distribution of living and dead species of planktic foraminiferal and pteropods along the north-south transect in the northern Barents Sea. All data are
presented for the upper 200 m water depth except for station P2 and P5 where the water depth is 170 m and 125 m, respectively. Species are color-coded and
indicated in the legend. Total abundance (ind. m−3) of living (real colors) and dead (dimmed colors) planktic foraminifera and pteropods are indicated by the size of
the pie charts with a legend in the left corner. Sampling locations are indicated by black stars. Small-sized Limacina includes empty shells of Limacina spp. in size
fraction 250–63 µm not identifiable to species level.

0.4 ind. m−3 (stations P1, P3) and 3.7 ind. m−3 (station
P7) (Figure 5).

The concentration of dead pteropods varied between 0.1 ind.
m−3 (within 0–200 m) at station P7 and 372 ind. m−3 at station
P2 (within 0–170 m) (Figure 5). Between 95% and 98% of dead
pteropods accounted for the ssL in size range 0.25–0.1 mm and
0.1–0.063 mm, respectively (Figure 4A). Dead specimens in size
fraction > 0.25 mm were represented only by the L. helicina
species (Figure 5).

DISCUSSION

Oceanic Factors Influencing
Abundances of Living Planktic
Foraminifera, Shelled Pteropods and
Concentration of Their Empty Shells
Advection and mixing by ocean currents are the primary
physical forcing experienced by marine organisms and therefore
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of a great concern in plankton studies. The contribution of
transported zooplankton to the Arctic Ocean has not yet been
adequately quantified and is hence poorly defined (Wassmann
et al., 2015). Although, shelled pteropods are active swimmers
and planktic foraminifera are able to regulate their buoyancy via
cellular components and thus inhabit certain depths (Marszalek,
1982; Schiebel and Hemleben, 2017), their abundances can be
influenced by the direction and intensity of ocean currents.
Lateral advection may transport shells of planktic foraminifera
over distances of > 25 km for N. pachyderma and > 50 km
for T. quinqueloba (Von Gyldenfeldt et al., 2000). Transport
of shells can also be strengthened by water stratification
that increases resident time at the shear boundary between
water masses (Kuhnt et al., 2013). As the northern Barents
Sea has a complex hydrography (Figure 1), the extension of
lateral advection of planktic foraminifera and shelled pteropods
is poorly constrained. However, considering potential lateral
advection of planktic foraminiferal shells, Pados and Spielhagen
(2014) observed, that in an equally dynamic area such as the deep
Fram Strait, the distribution pattern discerned by plankton tows
was clearly reflected on the sediment surface strongly suggesting
that the effect of ocean currents on planktic foraminifera
is negligible. As the veligers of shelled pteropods are only
slightly smaller and comparable in size to planktic foraminifera,
the assumption can be valid for the ssL too. In addition,
the wind-driven ocean circulation, mixing and the resulting
strengthening of surface currents, that could potentially facilitate
the transport of small planktic foraminifera and pteropods shells,
is significantly subdued due to the presence the sea-ice cover
during our sampling time. Moreover, the velocities of ocean
currents in the Barents Sea are very low, with bottom currents
ranging between 2 and 3 cm s−1 (e.g., Kushnir et al., 2007)
and surface currents oscillating around an average of 1.8 cm
s−1 (Abrahamsen et al., 2006). Therefore, the lateral transport
of planktic foraminifera and pteropods, although possible, can
be considered as insignificant. This is evident in the species
composition of pteropods along the transect, except for the
northern station P5, where the mean currents velocities are
reported to be higher up to 10 cm s−1 (Lind and Ingvaldsen,
2012). The presence of the few subpolar pteropod L. retroversa
and the slightly higher temperature at station P5, compared to
stations P4–P2 located within the PW regime, suggest that the
lateral southward transport of this species by the admixture of
AW masses from station P6, where the highest abundance of
L. retroversa was recorded, is very likely (Supplementary Table 1
and Figures 3A,B, 5).

In case of dead shells, in addition to physical environmental
factors that in the study area during our sampling time likely
are inconsequential, the sinking speed of empty dead shells may
be decisive for their residence time in the surface water. The
sinking speeds of planktic foraminifera shells are governed by
shell weight, volume and presence or absence of spines. The
sinking speed of the spinose species, e.g., T. quinqueloba is
approximately threefold slower than those of the non-spinose
species (Caromel et al., 2014). Based on data from plankton
tows most planktic foraminifera > 150 µm sink at speeds of
13.3–53 m h−1 (Takahashi and Bé, 1984). Similarly to planktic

foraminifera, the sinking behavior of shelled pteropods is also
strongly correlated to their shell morphology and size, with the
tiny coiled shell pteropods sinking the slowest, the large globular
shelled pteropods sinking the fastest, and the medium-sized
elongated shell pteropods sinking at intermediate speeds (Walker
et al., 2021). The sinking velocity of empty pteropod shells was
approximated between 36 and 50 m h−1 (Lalli and Gilmer, 1989)
and the sinking speed for L. helicina was estimated to 18–162 m
h−1 (Chang and Yen, 2012). The rather fast sinking velocities of
empty shells of planktic foraminifera and pteropods imply a short
retention time in the surface waters and quick settlement upon
death. Considering the distances between and water depths at our
stations, the average sinking speed for L. helicina of 90 m h−1

(Chang and Yen, 2012) and the average current speed of 65 m h−1

(Abrahamsen et al., 2006), it is unlikely that the empty shells has
been transported by currents at station P4–P1. Moreover, most
of the dead shells found in our samples, still contained fragments
of the soft tissue that was visible through the transparent shells.
The presence of the incompletely degraded remnants of organic
matter in the shells indicate that the organisms likely recently
died and thus represent a population that lived and/or survived
under-ice conditions until the sampling time in the area.

Living Planktic Foraminifera
Only one study on living planktic foraminifera from the central-
northern Barents Sea area has been undertaken (Ofstad et al.,
2020) and knowledge regarding the seasonal distribution of
planktic foraminifera in the polar regions is still scarce. Until
now, no data of under-ice planktic foraminifera fauna from the
Arctic winter are available. In the northern Barents Sea, the
average abundance of under-ice planktic foraminifera were low
and occurred mainly in the upper 50 m of the water column
(P7—P5, Figure 3A). In April (2016) in the year-round ice-
free Bjørnøyrenna area, ∼235 km south of our southernmost
station (P1), the average concentration of planktic foraminifera
ranged from 0 to 6 ind. m−3 (Ofstad et al., 2020). Moreover,
abundances of <10 ind. m−3 have been reported at Bjørnøyrenna
Trough in summer (Meilland et al., 2020). The similarly
low abundances recorded in winter (December), spring and
summer suggest that sea-ice cover and low temperatures do not
significantly influence the abundance of planktic foraminifera.
This coincides with recent results from the south-west Barents
Sea showing that in shallow waters the commonly attributed
environmental parameters such as temperature and salinity have
limited influence on the abundance of planktic foraminifera
(Schiebel and Hemleben, 2017; Meilland et al., 2020). Shallow
depths may impede the production of planktic foraminifera
(Schmuker, 2000), which therefore likely and partially can explain
the observed low abundance in the shallow Barents Sea.

The under-ice species composition recorded along the transect
shows that T. quinqueloba constitutes from 18 to 67% of
the total planktic foraminiferal fauna (Figures 3A, 5). Given
previous studies that consider N. pachyderma as the dominant
species in polar regions, making up more than 90% of the
total planktic foraminiferal assemblages (Kucera et al., 2005;
Pados and Spielhagen, 2014), the relatively high proportion
of T. quinqueloba in the high north is somewhat surprising.
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In addition, T. quinqueloba is found alive in water masses
with temperatures below 0◦C suggesting a potential adaptation
of this subpolar foraminifera to the conditions in the area
(Figures 3A, 5). However, for a true species shift to occur, the
organism must be able to reproduce in the new environment.
Despite the occurrence of juveniles (100–63 µm) in the area
(Figure 3A), in situ reproduction cannot be proven with our
data. Moreover, the relatively high numbers of dead juveniles
(0.2–7.5 ind. m−3, Figure 4A), compared to living juveniles
(0.1–2.3 ind. m−3, Figure 3A), suggest a noteworthy mortality
at stations P7–P5. This implies that these organisms can survive
rather than adapt to the under-ice conditions. The survival and
future presence of subpolar planktic foraminifera in the under-
ice waters in winter can be associated with the ability of these
organisms to feed on a wide variety of food including dead
organic matter (Schiebel and Hemleben, 2017) that may be stored
in young sea-ice (Gradinger and Ikävalko, 1998; Krembs et al.,
2002) and upon melting released to the under-ice water. In
winter, sea-ice may serve as a storage of dead organic matter from
the previous productive season.

Living Shelled Pteropods
The concentrations of under-ice abundance of living pteropods
(0.1–12.5 ind. m−3, Figure 5) in our study in the northern
Barents Sea in winter are relatively comparable to under-ice
concentrations of 0.4–179 ind. m−3 observed at 0 and 5 m
water depth in late winter upon return of daylight (March) in
Storfjorden (Werner, 2005). Surprisingly, they are also similar
to concentrations recorded in spring (0–5 ind. m−3 in April)
and in summer (0–47 ind. m−3 in June) reported for 0–300 m
water depth in central Barents Sea (Bjørnøyrenna) (Ofstad et al.,
2020). During the peak reproduction time in August-September
the average abundance of pteropods in the upper ∼300 m varied
between 3 and 851 ind. m−3 north of Svalbard (Daase and Eiane,
2007) and between 13 and 52 ind. m−3 at the average depth of
122 m in the central and southern parts of the western Barents
Sea (Kacprzak et al., 2017). The abundances of pteropods over the
Barents Sea-Svalbard area may also reflect the patchiness of their
occurrence, as they locally are able to form dense aggregations in
the water column (Percy and Fife, 1985).

In our study, the dominant polar species L. helicina was
confined to the cold PW supporting previous results that indicate
a connection between pteropod abundances and certain water
mass properties in the western Barents Sea (Kacprzak et al.,
2017). The highest abundance of 65.2 ind. m−3 was observed
at 0–50 m water depth at station P5 in very cold water masses
with temperatures of –1.8 to –1◦C (Figures 3A,B). The high
abundances of L. helicina followed the distribution of the very
cold water at station P4 that extended to the sea bed from 50 m
water depth (Figures 3A,B).

The relation of pteropods to certain water masses in winter
is also observed, alike planktic foraminifera (see above), in the
species composition of pteropods. The highest percentage of the
subpolar pteropod L. retroversa (80%, 0.9 ind. m−3) was found in
AW masses with the warmest temperatures of 3.0–4.1◦C and the
highest recorded salinity of 34.9 at station P6 (Figures 3A,B, 5).
These warm temperatures agree with the optimal temperature

tolerance of 2.0–16◦C previously reported for L. retroversa
(van Der Spoel, 1967, 1976). The water temperature in which
L. helicina was found, ranges between –2◦C and 0◦C and it
is lower than the previously assessed temperature tolerance
of –0.4◦C and +4.0◦C (van Der Spoel, 1967, 1976). This may
suggest that L. helicina, as the subpolar planktic foraminiferal
species T. quinqueloba, adapted to and/or survived the very low
temperatures in situ under the sea-ice cover in the northern
Barents Sea. The life cycle of planktic foraminifera in high
latitudes in winter is still unknown and the overwintering strategy
of pteropods is still under debate (Lischka and Riebesell, 2012;
Berge et al., 2020; Thibodeau et al., 2020). Independent from,
whether pteropods live in a stage of reduced metabolism (Lischka
and Riebesell, 2012) or the overwintering strategy is no change
in metabolism with a continued active growth (Berge et al., 2020;
Thibodeau et al., 2020), they are able to adapt to and survive harsh
conditions of the under-ice waters.

Relationship of Living Pteropods With Environmental
Parameters
The surface waters of the Arctic Ocean with low temperatures and
naturally low �Ar (Chierici and Fransson, 2009) are expected to
become locally undersaturated with respect to aragonite within a
decade (Steinacher et al., 2009). Yet, undersaturated waters have
been found already in summer 2005 on freshwater influenced
Arctic shelves (Chierici and Fransson, 2009). Although the
�Ar, �Ca and pH were low in the water column along the
transect in the northern Barents Sea, the �Ar and �Ca values
did not attain undersaturation with values < 1 (Table 2 and
Figure 3D). However, �Ar of 1.23–1.13 recorded at station P2
already between 90 and ∼180 m water depth and < 1.3 in
the deepest water masses at stations P1, P3 and P4 are very
low in comparison with other winter-spring data available in
literature for the Barents Sea region (Chierici et al., 2019; Ofstad
et al., 2020; Table 2 and Figure 3D). Moreover, these �Ar
values (<1.4) are reported to be critical for L. helicina shell
formation (Bednaršek and Ohman, 2015; Bednaršek et al., 2019).
The �Ar values recorded at station P2 fall < 1.2, which is a
threshold under which shell calcification of this species can be
greatly reduced (Bednaršek et al., 2017). Although it has been
suggested that L. helicina can precipitate aragonite at �Ar < 1 (at
temperature ∼4◦C), the shell dissolution is reported to continue
(Comeau et al., 2010). In a future climate change with more
meltwater and continued anthropogenic CO2 uptake resulting in
decreased �Ar values, it is likely that L. helicina in the northern
Barents Sea will experience larger stress and will require more
energy to avoid shell dissolution and continue shell growth.
This could compromise the fitness (Fabry et al., 2008), threaten
their survival (Comeau et al., 2011; Bednaršek et al., 2012a;
Maas et al., 2012) and possibly influence the abundances and
distribution of these planktic calcifiers. Moreover, environmental
parameters in the northern Barents Sea, show strong covariance
between the ocean carbonate chemistry, temperature, salinity
and nutrients within each station (Figures 3B–D). Therefore,
a single environmental parameter cannot be selected as
main variable influencing abundances and distribution of
these planktic calcifiers. In addition to food availability,
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the ocean variables could independently or simultaneously
intensify or counterbalance the environmental impact on the
abundance and distribution of planktic foraminifera and shelled
pteropods in our study.

Population Size Structure and Life Cycle
Because of the relatively small size of planktic foraminifera
and the difficulties to maintain live specimens in laboratory
cultures during complete a life cycle (Murray, 1991), estimates
of foraminiferal longevity and life cycles are still debated (Nigam
et al., 2003). The life span estimates are very variable ranging
from a few days to almost 8 months (e.g., Caron and Swanberg,
1990; Spindler, 1996; Nigam et al., 2003). Primary production
and food availability have been suggested to define the suitable
conditions for growth and reproduction of planktic foraminifera
(Kretschmer et al., 2016). When sufficient food is accessible,
planktic foraminifera can attain maturity by quickly adding the
last few chambers and undergo gametogenesis. The relatively
high under-ice abundances of living juveniles (0.1–0.063 mm)
observed in the northern Barents Sea during winter may
represent a population of overwintering juveniles spawned just
before the sea-ice thickened that survived under the sea-ice by
feeding on marine snow (Figure 3A).

Pteropods were represented by L. helicina juveniles
(>0.5 mm) and late veligers (0.5–0.25 mm) and by the
male form of L. retroversa (> 1 mm, Lalli and Gilmer, 1989;
Supplementary Table 2). The size structure alongside the
abundance of pteropods is commonly used to estimate the rate
of growth and determine their life cycle. There is an increasing
number of studies discussing the life cycle of pteropods, among
which the life cycle of L. helicina is of special interest (e.g.,
Gannefors et al., 2005; Hunt et al., 2010; Wang et al., 2017). Due
to environmental conditions, especially primary productivity
(Seibel and Dierssen, 2003) and seawater temperature (Seibel
et al., 2007, 2012; Lischka et al., 2011), wide regional variations in
the life cycle model for L. helicina have been presented.

In Kongsfjorden (Svalbard) (Gannefors et al., 2005) and in
the north Pacific (Wang et al., 2017) spawning of L. helicina
took place in spring and autumn. The longevity in these areas
was proposed to be 1 year (Gannefors et al., 2005). In the high
Arctic Ocean, Kobayashi (1974) observed a prolonged spawning
period between later winter and late autumn and suggested a
longevity of 1.5–2 years. In addition, two contrasting life cycles
are presented for L. helicina in the Southern Ocean where both a
1-year (Hunt et al., 2008) and a 3-year longevity (Bednaršek et al.,
2012a) has been proposed.

The abundance and size range of L. helicina found in
December in the northern Barents Sea suggest that the juveniles
(4.0–0.5 mm) of this species likely represent the population that
was spawned in late autumn. This coincides with studies from
the Arctic Ocean and Svalbard fjords that suggest a breeding
period of L. helicina during autumn (Kobayashi, 1974; Gannefors
et al., 2005). Recently, an active grow of Limacina helicina
antarctica has been reported throughout the winter season in
the Southern Ocean (Thibodeau et al., 2020). Therefore, it is
possible that the occurrence of living juveniles in December
may indicate that a growth of the overwintering L. helicina

(veligers into juveniles) occurred despite of the lack of daylight
(hence limited primary production), the increase and thickening
of sea-ice cover and declining food quality during early winter
months (October to December). The ongoing growth during
winter months can probably be linked to the ability of veligers
of L. helicina to feed on poor nutritional choices, which, during
winter, can be limited to degraded organic material (Kobayashi,
1974; Gannefors et al., 2005), as is also suggested for planktic
foraminifera (see above). In addition, juveniles of L. helicina can
accumulate lipids and utilize them in winter (Gannefors et al.,
2005; Boissonnot et al., 2019).

Furthermore, the absence of living young veligers in the size
range 0.25–0.1 mm and 0.1–0.063 mm in December indicates
either that no spawning occurred in early winter (October-
December) or that the veligers of L. helicina did not survive the
early stage of their development (Figure 3A).

The highest abundance of juvenile L. helicina was observed
at 0–20 m (37 ind. m−3) and at 20–50 m (28 ind. m−3)
water depth at station P5 (Figures 3A,B). The occurrence in
surface waters is in agreement with studies from the central
Arctic, Svalbard fjords and Barents Sea where migration of
juveniles and veligers of L. helicna was observed in the
top 75 m (Kobayashi, 1974; Gannefors et al., 2005; Falk-
Petersen et al., 2008; Ofstad et al., 2020). We speculate that
locally occurring enhanced food availability such as sea-ice-
associated microalgae aggregates and/or release of degraded
organic material originating from summer and autumn blooms,
possibly caused the high concentration in the upper water
column at this station.

Overall, the abundances of two groups of pelagic calcifiers,
their population size structure and species distribution appear
to be the result of a complex interplay of ecological factors and
roles in the marine food web. For instance, L. helicina, like other
pteropods (and unlike planktic foraminifera), has the ability to
actively migrate in the water column and our data represent a
snapshot-type observation that cannot provide a comprehensive
picture of the dynamics of planktic foraminifera and pteropods
nor the environmental factors controlling their populations. In
addition, comparisons of pteropod abundances to other studies
can bear discrepancies that often can be attributed to use of
different plankton net mesh sizes (e.g., Kacprzak et al., 2017 -
> 500 µm; Gannefors et al., 2005 - > 180 and > 1,000 µm; Daase
and Eiane, 2007 - > 180 µm). Pteropod abundance reported
with mesh size greater than those of our study, the study from
central Barents Sea (> 0.63 µm) (Ofstad et al., 2020) and from
Storfjorden (> 0.50 µm, Werner, 2005) is, therefore, incomplete
or represent a different plankton community. Moreover, a
repeated sampling strategy covering full annual cycles would
be crucial for studying long-term trends in the occurrence,
abundance and population structure of planktic foraminifera and
shelled pteropods to improve our understanding and prediction
of their sensitivities to ocean changes.

Biological Carbon Flux and Empty Shells
Planktic foraminifera and pteropods are involved in numerous
pathways of carbon export from the surface (where they live) to
the ocean floor (where they settle after death). They contribute
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to carbon export primarily via their shells as an inorganic
carbon flux (Heinze et al., 1991) and their soft-tissue/cytoplasm
as an organic carbon flux (Volk and Hoffert, 1985). The
two carbon exports mechanisms contribute to the biological
carbon pump that draws down atmospheric CO2 through
production of organic matter and subsequently sequesters the
particulate organic carbon exported to the deep ocean (Volk
and Hoffert, 1985). Planktic foraminifera and shelled pteropods
also contribute to the carbonate counter pump that counteracts
the biological carbon pump by increasing surface ocean CO2
through calcification and precipitation of calcite and aragonite
shells and the resulting export of particulate inorganic carbon out
of the surface layer. The balance between the biological carbon
pump and the carbonate counter pump regulates the efficiency of
deep ocean CO2 sequestration and, as a consequence, affects the
concentrations of CO2 in the surface ocean and influences air-sea
CO2 exchange.

Contrary to pteropods, organic carbon flux of soft tissue (i.e.,
cytoplasm) of planktic foraminiferal has so far been assumed to
be very low (e.g., Watanabe et al., 2014; Meilland et al., 2018),
as sedimentation of planktic foraminifera occurs primarily as
empty shells with little to no remaining cytoplasm. In the case
of pteropods, the contribution to the carbon flux can additionally
occur via production of fecal pellets or fast sinking colloids that
are formed while feeding via mucous webs that trap fine particles
and small fecal pellets (Howard et al., 2011).

The biogeochemical importance of calcite and aragonite
production by planktic foraminifera and pteropods, respectively,
and their importance for carbon flux has been discussed on global
and regional scales in a great number of studies (e.g., Milliman,
1993; Schiebel, 2002; Tyrrell, 2008; Bednaršek et al., 2012a;
Schiebel and Hemleben, 2017; Manno et al., 2018; Meilland
et al., 2018; Buitenhuis et al., 2019). Most of these studies based
the assessment of organic and inorganic carbon flux on the
quantification of living assemblages, whereas the concentration
and quantification of empty shells of planktic foraminifera and
pteropods and thus the potential significance for especially the
inorganic carbon flux record, have gone often unreported.

In the northern Barents Sea, the concentrations of empty
shells exceeded the concentration of living individuals, or in
case of planktic foraminifera, are close to equal at each station
except for station P5 (Figure 5). Given the low absolute
abundances of planktic foraminifera in our study (Figure 5),
in this chapter we focus mainly on empty shells of pteropods.
At the southernmost station (P1) no living pteropods were
observed and the concentration of empty shells of 19 ind. m−3

was recorded. North of the Polar Front, at station P2 and
P3 the concentration of empty shells was almost 93-fold and
19-fold higher, respectively, than the concentration of living
pteropods showing a density of 372 ind. m−3 and 73 ind. m−3,
respectively (Figure 5). Although, the largest portion of the
empty shells of pteropods were recorded in the smallest size range
of 0.25–0.063 mm, the concentration is rather significant.

The causes of mortality of natural plankton populations are
extremely difficult to determine, particularly, in high latitudes
characterized by an extreme seasonality in incoming sunlight
and the presence of sea-ice. Therefore, the causes of the

mortality of pteropods in our study could not be determined
with a certainty. Thus, we speculate and discuss environmental
conditions recorded during the sampling campaign that could
have potentially and additionally influence the mortality of
pteropods along the transect.

There is a clear pattern within the distribution of dead shells
with highest concentrations at stations (P5–P2) influenced by
the PW masses (Figures 4A,B). At station P3 and P2, where
the PW masses dominate, the lowest temperatures (–1.87), �Ar
(1.13–1.44) and pH (7.97–8.10) were recorded (Table 1 and
Figures 4B,C). Although, the link between low �Ar and pH,
and low temperatures conditions-driven mortality in pteropods
has not been directly confirmed in nature (Gazeau et al., 2013;
Bednaršek et al., 2014a; Niemi et al., 2021), our data suggest
that the low values of these environmental variables may have
contributed to an increased mortality of veligers at our stations.
Temperature is recognized to have a strong influence on the
shell building capacity of calcifying organisms and larval forms of
molluscs have been shown to be particularly sensitive to changes
in carbonate chemistry (Gazeau et al., 2013). Moreover, early
stages of L. helicina in the PW during winter were found to be less
able to counteract changes in their environment (Lischka et al.,
2011; Lischka and Riebesell, 2012). Therefore, the combination
of low temperatures, relatively low �Ar with potentially limited
food availability during winter, could have added to the adverse
conditions impairing the survival capability of the larvae forms
leading to increased mortality of ssL. However, more studies
are needed to further examine the effects and disentangle the
relative contribution of these important environmental variables
for shelled pteropods.

Another explanation to the occurrence of empty shells of ssL
could be as a result from predation activity by gymnosomatous
(non-shelled) pteropods such as Clione limacina that is a
highly specialized predator adapted to feed on soft body of
L. helicina (Lalli, 1970; Conover and Lalli, 1974; Norekian and
Satterlie, 1996; Böer et al., 2005). However, the low abundance of
C. limacina found at station P5 and the absence of C. limacina
at the remaining stations (Figure 3A) cannot account for the
high concentrations of empty shells of ssL e.g., at stations P2 and
P3. However, as C. limacina can use fast swimming behavior for
hunting, we cannot rule out, that higher abundance of this species
after exhausting the consumption potential at these stations left
for other grazing areas leaving the slower sinking empty shells
behind. Moreover, the low abundance of C. limacina could also,
at least partially, result from the avoidance of the net by this
species. Net avoidance by larger and more efficiently swimming
zooplankton that sense the pressure wave in front of a small
mesh net and therefore can dodge it, is a known phenomenon
that to a large extend can be avoided by an adequate towing
speed. The towing speed recommended for vertical samples with
a small mesh net (63 µm), used in our study, is 0.5–1 m per
second. This rater slow towing speed minimizes the extent of
extrusion of small-sized foraminifera and pteropods, but may
increase the likelihood of avoidance by the bigger and faster
swimming C. limacina.

Independent from the reason of the occurrence of the
high concentration of empty shells of pteropods (or planktic
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foraminifera) their high concentration likely represents a
substantial part of the inorganic carbonate flux to the ocean
floor. This is in agreement with the findings of Manno et al.
(2018) that showed that the contribution of pteropods to the
carbonate counter pump depends on whether shells were empty
or included soft tissue. The dominance of empty shells in
the total pteropod abundance (up to 85%) in the sediment
traps resulted in the contribution to the carbonate counter
pump that was more than two times higher than when
shells with soft tissue predominated. This strongly underlines
the importance of examination of empty shells in biological
carbon flux studies.

CONCLUSION

To our knowledge, this is the first study of the under-ice
abundance and diversity of planktic foraminifera and shelled
pteropods in the Barents Sea during dark winter to date. This is
also the first presentation of carbonate and nutrient data from the
northern Barents Sea in December.

The abundances of living planktic foraminifera followed a
distribution similar to open ocean with maximum abundances
recorded in surface waters at 0–50 m depth (2.6 ind. m−3

at station P7 and 5.8 ind. m−3 at station P6). However, the
average abundance of living planktic foraminifera was generally
very low for the upper 200 m water depth and never exceeded
2 ind. m−3 which was the maximum value recorded close to
the Polar Front. The concentration of living specimens was only
higher in station P5.

Similarly, to planktic foraminifera, the highest abundance of
living pteropods was found in the surface water at 0–50 m
depth (32 ind. m−3 at station P5). The average abundances of
pteropods recorded in the upper 200 m water depth in December
were comparable to abundances found in Barents Sea in spring
and summer. Abundances of living pteropods were, however,
markedly lower than the abundances of empty shells of pteropods
that ranged between 6 ind. m−3 (P5) and 372 ind. m−3 (P2) in the
northern Barents Sea. The high abundance of empty shells can
represent a substantial part of the inorganic carbonate flux to the
deep ocean in this area.

The polar pteropod species Limacina helicina and the polar
planktic foraminifera species Neogloboquadrina pachyderma
dominated the living pteropods and foraminifera assemblages,
respectively. The high proportion of the subpolar foraminiferal
species Turborotalita quinqueloba (45–67%) at stations in the
south (P1) and in the Nansen Basin (P7 and P6) was probably
linked to the presence of AW advected by the WSC. This could
also explain the presence of Limacina retroversa at stations P6
and P5 where Atlantic water dominated. This confirms recent
studies that refer to a poleward expansion of subpolar plankton
communities to stronger and warmer Atlantic water currents
entering the Arctic Ocean (Dalpadado et al., 2020). In a changing
climate, this implies a high latitude shift toward more subpolar
species. However, our study confirms the division in different
regimes, between warm water subpolar species and the cold
water polar species.

Limacina helicina was represented mainly by the
juvenile form that showed a preference toward PW with
temperatures < –0.4◦C. Moreover, this species was found
in water masses with the lowest �Ar. Limacina helicina was
represented mainly by juveniles that most likely spawned in
late autumn/early winter. Its occurrence may suggest that a
slow growth of the overwintering Limacina helicina veligers
into juveniles occurred which agrees with recent studies that
evidenced an active growing of Limacina helicina antarctica
during winter in Antarctica.

Our study provides a limited “snapshot-type” observation in
winter that cannot provide the full picture of the dynamics of
two groups of pelagic calcifiers nor the environmental factors
controlling their populations. It, however, highlights that a
repeated sampling strategy covering full annual cycles would
be crucial for studying long-term trends in the occurrence,
abundance and population structure of planktic foraminifera and
shelled pteropods to improve our understanding and prediction
of their sensitivities to ocean changes.
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