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A B S T R A C T   

There is a growing interest in exploiting Antarctic fisheries for human consumption. However, information on 
how the nutritional qualities of these resources will respond to the predicted seawater warming in the region for 
the next century is poor. The present research investigates changes in various nutritional indices of dietary 
importance (e.g. the ratio polyunsaturated to saturated fatty acids, the atherogenicity index, the thrombogenicity 
index, the hypo-cholesterolemic to hyper-cholesterolemic index, the health-promoting index, the flesh lipid 
quality and the ratio omega-3 to omega-6 index) by determining the fatty acid composition in muscle of 
Trematomus bernacchii (an Antarctic fish species) in its natural habitat (-1.87 ◦C) and warmer temperatures (0.0, 
1.0, 2.0 ◦C). Comparison of the estimated nutritional indices at − 1.87 ◦C with those at warmer temperatures 
revealed that seawater warming caused changes in the nutritional indices in the range of − 12%<Δ < 30%. The 
observed changes were not statistically significant and ascribed to biological variability. Therefore, the nutri
tional values of T. bernacchii muscle were preserved after increasing the temperature of its natural habitat by +
4 ◦C. The present research is the first report describing the nutritional quality indices for an Antarctic fish species 
and the consequences of seawater warming on the nutritional value of T. bernacchii.   

1. Introduction 

Fish is a rich source of nutrients such as proteins, vitamins, essential 
minerals, amino acids and polyunsaturated fatty acids (PUFA) and its 
consumption is widely acknowledged to have a positive impact on 
human health. Marine fish species contain high levels of the omega-3 
PUFA, more specifically eicosapentaenoic acid (20:5n-3; EPA) and do
cosahexaenoic acid (22:6n-3; DHA). These PUFA are the most important 
substrates in the synthesis of biologically active anti-inflammatory me
diators which play a key beneficial role in inflammation pathologies 
such as cardiovascular diseases and neurodegenerative disorders (Chi
tre, Moniri, & Murnane, 2019; Jung, Torrejon, Tighe, & Deckelbaum, 
2008). Therefore, an increased consumption of seafood is regarded as an 
important nutritional strategy to protect human health (Hellberg, 
DeWitt, & Morrissey, 2012). 

Nowadays, due to the benefits of seafood, an especially the n-3 PUFA, 
the content of fatty acids is one of the most reported nutritional prop
erties of fish. The composition of fatty acids in fish varies considerably 
between species, for instance, fatty fish (e.g. salmon, tuna, trout, 
mackerel) contain higher amounts of n-3 fatty acids than lean fish (cod, 
halibut, bass, flounder) (Cahu, Salen, & De Lorgeril, 2004; Jobling, 
Leknes, Sæther, & Bendiksen, 2008; Peng, Chen, Shi, & Wang, 2013), 
and some quantitative indices have been introduced to objectively assess 
the nutritional quality of different fish species. For example, the PUFA to 
saturated fatty acids (SFA) ratio (PUFA/SFA) to indicate the risk of 
cardiovascular diseases and oxidative stress (Chen & Liu, 2020); the 
atherogenicity index (AI) to indicate the relationship between pro- 
atherogenic fatty acids (those that promote lipids adhesion to cells 
from the immunological and circulatory system) and anti-atherogenic 
fatty acids (those that prevent plaque aggregation and coronary 
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diseases) (Chen & Liu, 2020); the thrombogenicity index (TI) to estab
lish the relationship between pro-thrombogenic and anti-thrombogenic 
saturated and unsaturated fatty acids, respectively (Chen & Liu, 2020); 
the hypo-cholesterolemic to hyper-cholesterolemic index (HH) to eval
uate the ratio between unsaturated and saturated fatty acids (Chen & 
Liu, 2020); the health-promoting index (HPI) to evaluate the effect of the 
composition of fatty acids on cardiovascular health and cardiovascular 
diseases (Chen & Liu, 2020); the flesh lipid quality (FLQ) to have an 
indication of the general dietetic quality of lipids and their potential 
effects on the development of coronary diseases (Chen & Liu, 2020); the 
n-3 PUFA to n-6 PUFA ratio (n-3/n-6) to assess the proportions of pro- 
inflammatory and anti-inflammatory lipid mediators in the diet (Chen 
& Liu, 2020). 

The fatty acid composition and the nutritional indices for assessing 
seafood quality are affected by several factors, among them temperature 
(Anacleto et al., 2014; Barbosa et al., 2017) and season (Dal Bosco, 
Mugnai, Mourvaki & Castellini, 2012; Ferreira et al., 2020). The Ant
arctic community has indicated that climate change will have a direct 
impact on the diversity and food resources of its marine system (Chown 
et al., 2012; Turner et al., 2013). A gradual increase in water tempera
ture from global warming may result in changes in species composition 
(Cheung, Lam, & Pauly, 2008; O’Connor et al., 2007). However, the 
current understanding on how organisms and ecosystems will respond to 
atmospheric warming is poor. Hence, the forecasting of individual and 
population-level responses to environmental changes are among the 
highest priority questions for the Southern Polar Regions that re
searchers should address in the next two decades and beyond (Johnston 
et al., 2019; Kennicutt et al., 2015). 

In general, studies on fatty acid composition and nutritional qualities 
of seafood in response to an increase in temperature are surprisingly 
limited. The effect of raising the sweater temperature from 18 ◦C to 
22 ◦C on seabass (Dicentrarchus labrax) revealed a considerable 44% 
decrease in HH and a remarkable 79% increase in n-3/n-6 (Barbosa 
et al., 2017). Other studies on two bivalve mollusks (Ruditapes decuss 
and Ruditapes philippinarum) have observed that the PUSA/SFA, AI, TI, 
HH and n-3/n-6 are more susceptible to change in the former than the 
latter species when the temperature was increased from 22 ◦C to 38 ◦C 
(Anacleto et al., 2014). 

Fishing activities in the Antarctic region are relatively low in com
parison with other parts of the world. However, pressure to exploit 
Antarctic fisheries is expected to increase as the global population 
grows. In 1980, the Commission for the Conservation of Antarctic Ma
rine Living Resources (CCAMLR) was created to protect and monitor the 
exploitation of the Southern Ocean and to ensure the sustainable use of 
the Southern Ocean (Discovering Antarctica, 2016; Mintenbeck et al., 
2012). The Norwegian Ministry of Foreign Affairs has indicated that 
data from the Antarctic region have gradually been collected, however, 
the knowledge of the status of fish stocks is limited (Norwegian Ministry 
of Foreign Affairs, 2016). The previous observations highlight the 
importance of evaluating nutritional qualities of Antarctic fish species, 
especially those utilized for human consumption. 

Trematomus bernacchii (Emerald Notothen or Emerald Rockcod) is a 
species of bony fish in the family cod icefishes that has been commer
cially fished in the Southern ocean for human consumption (Discovering 
Antarctica, 2016; Kock, Reid, Croxall, & Nicol, 2007), and although the 
fatty acid profiles in various of its organs have been determined 
(Antonucci, Belghit, Truzzi, Illuminati, & Araujo, 2019; Gonzalez- 
Cabrera et al., 1995; Truzzi, Illuminati, Antonucci, Scarponi, & Anni
baldi, 2018), there is no information on its nutritional value or the 
impact of climate change on its nutritional quality indices. While fish 
from the temperate and tropical latitudes experience much greater 
seasonal variation in temperature and are correspondingly more ther
mally tolerant (Aronson, Thatje, McClintock, & Hughes, 2011), Ant
arctic fish experience negligible seasonal variations from approximately 
− 1.9 ◦C to 1.8 ◦C (3.7 ◦C difference), resulting in a limited ability to 
adapt to temperature variations and increased vulnerability to climate 

change effects (Aronson, Thatje, McClintock, & Hughes, 2011). 
It is startling the current lack of information about the impact of 

seawater warming on the nutritional quality indices of fish species of 
potential interest for human consumption, even though the interest for 
Antarctic fish stocks date from the turn of the XX century (Miller, 1991). 
The main goals of the present study are to determine the fatty acid- 
related nutritional quality indices (PUFA/SFA, AI, TI, HH, HPI, UI, FLQ 
and n-3/n-6) in muscle of T. bernacchii at its natural habitat (-1.87 ◦C) 
and at elevated temperatures (0.0, 1.0 and 2.0 ◦C), to evaluate the effect 
of seawater warming (0.0, 1.0 and 2.0 ◦C) on these quality indices. This 
is the first study reporting the nutritional quality indices of T. bernacchii 
at and above its natural habitat temperature, and consequently it is an 
important contribution to understand the response of marine organisms 
of nutritional value to the atmospheric warming in the Antarctic region. 

2. Materials and methods 

2.1. Chemicals 

Methanol and n-heptane (Baker, Philipsburg, NJ, USA), acetone and 
petroleum ether (Carlo Erba, Milano, Italy) were HPLC grade. Sodium 
methoxide for synthesis (≥97%) was from Merck (Hohenbrunn, Ger
many). Nonadecanoic acid methyl ester (99.6%) was from Dr. Ehren
storfer (GmbH, Augsburg, Germany). The 37-component standard 
mixture of fatty acid methyl esters (FAME) (≥99%) was from Supelco 
(Bellefonte, PA, USA). Extra pure sodium hydrogen sulfate anhydrous 
was from Scharlau (Sentmenat, Spain). Helium gas (6.0) was from SOL 
Group (Monza, Italy). 

2.2. Sample collection 

The sampling procedure has been described elsewhere (Tuzzi, Illu
minati, Antonucci, Scarponi, & Annibaldi, 2018). Briefly, 63 sexually 
mature specimens of T. bernacchii (weight 136–333 g, length 22–30 cm) 
were caught with a fishing rod in the Ross Sea at the depth of ~ 30 m and 
seawater temperature of − 1.87 ◦C. Three fish, designated as control 
seawater (Csea), were immediately sacrificed by a sharp blow to the 
head, dissected and frozen in liquid N2 and stored at − 80 ◦C to avoid 
oxidation. 

The remaining fish were acclimatized for 30 days into a seawater 
tank (1000 L) with a constant flow-through of filtered seawater at − 1.8 
± 0.1 ◦C, a natural photoperiod (24 h daylight), and then transferred 
randomly into three closed circuit fish tanks at 0.0 ± 0.1, 1.0 ± 0.1 and 
2.0 ± 0.1 ◦C for another 10 extra days. Immediately after the 10 days 
period, six fish were killed from every tank by a sharp blow on the head, 
dissected, frozen in liquid N2 and stored at − 80 ◦C until the analysis. The 
same diet, consisting of chopped cuttlefish (Sepia officinalis) and bivalve 
molluscs (Adamussium colbecki) was provided ad libitum once every 
second day to all fish during the trials. The experimental temperatures 
(0.0, +1.0, and + 2.0 ◦C) were selected considering the predicted shelf 
water warming of + 0.8 to + 1.48 ◦C by the year 2200 for the Ross Sea 
region (Timmermann & Hellmer 2013). 

2.3. Lipid extraction 

Muscle tissue samples (1 g) from T. bernacchii were submitted to 
microwave assisted extraction (MAE) as described elsewhere (Truzzi, 
Illuminati, Annibaldi, Antonucci, & Scarponi, 2017). Briefly, the oper
ational parameters were as follows: magnetron power 100%; time to 
reach settings 10 min; extraction duration 20 min; extraction tempera
ture 90 ◦C and maximum vessel pressure cut off 1.38 × 106 Pa. After 
cooling, the extract was filtered through Whatman GF/C filter paper (Ø 
90 mm, GE Healthcare Life Sciences, Buckinghamshire, England) filled 
with sodium hydrogen sulfate anhydrous. The filtrate was evaporated 
under laminar flow inert gas (N2) until constant weight (±0.2 mg) and 
the mass of the extracted lipids was determined by weighting the sample 
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before and after a freeze-dried process at − 20 ◦C (Edwards EF4, Craw
ley, Sussex, England). The Csea (-1.87 ◦C) and the experimental tem
peratures (0, 1, 2 ◦C) samples were analyzed in triplicate and 
sextuplicate, respectively. 

2.4. FAME preparation and analysis 

The FAME were prepared according to a modified method published 
elsewhere (ISO 12966–2, 2011) . Briefly, the lipid extract (2.0 to 8.6 mg) 
was dissolved into 0.5 mL of n-heptane and 10 mL of sodium methylate 
in methanol (2 N), at room temperature, vortex-mixed for 3 min, 
centrifuged at 67-G for 1 min. The resulting solution was neutralized 
with 40 mg of sodium hydrogen sulfate anhydrous, mixed for 3 min, and 
centrifuged at 67-G for 1 min. After the salt settled, 100 µL of the upper 
phase were transferred to a 1 mL vial, diluted with 400 µL of n-heptane 
and submitted to gas chromatography mass spectrometry analysis 
(GC–MS). 

2.5. Gas chromatography mass spectrometry 

An Agilent-6890 GC system coupled to an Agilent-5973 N quadru
pole mass selective detector (MSD) was used (Agilent Technologies, 
Santa Clara, CA, USA). The methylated samples were analyzed on a CC- 
wax-MS (30 m × 0.25 mm ID, 0.25 μm film thickness) capillary column 
(CPS Analytica, Milan, Italy). The instrumental parameters were cali
brated using the 37-Component FAME mix. The injection volume was 1 
µL with a split mode ratio 1:10 using an Agilent glass cup liner, splitless, 
double taper 5583–4705 (CPS Analytica, Milan, Italy). The inlet tem
perature was kept at 250 ◦C. The analysis time was 43 min with helium 
as carrier gas (5.52 × 105 Pa) and the oven temperature program was as 
follows: hold time of 1 min at 100 ◦C, increase from 100 ◦C to 150 ◦C at 
25 ◦C/min, from 150 ◦C to 200 ◦C at 5 ◦C/min, and from 200 to 230 ◦C at 
1 ◦C/min. The ion source, transfer line and detector temperatures were 
230, 250 and 150 ◦C, respectively. The mass spectra were recorded 
between m/z 50 and m/z 400 at a rate of three scans per second, with 
ionization energy of 1.12 × 10-17J. Data were collected under SIM mode. 
After a solvent delay of 2.0 min, the following fragment ions were 
recorded: m/z 74 and 87 for saturated, m/z 74 and 55 for monoenoic 
fatty acids, m/z 67 and 81 for dienoic fatty acids, and m/z 79 and 81 for 
PUFA. Identification of fatty acids was performed using NIST reference 
mass spectra database (NIST, Mass Spectral Database 02, National 
Institute of Standards and Technology, Gaithersburg, MD) MS search 
2.0a (NIST 02.L, Ringoes, NJ). The retention time and mass spectra of 
standard FAME were used to confirm the NIST identification of the fatty 
acids in the samples. 

2.6. Lipids nutritional quality index 

Eight nutritional quality indices (PUFA/SFA, AI, TI, HH, HPI, UI, 
FLQ, n-3/n-6) were calculated in muscle of T. bernacchii by means of the 
formulae provided in Table 1. 

2.7. Statistics 

Dunnett’s test (Dunnett, 1964) was used for comparing the fatty acid 
(FA) profiles or the quality indices (QI) of the sea control (natural 
habitat at − 1.87 ◦C) against those recorded at different experimental 
temperatures (0.0, 1.0 and 2.0 ◦C). The statistical analysis was carried 
out by using an automatic Excel calculation platform that is provided as 
supplementary material (Excel file S1). This calculation file consists of 
four worksheets: 1) “Data entry”: where the data is arranged up to a 
maximum of 15 conditions (e.g. temperatures) in sextuplicate (n ≤ 6) 
and a maximum of 35 variables (e.g. FA or QI) to render a 90 × 35 data 
matrix. The associated degrees of freedom are displayed automatically 
in this worksheet. 2) “Normality”: where the normality plots of the 
variables (e.g. FA or QI) are displayed, and their lack of linearity in
dicates whether the proposed Dunnett parametric test is appropriate for 
the data under consideration; 3) “Variability Δ%”: where the changes 
between the controls and the experimental conditions are expressed in 
percentage of variation (Δ%) by using a heat map. The user select a 
specific percentage of variability (e.g. 30%) to compare the results and 
the heat map indicates stable in yellow (e.g. − 30%<Δ<+30%), 
decrease in red (e.g. − 30%>Δ) and increase in green (e.g. Δ>+30%); 4) 
“Significant Δ%”: where the statistical differences between the control 
and the experimental temperatures (for instance, +2.0 ◦C) are computed 
automatically and the significant differences (p < 0.05) are indicate 
with an asterisk (*). The “Original data” discussed in this research (FA 
and QI at different temperatures and the computed QI from the litera
ture) are included as an extra worksheet in Excel file S1, and can be 
evaluated by copy-pasting the data into the “Data entry” worksheet. The 
matrix sizes in the present research for FA (25) and QI (8) were 21 × 25 
and 21 × 8, respectively. The number of rows (21 = 1 × 3 + 3 × 6) 
corresponds with the sea control (n = 3) and the three experimental 
temperatures (n = 6 for each temperature). 

3. Results 

3.1. Fatty acids 

The extracted muscle lipid fractions from T. bernacchii at environ
mental (-1.87 ◦C) and experimental (0.0, 1.0, 2.0 ◦C) temperatures were 
submitted to transesterification followed by fatty acid analysis by 

Table 1 
List of nutritional quality index and their mathematical expression.  

Quality index Mathematical expression 

Polyunsaturated to saturated fatty acid ratio 
PUFA/SFA =

∑
PUFA

∑
SFA  

Atherogenicity index 
AI =

[12 : 0 + (14 : 0 × 4) + 16 : 0 ]
∑

UFA  
Thrombogenicity index 

TI =
[14 : 0 + 16 : 0 + 18 : 0]

[

(
∑

MUFA × 0.5) + (
∑

PUFAn − 6 × 0.5) + (
∑

PUFAn − 3 × 3) +
(∑

n − 3
∑

n − 6

)]

Hypo- to hyper-cholesterolemic ratio 
HH =

(cis − 18 : 1 +
∑

PUFA)

(12 : 0 + 14 : 0 + 16 : 0)
Health-promoting index 

HPI =

∑
UFA

[12 : 0 + (14 : 0 × 4) + 16 : 0 ]
Unsaturation index UI = 1× (%monoenoics) + 2× (%dienoics) + 3× (%trienoics) + 4× (%tetraenoics) + 5× (%pentaenoics)6× (%hexaenoics)
Flesh lipid quality 

FLQ = 100×

(
22 : 6n − 3 + 20 : 5n − 3

∑
FA

)

Omega-3/omega-6 ratio 
n − 3/n − 6 =

∑
(n − 3)PUFA

∑
(n − 6)PUFA  

Polyunsaturated to saturated fatty acids ratio (PUFA/SFA), Atherogenicity index (AI), Thrombogenicity index (TI), Hypo- to hyper-cholesterolemic index (HH), 
Health-promoting index (HPI), Unsaturation index (UI), Flesh lipid quality (FLQ) were calculated according to Chen & Liu (2020). 
Omega-3/omega-6 ratio (n-3/n-6) was calculated according to Ramos Filho, Ramos, Hiane, & De Souza (2010). 
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GC–MS. The concentration profiles in relative units (%) of the 25 
detected FAME (saturated, mono-unsaturated and poly-unsaturated) at 
the different experimental conditions are presented in Table 2. In gen
eral, the comparison of the sea control (-1.87 ◦C) with the experimental 
temperatures (Table 3) revealed significant increase in the levels of SFA 
and PUFA and significant decrease in the levels of MUFA and UFA at 0.0 
and 1.0 ◦C, respectively. In contrast, the changes for these parameters 
(SFA, PUFA, MUFA, UFA) were not statistically significant at 2 ◦C. 

The comparison Δ% values in Table 3 revealed that the SFA 
exhibited larger Δ% values at 0 ◦C (71%) or 1 ◦C (100%) than at 2 ◦C 
(29%). In addition, Table 3 showed that the number of fatty acids with 
the largest absolute Δ% increases from 4 (16:1n-7, 18:1n-7, 20:2n-6 and 
18:3n-6, at 0 ◦C) to 13 (12:0, 14:0, 15:0, 16:0, 17:0, 18:0, 20:0, 17:1n-7, 
18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6 and 20:5n-3, at 1 ◦C) and declines to 
8 (14:1n-5, 20:1n-9, 22:1n-9, 24:1n-9, 16:2n-7, 20:3n-6, 20:3n-3 and 
22:6n-3, at 2 ◦C). 

3.2. Quality indices 

Eight quality indices were determined by using the formulae in 
Table 1 and their inverse normal plots showed a high degree of linearity 
(Fig. S1). The calculated quality indices (Table 4) and their statistical 
analysis (Table 5) revealed significant increases in UI, FLQ and n-3/n-6 
and significant decrease in HH at 0 and 1 ◦C, respectively. The quality 
indices PUFA/SFA and HPI were significantly increased at 0 and 2 ◦C, 
respectively, while AI was significantly decreased at 0 ◦C and 2 ◦C. TI 
was characterized by a non-significant variability at every temperature. 

Table 2 
Percentage of total lipids (bracketed values) and total fatty acids in muscle of 
Trematomus bernacchii caught in the Ross Sea (Csea = -1.87 ◦C) and after 10 days 
exposure to 0, +1 and + 2 ◦C. Values for Csea (n = 3) and 10 Days (n = 6) are 
expressed as average and standard deviation (µ±σ). Dunnett’s test was used for 
comparing 10 Days against Csea (p < 0.05) and the significant values are indi
cated by an asterisk.  

Fatty acids Csea(5.2 ±
1) 

10 Days 
0 ◦C(3.4 ±
0.5) * 

+1◦C(2.5 ±
0.5) * 

+2◦C(2.0 ±
0.5) * 

12:0 0.12 ± 0.01 0.16 ± 0.02* 0.18 ± 0.01* 0.14 ± 0.01 
14:0 8.38 ± 0.14 6.96 ± 0.19* 6.71 ± 0.19* 6.90 ± 0.23* 
15:0 0.29 ± 0.01 0.40 ± 0.02* 0.45 ± 0.02* 0.36 ± 0.03* 
16:0 9.10 ± 0.08 11.3 ± 0.3* 12.1 ± 0.2* 10.2 ± 0.4* 
17:0 0.10 ± 0.01 0.21 ± 0.01* 0.25 ± 0.01* 0.13 ± 0.01* 
18:0 1.36 ± 0.01 2.59 ± 0.07* 2.63 ± 0.09* 1.65 ± 0.02* 
20:0 0.05 ± 0.01 0.10 ± 0.01* 0.10 ± 0.01* 0.10 ± 0.01* 
Total SFA 19.4 ± 0.2 21.7 ± 0.5* 22.4 ± 0.3* 19.5 ± 0.6 
14:1n-5 0.40 ± 0.01 0.39 ± 0.01 0.45 ± 0.01* 0.34 ± 0.02* 
16:1n-7 11.5 ± 0.1 10.2 ± 0.4* 11.7 ± 0.6 12.3 ± 0.2* 
17:1n-7 0.43 ± 0.01 0.56 ± 0.04* 0.64 ± 0.07* 0.57 ± 0.03* 
18:1n-9 26.8 ± 0.1 20.0 ± 0.7* 19.8 ± 0.8* 27.4 ± 0.3 
18:1n-7 6.52 ± 0.03 5.48 ± 0.36* 5.80 ± 0.09* 6.06 ± 0.06* 
20:1n-9 5.59 ± 0.03 5.54 ± 0.55 5.67 ± 0.41 4.89 ± 0.14* 
22:1n-9 2.19 ± 0.04 2.31 ± 0.12 2.29 ± 0.14 2.01 ± 0.11 
24:1n-9 0.99 ± 0.02 0.97 ± 0.05 0.85 ± 0.04* 0.80 ± 0.04* 
Total 

MUFA 
54.4 ± 0.1 45.5 ± 0.7* 47.1 ± 0.5* 54.3 ± 0.3 

16:2n-7 0.08 ± 0.01 0.07 ± 0.01 0.07 ± 0.01* 0.05 ± 0.01* 
18:2n-6 2.45 ± 0.02 2.16 ± 0.04* 2.03 ± 0.02* 2.10 ± 0.04* 
20:2n-6 0.31 ± 0.01 0.50 ± 0.02* 0.50 ± 0.04* 0.45 ± 0.02* 
18:3n-6 0.19 ± 0.01 0.29 ± 0.03* 0.28 ± 0.03* 0.27 ± 0.02* 
18:3n-3 0.83 ± 0.02 0.85 ± 0.04 0.70 ± 0.05* 0.71 ± 0.04* 
20:3n-6 0.27 ± 0.02 0.18 ± 0.01* 0.16 ± 0.01* 0.15 ± 0.01* 
20:3n-3 0.09 ± 0.01 0.16 ± 0.01* 0.14 ± 0.01* 0.16 ± 0.01* 
20:4n-6 0.58 ± 0.02 0.86 ± 0.04* 0.99 ± 0.10* 0.81 ± 0.03* 
20:5n-3 10.3 ± 0.1 15.2 ± 0.5* 15.4 ± 0.4* 13.1 ± 0.2* 
22:6n-3 10.9 ± 0.2 12.4 ± 0.8* 10.0 ± 0.5 8.25 ± 0.36* 
Total 

PUFA 
26.0 ± 0.3 32.6 ± 1.1* 30.3 ± 0.5* 26.0 ± 0.4 

Total UFA 80.4 ± 0.2 78.1 ± 0.5* 77.5 ± 0.3* 80.3 ± 0.6 

SFA: Saturated Fatty Acids; MUFA: Mono Unsaturated Fatty Acids; PUFA: Poly 
Unsaturated Fatty Acids; UFA: Unsaturated Fatty Acids. 

Table 3 
Comparison of the fatty acid profiles in muscle of T. bernacchii for seawater 
control (-1.87 ◦C) against those recorded at different experimental temperatures 
(0.0, +1.0 and + 2.0 ◦C) and expressed as percentage of variation (Δ%). Sta
tistically significant differences were determined by a Dunnett test and indicated 
with an asterisk (p < 0.05).   

Δ% 
Fatty acid 0 ◦C +1◦C +2◦C 

12:0 +39* +55* +17 
14:0 − 17* − 20* − 18* 
15:0 +35* +53* +24* 
16:0 +24* +32* +12* 
17:0 +116* +161* +37* 
18:0 +91* +94* +22* 
20:0 +81* +88* +82* 
Total SFA +12* +15* 0 
14:1n-5 − 4 +12* − 16* 
16:1n-7 − 11* +1 +6* 
17:1n-7 +29* +48* +32* 
18:1n-9 − 25* − 26* +2 
18:1n-7 − 16* − 11* − 7* 
20:1n-9 − 1 +2 − 12* 
22:1n-9 +5 +4 − 8 
24:1n-9 − 2 − 14* − 19* 
Total MUFA − 16* − 13* 0 
16:2n-7 − 11 − 18* − 40* 
18:2n-6 − 12* − 17* − 14* 
20:2n-6 +61* +58* +44* 
18:3n-6 +57* +51* +47* 
18:3n-3 +2 − 16* − 15* 
20:3n-6 − 32* − 39* − 42* 
20:3n-3 +71* +57* +72* 
20:4n-6 +48* +71* +39* 
20:5n-3 +48* +50* +27* 
22:6n-3 +13* − 8 − 24* 
Total PUFA +26* +17* +0 
Total UFA − 3* − 4* +0  

Table 4 
Values of the quality indexes in the muscle of Antarctic fish Trematomus ber
nacchii of the caught fish in the Ross Sea (Csea) and after 10 days exposure to 0.0, 
+1.0 and + 2.0 ◦C. The values at Csea and 10 Days are expressed as average and 
standard deviation (µ±σ) for n = 3 and n = 6, respectively.  

Nutritional Index Csea 10 Days 
0 ◦C +1◦C +2◦C 

PUFA/SFA 1.32 ± 0.03 1.50 ± 0.08 1.35 ± 0.04 1.33 ± 0.06 
AI 0.53 ± 0.01 0.50 ± 0.02 0.50 ± 0.01 0.47 ± 0.02 
TI 0.19 ± 0.01 0.18 ± 0.01 0.19 ± 0.01 0.18 ± 0.01 
HH 3.37 ± 0.06 3.16 ± 0.10 2.95 ± 0.08 3.46 ± 0.16 
HPI 1.88 ± 0.03 1.99 ± 0.07 1.98 ± 0.05 2.12 ± 0.09 
UI 183 ± 1 209 ± 6 197 ± 3 181 ± 2 
FLQ 21.2 ± 0.2 27.6 ± 1.2 25.5 ± 0.6 21.3 ± 0.3 
n-3/n-6 5.81 ± 0.02 7.14 ± 0.38 6.64 ± 0.35 5.85 ± 0.09  

Table 5 
Comparison of the nutritional quality indices in muscle of T. bernacchii for the 
seawater control (-1.87 ◦C) against those recorded at different experimental 
temperatures (0.0, +1.0 and + 2.0 ◦C) and expressed as percentage of variation 
(Δ%). Statistically significant differences were determined by a Dunnett test and 
indicated with an asterisk (p < 0.05).  

FAs Δ% 
0 ◦C +1◦C +2◦C 

PUFA/SFA +14* +2 +1 
AI − 6* − 5 − 11* 
TI − 5 +3 − 1 
HH − 6* − 12* +3 
HPI +6 +6 +13* 
UI +14* +8* − 1 
FLQ +30* +20* +1 
n-3/n-6 +23* +15* +1  
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Four computed indices (PUFA/SA, HPI, FLQ and n-3/n-6) increased and 
only AI decreased at every tested temperature (0.0, 1.0, 2.0 ◦C) 
compared to the sea control at − 1.87 ◦C. 

4. Discussion 

It is undeniable the impact of climate change on the metabolism of 
living organisms (Brodersen et al., 2011; Paital & Chainy, 2014). 
Changes in temperature have been associated with alterations in tissue 
lipid composition, cellular membrane fluidity (Constable et al., 2014; 
Hixson & Arts, 2016) and gene expression of fish exposed at different 
environmental temperatures (Windisch et al., 2014). The tolerance of 
T. bernacchii (natural habitat − 1.87 ◦C) to high or low temperatures is 
remarkably narrow. Its lower boundary or temperature at which it 
freezes is − 2.2 ◦C and its upper incipient lethal temperature, a 
parameter currently used to measure the temperature at which median 
mortality is no longer time dependent, has been established between 5 
and 7 ◦C (Bilyk, 2011). Antarctic fish retain the capacity to compensate 
for chronic temperature change by displaying astounding plasticity in 
metabolic control (Seebacher, Davison, Lowe, & Franklin, 2005). This 
metabolic control can be used to explain the consistent lack of statistical 
significance changes for SFA, PUFA, MUFA and UFA at + 2.0 ◦C. 
However, some authors have mentioned that the efficiency of the 
compensation process is negatively affected at elevated temperatures 
(Windisch et al., 2014; Feidantsis et al., 2020). It is likely that the 
combined dynamic of the two processes (compensation and negative 
temperature effect) explains the observed larger values of Δ% for SFA at 
0 and 1 ◦C (71 and 100%) as compared to 2 ◦C (29%), and the increase in 
the number of fatty acids that experienced the largest change in relative 
concentration (Δ%) at 0, 1 and 2 ◦C from 4 to 13 and further decrease to 
8, respectively. 

The observed decrease in concentration for 16:1n-7, 18:1n-9 and 
increase for 22:1n-9, 18:3n-3 and 22:6n-3 at 0 ◦C compared with the 
seawater control group (-1.87 ◦C) are consistent with Gonzalez-Cabrera 
et al. (1995). These authors also observed the same trends for these fatty 
acids in muscle of T. bernacchii in a warm-acclimation study. It is 
possible that the significant decrease of DHA at 2 ◦C is due to its pre
cursor role in the production of active biological molecules that are 
promoted significantly by the action of the increased temperature. 
However, some researchers have suggested that several other factors are 
likely to affect the variability of DHA under warmer temperature in 
stenothermal fish species (Brodte, Graeve, Jacob, Knust, & Pörtner, 
2008). 

The nutritional value of dietary food is generally assessed by means 
of nutritional indices. However, there are not recommendations about 
the intake of fish with specific nutritional quality indices. Estimated 
nutritional index ranges from different fish species (e.g., salmon, trout, 
carp, tilapia, corvina, seabass, pompano, puffer, etc) have varied be
tween 0.50 and 1.62 for PUFA/SFA, 0.21–1.41 for AI, 0.14–0.87 for TI, 
1.54–4.83 for HH, 13.01–36.37 for FLQ, 2.9–12.4 for n-3/n-6 (Chen & 
Liu, 2020). The corresponding nutritional indices (Table 4) for 
T. bernacchii, in its natural habitat (-1.87 ◦C) and at the different 
experimental temperatures (0.0, +1.0 and + 2.0 ◦C) are within the 
previously mentioned ranges for different fish species (Chen & Liu, 
2020). 

There is a lack of research on the impact of seawater warming on the 
nutritional quality indices of Antarctic fish. The reported means and 
standard deviations for fatty acid levels in muscle of T. bernacchii in a 
study concerned with warm-acclimation at − 1.5 and 4 ◦C (Gonzalez- 
Cabrera et al., 1995) were used to estimate some nutritional indices at 
− 1.5 ◦C (Excel file S1). The estimated values for PUFA/SFA (1.68 ±
0.47), TI (0.17 ± 0.03), HH (2.48 ± 0.53) and UI (267 ± 130) do not 
differ from the values calculated in the present research (1.32 ± 0.03, 
0.19 ± 0.01, 3.37 ± 0.06 and 183 ± 1, respectively) at a 95% confidence 
level. Although, there was some statistically significant difference be
tween the estimated AI (0.40 ± 0.05) from Gonzalez-Cabrera et al. 

(1995) and the present work (0.53 ± 0.01) at p < 0.05 (but not at p <
0.03), the difference in question may indicate some biological variation. 
This biological variation is reflected in the acceptable percentage of 
variability between the two values (Δ < 25%) and the lack of signifi
cance at the 97% confidence level. 

The computed PUFA/SFA, AI, TI, HPI and FLQ in muscle of 
T. bernacchii in the present work resemble the behavior of these quality 
indices in warm-acclimation studies of other non-Antarctic fish species 
published elsewhere (Anacleto et al., 2014; Barbosa et al., 2017; Dal 
Bosco, Mugnai, Mourvaki & Castellini, 2012; Ferreira et al., 2020). 

The involvement of dietary fish in different pathologies and their 
potential use for disease prevention and treatment are aspects that 
enhance the importance of defining nutritional quality indices to un
derstand the quality of lipids in fish (Chen & Liu, 2020; Ramos Filho, 
Ramos, Hiane, & De Souza, 2010). For instance, PUFA/SFA, AI, TI, HH 
and n-3/n-6 have been used to assess the impact of diet on cardiovas
cular health (Chen & Liu, 2020; Ramos Filho, Ramos, Hiane, & De 
Souza, 2010; Ivanova & Hadzhinikolova, 2015; Pleadin et al., 2017). 
The HPI, UI and FLQ have been used as standards for evaluating the 
content of high-quality PUFA (Chen & Liu, 2020). It has been reported 
that PUFA/SFA under 0.45 promotes hypercholesterolemia (Ivanova & 
Hadzhinikolova, 2015; Ramos Filho, Ramos, Hiane, & De Souza, 2010), 
consequently a ratio PUFA/SFA around 1.0 ± 0.2 is regarded as an op
timum dietary value (Chen & Liu, 2020; Ivanova & Hadzhinikolova, 
2015). Positive effecs on human health have been ascribed to TI values 
lower than 1 and HH values around 2.40 (Ivanova & Hadzhinikolova, 
2015; Pleadin et al., 2017). Based on these healthy reported values, the 
estimated PUFA/SFA (1.32 ± 0.03), AI (0.53 ± 0.01), TI (0.19 ± 0.01) 
and HH (3.37 ± 0.06) from muscle of T. bernacchii can be regarded as 
optimal indices that give further credence to the nutritional potential of 
T. bernacchii. A comparison of the nutritional quality indices for 
T. bernacchii in its natural habitat (-1.87 ◦C) and other fish species of 
commercial value (Table S1) indicates that the indices for T. bernacchii 
are comparable (and in some instances superior) to other fish species of 
commercial and nutritional value for humans. 

5. Conclusion 

The fatty acid quality indices in muscle of T bernacchii, namely 
PUFA/SFA, AI, TI, HH, FLQ and n-3/n-6, were within the expected 
ranges for dietary fish. 

The present research indicated that a gradual increase in water 
temperature from global warming may result in acclimation to higher 
heat tolerance. Warming of the sea water between − 1.87 and 2 ◦C 
caused changes in the fatty acid composition and the nutritional quality 
indices from muscle of T. bernacchii in the range of − 12%<Δ < 30%. It 
was confirmed, by using published data, that the observed changes in 
muscle of T. bernacchii were not statistically significant and attributable 
to biological variability. Consequently, the nutritional value of muscle of 
T. bernacchii is preserved after increasing the temperature of its normal 
habitat by ~ 4◦. The indices PUFA/SFA, AI, TI, HPI FLQ and n-3/n-6 in 
muscle of T bernacchii resembled the behavior of non-Antarctic fish in 
warm-acclimation studies. 
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