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Chapter 9
The Microplastic-Antibiotic Resistance 
Connection

Nachiket P. Marathe and Michael S. Bank

Abstract Microplastic pollution is a big and rapidly growing environmental prob-
lem. Although the direct effects of microplastic pollution are increasingly studied, 
the indirect effects are hardly investigated, especially in the context of spreading of 
disease and antibiotic resistance genes, posing an apparent hazard for human health. 
Microplastic particles provide a hydrophobic surface that provides substrate for 
attachment of microorganisms and readily supports formation of microbial bio-
films. Pathogenic bacteria such as fish pathogens Aeromonas spp., Vibrio spp., and 
opportunistic human pathogens like Escherichia coli are present in these biofilms. 
Moreover, some of these pathogens are shown to be multidrug resistant. The pres-
ence of microplastics is known to enhance horizontal gene transfer in bacteria and 
thus,  may contribute to dissemination of antibiotic resistance. Microplastics can 
also adsorb toxic chemicals like antibiotics and heavy metals, which are known to 
select for antibiotic resistance. Microplastics may, thus, serve as vectors for trans-
port of pathogens and antibiotic resistance genes in the aquatic environment. In this 
book chapter, we provide background information on microplastic biofouling 
(“plastisphere concept”), discuss the relationship between microplastic and antibi-
otic resistance, and identify knowledge gaps and directions for future research.

9.1  Introduction

Microplastic (<5 mm, GESAMP 2019) pollution is a widespread and global envi-
ronmental problem that is projected to increase in upcoming decades creating sig-
nificant challenges for its management and prevention (Borrelle et al. 2020; Jambeck 
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et al. 2015). Transport of microplastic from land via headwater streams and large 
rivers to the ocean (Hurley et al. 2018; Jambeck et al. 2015; van Wijnen et al. 2019) 
is an important component of the microplastic pollution cycle, and plastic particles 
can now be found globally throughout all ecosystem components including the 
atmosphere, terrestrial landscapes, aquatic freshwater and marine environments, 
and all types of biota including seafood species commonly consumed by humans 
(Bank and Hansson 2019).

Microplastics represent a novel substrate for marine bacteria including both fish 
and human pathogens (Dang and Lovell 2016; McCormick et al. 2014; Zettler et al. 
2013) and are also a reservoir for metal resistance and antibiotic resistance genes. 
The role of microplastics in the spread of antibiotic resistance is a relatively new 
research topic that has garnered significant interest by scientists (Bank et al. 2020; 
Bowley et al. 2021; Guo et al. 2020; Parthasarathy et al. 2019; Radisic et al. 2020). 
The indirect effects of microplastics have not been well studied especially in the 
context of seafood safety and global food security, and these effects may pose a 
significant hazard for human health regarding the spread of disease (Bank et  al. 
2020; Guo et al. 2020). The specific objectives of this chapter were to (1) provide 
background information on microplastic biofouling and describe the concept of the 
“plastisphere” (Zettler et al. 2013), (2) discuss the relationship of microplastic and 
antibiotic resistance, and (3) identify knowledge gaps and directions for future 
research.

9.2  The Plastisphere Concept

One of the critical mechanisms of the microplastic antibiotic resistance connection 
is the “plastisphere” concept. This concept was originally presented in the seminal 
paper by Zettler et al. (2013) who reported that microbial communities attached to 
plastic debris were diverse and composed of heterotrophs, autotrophs, predators, 
and symbionts and were distinct from the surrounding marine waters. These plastic 
particle surfaces represented a novel substrate and/or ecological habitat within the 
water column and on the surface of the open ocean (Amaral-Zettler et  al. 2015, 
2020; Bowley et al. 2021; Oberbeckmann et al. 2018; Wright et al. 2020; Zettler 
et al. 2013). Microplastic particles have hydrophobic surfaces, with no net charge, 
upon entering the ocean as virgin artificial materials; however, they can quickly 
become colonized by microbial biofilms (Bowley et al. 2021; Wright et al. 2020; 
Zettler et  al. 2013). The development of this concept was important for forming 
scientific questions regarding the overall direct and indirect impacts of microplastic 
pollution primarily because of the long residence time of microplastic in the envi-
ronment and the potential for long-range transport and the associated risks of trans-
fer of pathogens and disease (Bowley et  al. 2021). Pathogenic microbes such as 
Vibrio spp. have been reported in high abundance within the plastisphere (Amaral- 
Zettler et al. 2020; Bowley et al. 2021; Zettler et al. 2013; Zhang et al. 2020) and 
although not all vibrios are pathogenic, they often prefer lower salinity found in 
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coastal and estuarine areas, thus highlighting the importance of the plastisphere 
regarding its distribution, abundance, fate, and transport (Bowley et  al. 2021; 
Thompson et al. 2004). These identified risks and the processes related to micro-
plastic and microbe interactions are complex and are influenced by ocean currents 
(Hale et al. 2020), sources, fate and transport dynamics, trophic transfer and food 
web complexity, horizontal gene transfer and attachment properties (Arias-Andres 
et al. 2019), buoyancy and sinking properties of microplastics, variation, and uptake 
by farmed (Sun et al. 2020a) and wild seafood taxa, leading to subsequent human 
exposures (Bowley et al. 2021; Zhou et al. 2020).

9.3  Antibiotic Resistance

The introduction of antibiotics for the treatment of infectious disease is one of the 
most important advances in healthcare. The global spread of resistance in bacteria, 
particularly in human pathogens, presents major challenges for treatment and pre-
venting the spread of infections (Ventola 2015). Annually, in the European Union/
European Economic Area, an estimated more than 33,000 deaths and more than 
800,000 cases of “impacted life-years” are attributable to infections caused by 
antibiotic- resistant pathogens, with direct and indirect estimated costs of more than 
1.5 B€ (Cassini et al. 2019). The World Health Organization (WHO) has predicted 
the advent of infectious diseases for which no antibiotic treatment will be available 
(WHO 2019).

Antibiotic resistance is a natural phenomenon. Misuse and over use of antibiotics 
has led to the development, selection, and global spread of antibiotic resistance 
(Roberts and Zembower 2020). Selection pressure from the presence of antibiotics 
or other antimicrobial compounds like heavy metals and biocides leads to the 
enrichment of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs) in 
bacteria from humans, animals, and the environment (Francino 2016; Gullberg et al. 
2014; Marathe et al. 2013; Seiler and Berendonk 2012). Horizontal gene transfer 
(HGT) is a fundamental force driving bacterial evolution and contributes to the dis-
similation of ARGs in both clinical and environmental bacteria (Boto 2010; 
Emamalipour et al. 2020; Jain et al. 2003). Antimicrobial compounds like antibiot-
ics, biocides, and heavy metals can drive the development of antibiotic resistance 
and stimulate horizontal transfer of antibiotic resistance genes (Andersson and 
Hughes 2014; Jutkina et al. 2018; Zhang et al. 2018), thus aiding selection and dis-
semination of antibiotic resistance.
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9.4  Microplastics and Antibiotic Resistance

Microorganisms attach themselves to surfaces forming a complex matrix of bio-
polymers and microbial cells known as biofilm (Dang and Lovell 2016). Formation 
of biofilms protect bacteria from unfavorable conditions in the environment (Donlan 
2002). Biofilms are ubiquitous in aquatic environments and play an important role 
in various biological and ecological processes (Guo et al. 2018). Aquatic biofilms 
serve as a sink for various contaminants, like heavy metals, and antibiotics that are 
known to select for antibiotic resistance and stimulate horizontal transfer of antibi-
otic resistance genes (Gullberg et  al. 2014; Guo et al. 2018; Jutkina et  al. 2018; 
Richard et al. 2019). Accordingly, antibiotic resistance genes have been detected in 
natural aquatic biofilms (Balcázar et al. 2015; Guo et al. 2018).

Microplastic particles provide a hydrophobic surface that readily supports for-
mation of microbial biofilms, where environmental conditions are the main drivers 
of biofilm formation (Oberbeckmann et al. 2018; Rummel et al. 2017). Pathogenic 
bacteria such as fish pathogens Aeromonas spp., Vibrio spp., and opportunistic 
human pathogens like E. coli can invariably be present in these biofilms (Kirstein 
et al. 2016; Silva et al. 2019; Viršek et al. 2017). Microplastics can selectively enrich 
both antibiotics and antibiotic-resistant bacteria on their surfaces in landfill leach-
ates, freshwater, as well as in sea water (Su et al. 2020; Sun et al. 2020b; Wang et al. 
2020; Wu et al. 2019). Thus, microplastics may serve as a vector for transport of 
pathogens in the aquatic environment.

Several methods have been used for detecting and quantifying ARGs associated 
with marine plastics including selective isolation of resistant bacteria and pheno-
typic antibiotic sensitivity testing, whole genome sequencing, shotgun metagenom-
ics, and quantitative polymerase chain reaction (qPCR). Culture-based methods 
involving isolation of bacteria on a culture media followed by antibiotic sensitivity 
testing is a traditional approach used for studying antibiotic resistance (Khan et al. 
2019). Zhang et al. (2020) carried out isolation and characterization of antibiotic- 
resistant marine bacteria from microplastic particles collected from marine aquacul-
ture sites using a combination of seven antibiotics and a non-selective media. They 
showed presence of several multidrug-resistant marine bacteria including patho-
genic Vibrio species on microplastics (Zhang et al. 2020). In contrast, other studies 
carried out selective isolation of pathogens like Vibrio spp. (Laverty et al. 2020) and 
E. coli (Song et  al. 2020) showing presence of multidrug-resistant pathogens on 
marine microplastics. Recently, a study reported whole genome sequences (WGS) 
of antibiotic-resistant fish pathogens isolated from marine plastics (Radisic et al. 
2020). With the advent of next-generation sequencing technology, WGS analysis of 
pathogens has become common and affordable tool for genotyping and epidemiol-
ogy in clinics (Quainoo et al. 2017). WGS analyses are effective in elucidating the 
total metabolic potential of microorganisms and understanding the genetic basis of 
antibiotic resistance (Grevskott et al. 2020; Hendriksen et al. 2019). Although this 
is true, WGS data on microplastic-associated bacteria is largely lacking.

N. P. Marathe and M. S. Bank



315

Only a small proportion of bacteria present in an environment can be cultivated 
in the lab. This limits detection and quantification of antibiotic resistance genes 
present in uncultivable bacteria using traditional methods (Lloyd et al. 2018; Stewart 
2012). Methods like qPCR analysis or shotgun metagenomics, that use the total 
genomic DNA extracted from a given sample, partly overcome this limitation. 
Using qPCR, Wang et al. (2020) showed enrichment of ARGs like sul1, tetA, tetC, 
tetX, and ermE on plastic particles in both freshwater and sea water (Wang et al. 
2020), while another study showed selective enrichment of strB, blaTEM, ermB, 
tetM, and tetQ on microplastic particles in landfill leachates (Shi et al. 2020). These 
studies selected a limited number of ARGs for their analysis. In contrast, using 
recently developed high-throughput qPCR screening that can analyze more than 
200 ARGs, Lu et al. (2020) showed presence of between 34 and 43 different ARGs 
on the surface of microplastic particles collected from vegetable soil (Lu et al. 2020).

Shotgun metagenomics gives an overview of the total bacteria and associated 
genes present in a given sample (Simon and Daniel 2011). Using this method Yang 
et al. (2019) found a total of 64 ARG subtypes that provide resistance against 13 
different classes of antibiotics on macroplastics and microplastics collected from 
the North Pacific Gyre. Along with enrichment of ARGs, the study also found 
enrichment of metal resistance genes on microplastics (Yang et al. 2019). This study 
and several of the earlier described studies show presence of clinically important 
ARGs, like sul1, tetA, tetC, tetX, ermE, aac(3), macB, and blaTEM, that are invari-
ably found in human pathogens, on microplastic particles (Alcock et al. 2020), thus 
suggesting that microplastics in the environment act as reservoirs for clinically 
important antibiotic resistance genes.

Microplastics originate from a variety of processes and invariably ends up in the 
marine environment via streams and large rivers (Hurley et al. 2018; Jambeck et al. 
2015). High levels of microplastics reach the wastewater treatment plants (WWTP) 
(Dris et al. 2015). Although most of the microplastics are removed during primary 
and secondary waste treatment, smaller microplastics may still be present in the 
treated effluents (Talvitie et al. 2017). Treated effluents have low concentrations of 
microplastic particles but the high volume of effluents released may leads to consid-
erable contamination of the aquatic ecosystem (Murphy et al. 2016; Talvitie et al. 
2017). WWTPs receive municipal and/or hospital waste which invariably contains 
both human pathogens and clinically important antibiotic resistance genes (Le et al. 
2016; Marathe et al. 2017, 2018, 2019; Rizzo et al. 2013). Treated effluents from 
waste water treatment plants are recognized as one of the major sources of environ-
mental pollution with antibiotic resistance genes and resistant pathogens (Alexander 
et al. 2020; Czekalski et al. 2014; Karkman et al. 2019). The presence of microplas-
tic particles in waste water effluents, thus, presents opportunities for antibiotic- 
resistant pathogens to colonize and form biofilms on plastic particles. This may lead 
to further dissemination of resistance in the marine environment via microplastics. 
Although this is true, there is limited knowledge on the impact of microplastics 
from treated effluents from WWTP on dissemination of ARGs in the aquatic 
environment.
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Microplastic particles adsorb several chemicals like antibiotics, biocides, and 
heavy metals (Chen et al. 2020; Godoy et al. 2019; Mammo et al. 2020; Wang et al. 
2020). The presence of antibiotics and active metabolites from such agents in the 
environment leads to selection of multidrug resistance among both clinical and 
environmental bacteria. Similarly, biocides and heavy metals like copper and mer-
cury are known to co-select for antibiotic resistance (Francino 2016; Gullberg et al. 
2011, 2014; Imran et al. 2019; Marathe et al. 2013; Seiler and Berendonk 2012). 
Adsorption of these chemicals on plastic surfaces containing microbial biofilm may 
lead to selection pressure in the plastisphere, resulting in active selection of antibi-
otic resistance on microplastic surfaces. In accordance, Imran et al. (2019) has con-
cluded that co-contamination with microplastics and heavy metals results in 
development and spread of multiple drug-resistant human pathogens through co- 
selection mechanisms (Imran et al. 2019). Studies have shown that very low levels 
of antibiotics and biocides not only can select for antibiotic resistance but also can 
induce horizontal transfer of ARGs (Gullberg et al. 2011; Jutkina et al. 2018; Zhang 
et al. 2018). Moreover, bacteria in biofilms are more efficient in horizontal gene 
transfer compared to planktonic bacteria (Abe et  al. 2020). Accordingly, studies 
have shown increased horizontal gene transfer in presence of microplastics via con-
jugation (Arias-Andres et al. 2018, 2019). Although extensive research on selection 
of resistance and promotion of horizontal gene transfer by antimicrobial compounds 
has been carried out, there is limited knowledge on the effect of adsorbed chemicals 
on plastisphere bacteria, especially, with reference to selection and transfer of anti-
biotic resistance genes on microplastic particles.

9.5  Conclusions and Directions for Future Research

Microplastics are emerging pollutants that have been detected in a range of environ-
ments. With the current trend of plastic consumption and its global production, the 
environmental pollution and related environmental effects caused by microplastics 
are expected to increase (Borrelle et al. 2020). Microplastics provide surfaces for 
the microorganisms to form biofilms (plastisphere) (Zettler et al. 2013). The pro-
cesses and mechanisms involved in biofilm formation on microplastics are largely 
unclear. In-depth studies on deciphering the succession of microbes and under-
standing the effect of different factors that may influence biofilm formation on 
microplastic particles, such as the environmental conditions and the age of micro-
plastic particles are needed (Su et al. 2020; Yang et al. 2020). Moreover, there are a 
limited number of studies reporting WGS of bacteria associated with microplastics 
(Li et al. 2019; Radisic et al. 2021). Bacteria associated with microplastics may play 
different ecological roles and could also be useful for bioremediation (Debroas 
et al. 2017). Hence, understanding the metabolic potential of bacteria in plastisphere 
using WGS is necessary.

Studies have investigated the composition of biofilms on microplastics and 
shown presence of both fish and human pathogens as well as clinically important 
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antibiotic resistance genes (Dong et al. 2021). However, the risks associated with 
presence of pathogens in terms of human or fish exposure and the ability of 
microplastic- associated pathogens for causing infections is not fully understood. 
In-depth risk assessment studies on the effect of pathogen carrying microplastics on 
fish and human  health are thus warranted. Microplastics originating in different 
compartments like WWTPs or aquaculture sites may carry different microbiota. 
WWTPs and aquaculture sites usually have presence of both antibiotic-resistant 
pathogens and microplastics (Cabello et al. 2016; Rodriguez-Mozaz et al. 2015). 
There is invariably selection pressure due to presence of antibiotics or biocides 
along with presence of resistant bacteria in these sites (Cabello et  al. 2016; Edo 
et al. 2020; Yang et al. 2014). These environments could play an important role in 
enrichment and dispersal of pathogenic bacteria and ARGs to the marine ecosystem 
via microplastics. Although microplastics have been shown to increase HGT (Arias- 
Andres et al. 2018, 2019), the impact of microplastics on evolution and dissemina-
tion of antibiotic resistance in pathogens and environmental bacteria is largely 
unknown. In order to understand the indirect effects of microplastics, the relation-
ship and interactions between microplastics and ARGs, as well as the impact of 
their association on aquatic environment especially on marine environment and sea 
food safety, needs to be further assessed. Holistic multidisciplinary studies on fate, 
migration, and potential environmental risks posed by microplastics through dis-
semination and evolution of antibiotic resistance are needed in the future, for better 
understanding the indirect effects of microplastic pollution.
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