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ABSTRACT

Capelin (Mallotus villosus) is a short-lived (1-4 years) fish species, that plays a crucial role by dominating
the intermediate trophic level in the Barents Sea. Several episodes of extreme biomass decline (collapse)
have been observed during the last three decades. We postulate that these collapses might be regulated
by food availability (bottom-up effect) and/or by time discrepancy between capelin feeding and abun-
dance of its prey (match-mismatch hypothesis). This paper investigates our postulate using a model con-
sisting of a set of coupled differential equations to describe the predator-prey system, with a single delay
term, 7, in description of the predator dynamics. We derive theoretical conditions on t, as well as deter-
mine how changes in these conditions define different stability regimes of the system. Unconstrained
optimization is used to calculate optimal model parameters by fitting the predator-prey model to empir-
ical data. The optimization results are combined with those from the theoretical analysis, to make infer-
ence about the empirical system stability. Our results show that Hopf bifurcation occurs in the predatory-
prey system when 7 exceeds a theoretically derived value t* > 0. This value represents the critical time
for prey availability in advance of the optimal predator growth period.Set into an ecological context, our
findings provide mathematical evidence for validity of the match-mismatch hypothesis and a bottom-up
effect for capelin.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Capelin (Mallotus villosus) is a short-lived (1-4 years) fish
species with a northern circumpolar distribution (Carscadden
and Vilhjalmsson, 2002) that spawn only once in their lifetime
and then die (Gjoster et al., 2002b). The species is a forage fish
(Buren et al., 2014) and play a crucial role by dominating the inter-
mediate trophic level in their respective ecosystems. Such species
are sometimes called "wasp-waist species” and are partly con-
trolled by bottom-up, partly by top-down effects (Cury et al,
2000; Bakun, 2006; Hunt and McKinnell, 2006; Buren et al.,
2014). The largest capelin stock belongs to the Barents Sea ecosys-
tem (Gjos&ter Bogstad, 1998) and plays a crucial role there as the
dominant feeder on zooplankton, which enters the Barents Sea via
the Atlantic water influx (Ingvaldsen and Gjeseeter, 2013). Capelin
is furthermore an important prey for larger fish, sea mammals and
birds. Its selected prey size and type is age-dependent (Gjos&ter
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et al., 2002b). Capelin is preferred prey for the Northeast Arctic
cod (Gjgsaeter et al., 2009). Several episodes of extreme capelin
biomass decline (collapse) have been observed in the Barents Sea
during the last three decades. Large predation (top-down effect)
from other species (during crucial capelin life stages) (Gjoster
Bogstad, 1998; Hamre, 1991) has served as one explanation for
these episodic events of collapse. Though the literature also reports
that food availability (bottom-up effect) may be regulatory to the
capelin population dynamics (see e.g., Gjos®ter et al., 2002b), this
effect has been assumed to be of less significance, compared to the
top-down effect. However, recent statistical analysis results
(Solvang et al., 2017) have shown that there is a significantly
strong link between the dynamic evolution of the biomass of cape-
lin and that of its prey. The analysis did not extend to understand-
ing the characteristics of this link and the existence of different
regulatory conditions that may lead to different biomass states.
Mathematically, such bottom-up effects can be modeled using
predator-prey models (Ruan, 2009).

Ifx € R.p and y € R are state variables that represent popula-
tion indices (e.g., abundance) respectively, of prey and predator,
then the classical Lotka-Volterra Model (LVM) (Lotka, 1926;
Volterra, 1926) description of the system, V(x,y), is defined by

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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k = F(ny, OX)’

y:G(XsY70y)7 (1)

V(X7y70)(7 0}/) = {

where F: R, — R, and G: R, — R, are continuous functions, and
0, € R" and 0, € R™ are sets of parameters associated with x and
y, respectively. Several theoretical analyses in the current literature
(see e.g., Guan et al., 2018; Bakare et al.,, 2018; Freedman and
Waltman, 1977) determine how 6, and 6, influence system
dynamics.

Following e.g., Bazykin (1998), -we can define

{F(x,y,()x) = ax — bxy — ex?,

G(x,y,0y) = —cy +dxy — hy?, @)
then 0, = {a,b,e}, and 6, = {c,d, h}. In (2), the term ax — ex? defines
a logistic growth with a limiting carrying capacity a/e (see e.g.,
Verhulst, 1838), and bxy is loss in prey biomass due to predation,
also known as the functional response (Holling, 1959). The predator
dynamics are determined by a natural death rate term cy, popula-

tion decrease due to intraspecific competition hy?, and dxy, which
defines the biomass gain through predation.

Since the parameters in 6 and 6, determine the trajectory of the
state parameters, their definition is reflective of the underlying
ecological assumptions. Thus, one may constrain any 0 € 6, (simi-
larly for 6,) to a scalar domain in R or to the domain of some con-
tinuous function in R.

Seasonality is an important characteristic feature of e.g., boreal
and arctic environments for population growth (Hanski et al.,
1993; Hanski et al., 2001) and an obvious driver of the system
(see e.g., Stickney, 1991). For example, the authors in Turchin
and Hanski (1997) assumed that seasonality has continuous time
effect by defining growth rates, both a and c, as smooth sine func-
tions of time. However, incorporating such information in the pop-
ulation dynamics (of either predator and/or prey) may be
generally, non-trivial, especially as different functional expressions
of the seasonality may lead to different scenarios of the population
trajectory (Rinaldi et al., 1993).

Another ecological consideration is the fact that a time delay
exists between when prey is ingested, until it is converted to
predator biomass. The simplest approach to addressing this con-
sideration is to introduce a constant delay 7 > 0 in the predation
term of the predator (Sarwardi et al., 2012), so that G(x,y,0,) is
redefined as

G(x,y,0y) = —cy + dx.y — hy?, 3)

where in general, we use the notation x, = x(t — 7).

The model in (1) is a simplification of Sarawadi’s model
(Sarwardi et al., 2012) without a functional response, and y, in
the equation for predator dynamics. We chose this simplification
due to the assumption that changes in predator biomass take much
longer time compared to the time it takes to digest prey. In this
way, we assume that biomass for predator was “constant” at time
t — 7, when prey was consumed, and we could therefore neglect
term y, in the predator change equation. This simplification, in
essence, makes our model similar to the models by Beretta and
Kuang (1996), which includes one time-lag for gestation in the pre-
dation term. The ecological significance of this time-window deals
with the match-mismatch hypothesis (MMH) (Cushing, 1990),
which asserts that dynamical variations in a population are driven
by the relationship between its phenology (i.e., timing of popula-
tion seasonal activities) and that of the immediate lower trophic
level species. Normally, the MMH is limited to deal with mortality
of fish larvae during their critical early life stages. However, the
concept may be broadened to include other life history parameters
than mortality, e.g. growth and maturation, and the original
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temporal aspects may be broadened to include also spatial aspects
of match and mismatch, as exemplified above. In contrast to our
formulation, other predator-prey model types include delays, for
example, in the interaction term between prey and predator (see
Sarwardi et al., 2012; Frank, 2017). Such models make the assump-
tion that there was certain amount of prey and predator biomass, 7
time-steps prior, and that also predator biomass influences prey
consumption. Yet another predator-prey model type includes addi-
tional delays in, for instance, the maturation terms of the prey
(Ruan, 2009). A more comprehensive review of different
predator-prey models with discrete delays and their complex
dynamics can be found in Ruan (2009). Although the inclusion of
delay-terms in predator-prey models might be ecologically sound
(Sarwardi et al., 2012), the literature shows that time-lags have a
destabilizing effect on the system dynamics (see Freedman and
Rao, 1983; Frank, 2017). For example, when 7 crosses a critical
threshold, Hopf bifurcation might occur (Faria, 2001; Sarwardi
et al.,, 2012).

For an empirical population where the integrated system may
form the basis for inference about the population dynamics, an
accurate estimate of 7 is therefore important. Deriving the value
of T from empirical observations is, however, non-trivial. Yet, liter-
ature exists that calculates a critical delay (Sarwardi et al., 2012) or
conditions for occurrences of bifurcations analytically (Faria,
2001).

predator-prey systems do not act in isolation of their environ-
ment. Environmental factors (biotic and abiotic) may act on differ-
ent, individual time-scale resolutions, and feedback loops (i.e.,
different delay terms) to dictate the population dynamics (see
e.g., Kroeker et al., 2013). Hence the system of equations with con-
stant delay T may be an approximation of one with infinitely dis-
tributed delays.

When data on both predator and prey are available, the param-
eters associated with F and G in (1) may be determined (as for
example, in Muehlbauer et al., 2020) by numerical optimization.
If (%,9i),i=1,...,n, represent a set of empirical observations over
n discrete time steps, and %; = x({;) (similarly for y), one may define
the initial conditions for a system by setting x(0) =%;, and
¥(0) =y,. One challenge is that, for the DDE system, T and x at
t € [-7, 0) must be known. Deriving these values from empirical
observations may be non-trivial. Given fixed observation time
intervals (A=1t, —t; =... =, — to_1), [0 A) and [A co) are two fea-
sible intervals for 7. If the problem is formulated (using e.g., a con-
strained optimization approach) to include the estimation of 7, the
derived solution will depend on the chosen feasible interval. In
practice, empirical data are however not always available to test
validity of ecological assumptions. In absence of data however, it
would be especially restrictive to constrain parameter domains of
the model. Also with partially available empirical data (only for
either predator or prey, but not both), the estimation problem in
(1) is challenging. Then auxiliary information is needed to validate
the derived trajectory of the missing component.

The goal of this paper is to investigate whether the capelin bio-
mass dynamics may be reconstructed (including episodic events of
extreme decline) by solely considering a bottom-up regulation pro-
cess and a single delay term, 7, in description of the predator
dynamics. This delay term may be interpreted as the time delay
between the changes in prey biomass and the corresponding
changes in the capelin growth rate, while considering as instanta-
neous, the effect of capelin predation on its prey. See a similar con-
sideration and approach in e.g., Bush and Cool (1976).

The paper adopts the model definitions in (2) and (3), and uses
unconstrained optimization to estimate the parameters of the sys-
tem. We make inference about the system dynamics using the
derived parameters. The manuscript is organized in the following
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way. Section 2 gives a summary of the observation data on which
the modeling is based. Section 3 revisits the mathematical models,
and presents their theoretic dynamical system analyses. This sec-
tion also presents a formal definition of the optimization problem,
whose solution yields the system parameters. The theoretical
results inform inference on the predator-prey behavior, on the
basis of the derived parameters. Section 4 gives an overview of
the numerical experiments, whose results are presented in Sec-
tion 5, and discussed in Section 6. Our conclusions and discussion
about possible limitations of the results are presented in
Section 6.1.

2. Data sources

From annual scientific cruises in the BS during September, data
on species abundance, spatial distribution and demography have
been obtained, since 1972 (Gjos®ter, 1998). The species abun-
dance indices (length, weight, age, numbers) are converted into
age-specific biomass.

Fig. 1 shows the biomass of capelin from 1972 to 2013 (for the
indicated ages), with notable stock collapses in 1985-1989, 1993-
1997, and 2003-2006 (Gjosceter et al., 2009). This paper uses time
series data of the age-structures capelin biomass (Fig. 1) as preda-
tor data..

For parameter estimation and modeling of predator dynamics,
we use a time-series of capelin biomass data from 1990-2018.
The data for age-4 capelin is excluded from the modeling because
the observations are highly uncertain, infrequent, and low. Capelin
biomass data are not reliable before 1983 (Gjgsater et al., 2002a),
and capelin biomass was extremely low between 1986-1989.
Hence our simulations (and parameter estimation) start in 1990,
when the stock has recovered (Tjelmeland, 1992).

We have used the term prey to collectively describe all capelin
prey, with a wide repertoire from Arctic copepod species to Atlan-
tic krill (Dalpadado et al., 2014). This decision is influenced by the
following considerations. Firstly, we have considered the prey data
as unavailable partly because we are unable to pin down the exact
prey type. Secondly, the intensive feeding season for capelin is
July-October (Gjos&ter, 1998). However, the scientific survey that
collects data on the abundance of main capelin preys occurs at the
end of this season.

Zooplankton species are major prey for the Barents Sea capelin
(Dalpadado et al., 2012). Though major zooplankton communities
are associated with influx of different water masses (of Atlantic,
and Arctic origins), over 50% of the zooplankton that is advected
into the Barents Sea is found to be correlated with the volume flux
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Fig. 1. The capelin biomass data.
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of Atlantic water (AW) (Ingvaldsen and Gjgsater, 2013), measured
at the Fugleya-Bear Island (FB) transect (along the Barents Sea
opening). We therefore use data on normalized volume of Atlantic
water influx, AWI, as proxy for the validation of the normalized
modeled prey trajectory x(®y, t).

All data used in this manuscript have been obtained from the
database of the ICES Working Group on the Integrated Assessments
of the Barents Sea (WGIBAR, 2019).

3. Model and theoretical analyses

The main mathematical model description and theoretical anal-
yses are presented in this section.

3.1. The general predator-prey model

We use the system in (1), where for T > 0, we define
X = ax — bxy — ex?, .
) , (=VXY) 4)
y=—cy+dxy - hy”,

which are adaptations from Bazykin (1998) and Sarwardi et al.
(2012).

3.2. Theoretical analyses of system dynamics

3.2.1. Coexistence and conditions
We use (4) to derive the non-trivial equilibrium point,
P, = (x.,y,), of the system V(x,y), which is given by

_ (bc+ha ad —ce
(x“y*)::<bd—rhe’bd4—he>’ ®)

e Condition 1 (C1): ad > ce

We linearize the system via
u(t) = x(t) — x., v(t) =y(t) = y..
to derive (6) from (4).
u=—bx,v—ex.u .

=V 6
sy ) =V ©

Eq. (7) gives the characteristic equation for V (i, #),
P4pitq+re =0, (7)

where p=ex.+hy, > 0,q=hex,y, >0, and r = bdx.y, > 0. The
equilibrium P, is stable if all roots of (7) have negative real parts.
For T =0, we derive the characteristic Eq. (8), with discriminant
D =p?—4(q+7).

P 4+pitq+r=0. (8)

Then the roots of (8) have (i) always negative real parts when
{p>0AD <0}, (ii) always positive real parts when
{p<0AD<O0}, and (iii) at least one positive root for
{p < 0AD = 0}. The constraining conditions are defined as

e Condition 2 (C2): (ex. + hy,) > 0 A (ex, — hy,)* < 4dbx.y,, and
e Condition 3 (C3): (ex. + hy.) < 0.

3.2.2. Stability and bifurcation analysis
If we define 1 = iw as a root of (7), we derive (9)-(10)

—(w? —rcoswt - q) +i(pw — rsinwt) =0, (3)



A. Frank, S. Subbey, M. Kobras et al.

wht (P2 - 29w +¢* 17 =0, (10)

which come from separating the real and imaginary parts. We
introduce

z=w, {=p*-2q,n=¢q -1

into (10), to arrive at (11)

22+ z+n=0. (11)
Note that {=p?—2q >0 since (p*> —4q) = (ex, — hy,)* > 0, and
the discriminant of (11), D > ¢2, for q < r. Hence, when q <, (11)

has a positive root, zo, for z € (0, co), and no positive root when
r < g. The positive root of (10), wy is then given by /o, i.e.,

o M(li 14<q>D 12)

2 (p? - 2q)°

Using the real part of (9), we define for k =0,1,2,...

2 _
T = 1 {arccos <W° q) + 271K
Wo r

; (13)

and note that (7) with 7 = 7, has a pair of purely imaginary roots,
+iwy for every .

We investigate the transversality condition, expressed as
Lemma 1.

Lemma 1. Let A(t) = o(7) + iw(t) be the root of (7) near T = Ty, such

that o(t,) = 0, and w(t,) = wg for k =0,1,2,.... Then if g <,
M >0,k=0,1,2,... (14)
dt i

Proof. Rewrite (7) with explicit dependence of /. on 7, i.e., 2 = A(7),
as

ypi+q+re™™=0. (15)
Then
di rie*t _ (+peT T ! (16)
dt 2.+p-—rreit i A
However,

Re H J=+iwg =0and (17)

2i+p)e’t p’-2q) | 2w

R[22, =R

since from (9),
2
sinwotzlﬂ,coswot:w. (18)
r T

Finally, substituting for wy from (12), we deduce

2/1+ ei.‘r 2(p2 — 4 +4r2
Re {( Hp) } _ VPP r2 q) +4r (19)
v J=+iwy —_— ——
>0

which completes the proof.

Theorem 1. Let C1 and C2 prevail. Then all the roots (7) have nega-
tive real parts for T € [0, t*), and P. is asymptotically stable for
T € [0, t*). The system defined by (2) undergoes Hopf bifurcation at
P, when t* =1,, k=0,1,2,...
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Theorem 2. Let C1 and C3 prevail. Then (7) has at least a root with
positive real part for T € [0, t*), and P. is unstable for t € [0, t*). The
system defined by (2) undergoes Hopf bifurcation at P, when
=1, K=0,1,2,...

3.3. The optimization problem

The assumption that discrete empirical observations exist only
for the predator, and not the prey, defines the optimization prob-
lem. Our goal is to determine the system parameter sets that min-
imize the discrepancy between modeled predator biomass and
empirical data.

Define {i,n} € Z, such thati=1,...,n, and let y; :j/(f,-) repre-
sent empirical observations of y over n discrete time steps ;. Note
that y and x are coupled (through the predation term). Further-
more, since we assume no data exists on %, the initial condition
x(0) and delay term T must be estimated as part of the optimiza-
tion procedure. The trajectory of y will also depend on x(0) and
7. Hence we write y (6, 6,,x(0),7,t), and define Problem 1 as the
general optimization problem.

Problem 1 (The optimization problem).

Determine 6 = {6y, 6y,x(0),7}:

argmin_|[y(t) — y(0.t)], (20)
0eR-0,te[0 T]
where y(t) is known at t = ty,t5,...,5, <T.

4. Description of numerical simulations

Determining the trajectories of the predator-prey system com-
bines the problem of integrating the system of coupled DDEs, and
deriving the solution, 0%, of the optimization Problem 1. We use a
numerical approach for integrating the DDE system, as for most
of such coupled systems, finding closed form solutions is non-
trivial (Bedziuk and Yablonski, 2010).

For the coupled DDE system, we use the Matlab dde23 algo-
rithm, which is based on the ode23-solver, using the RKBS(2,3)
method. Theoretical and computational details about dde23 can
be found in Shampine and Thompson (2001). We set
y(=1) =y(0) =91, and x(—7) =x(0) =Xo. Since T and x, are
unknown, they are included in the parameter set 6 (see Problem 1).

We used the fminsearch algorithm in Matlab to derive the uncon-
strained model parameters. The fminsearch algorithm uses the
Nelder-Mead algorithm (Nelder and Mead, 1965) to compute the
unconstrained minimum of a given objective function. For a prede-
fined tolerance ¢, we consider the algorithm to have converged
after J iterations when the change in the objective function
Af(0;) <€, for j <J. For each candidate solution, 6; (j=1,...,J),
spline-interpolated values of y(6;,t) at n discrete (observation)
points {fi,1,...,f,} are obtained.

The objective function is then simply defined by (21).

n
fj:Zy(ajsEi) - y(t). (21)
i=1
where, f; = f(6;). Based on the analysis presented in Section 3, we
obtain system dynamics by analyzing the set of optimized
parameters.

Finally, we validate the dynamics of the modeled prey trajec-

tory, x(0,t), by comparing it to data on the normalized AWI
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5. Results

This section presents results from our numerical simulations for
the DDE model. We adopt the following notations, some of which
has been used in Section 3, but are repeated here for the sake of
completeness and to ease readability:

Xo represents the initial condition for  prey,
v=(a, b, c, d, e, h, ) is the parameter vector and the optimized
parameter set is indicated with #°. 7° is the optimized delay from
the model fit to the data, t* is the critical delay, i.e., T* = 74,k > O.
Dependent on the optimized model parameters, we have the situ-
ation that either (i) t° < t* (Theorem 2) or (ii) 7° > 7* (Theorem 3)
holds. For each of these cases we can illustrate dynamics for T = 1°
and 7 = 7*. However to show what happens with the dynamics
when either T > 7* (i) or T < 7* (ii) we had to choose 7 arbitrarily,
and this is 7f. For plotting the dynamics, the value of ' was there-
fore chosen to be either above 7~ (i) or below t* (ii).

Table 1 shows results for our numerical simulations when
7>0. We used the optimized estimate of 7 and results in

Table 1

Journal of Theoretical Biology 527 (2021) 110814

Theorem 1 to calculate t*. Observe that results from the optimiza-
tion show that it is Theorem 1 (and not Theorem 2) that applies to
our empirical setting. Although we are able to calculate 7., Kk > 0,
only 7o presents a biological realistic scenario, since capelin has a
life-span of three years. The results presented in this section are
therefore limited to the model dynamics for varying t-values
around t* = 7. Fig. 2a.-b. shows the simulated prey and predatory
biomass dynamics, as well as comparison between modeled and
empirical predator biomass data. The DDE system is capable of
replicating the empirical observations.

Fig. 2c. shows a consistent, temporal synchrony between the
modeled and normalized prey biomass of age-3 capelin and the
normalized AWI though large deviations (in absolute terms) exist
between the two. Coherence between normalized modeled prey
dynamics and AWI is less pronounced for ages 1 and 2 capelin,
compared to the results for age-3 (see Figure A.1 in the appendix).
However, the peaks in AWI overlap with peak-trends in biomass
growth in the two younger age-groups, indicating also here a cor-
relation between simulated prey and AWI.

Parameter estimation results using data from 1990-2018 (age-1 and 3), and 1989-2018 (age-2). The optimization algorithm failed to converge for age-2 when data from 1989

was excluded - see discussion under Section 6

Age v’ =(a, b, c, d, e, h, 1° Xo T Tt
1 (1.1747, 2.0315, 0.750, 0.300, 0.0380, 0.3747,0.1268) 16.2625 0.3204 0.5251
2 (0.4893, 0.3974, 0.9874, 0.2649, 0.0070, 0.1488, 0.0556) 13.1306 0.3860 0.7163
3 (0.5398, 0.8562, 1.0310, 0.2325, 0.0095, 0.0594, 0.1070) 8.9218 0.1473 0.1876
1 1.6 25
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Fig. 2. DDE optimization results — Simulated predator-prey dynamics (a.), Model fit of predator dynamics to empirical data for age-3 capelin (b.), Scaled total biomass of prey,

%(t), and normalized Atlantic water influx (AWI) (c.), in the period 1990-2018.
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Fig. 3. t-bifurcation analysis - Left column: Model fit to data (a.), Model simulations (b.)-(c.). Right column: Phase-plane plot of the predator-prey dynamics. Observe the
phase-plane dynamic transitions from (a.) Asymptotic stable (7°) to (b.) A limit cycle (7*) to (c.) Asymptotic unstable (t'). The red square in the phase-plane plot is the origin

of the time-series.

The first column in Fig. 3 shows fit of the DDE model to the data
with the indicated t values. The second column shows the corre-
sponding phase-plane diagrams.

6. Discussion

This paper analyzed the dynamics of an empirical marine
predator-prey system, both theoretically and numerically, based
on Lokta-Volterra model formulations, where data on the prey is
absent. We have used auxiliary information about the AWI to
validate the modeled prey biomass dynamics. Although, full simu-
lation results exist also for age-1 and age-2 capelin (Table 1),
graphical results and discussions were focused on age-3 capelin.
This has been done, partially for the sake of brevity. But most sig-

nificantly, because the results for age-3 capelin are coherent and
easier to interpret.

The modeled age-1 and age-2 prey dynamics could also be val-
idated, albeit to a less degree of agreement, with data on AWI. The
results might indicate that the younger age-groups may be regu-
lated by bottom-up process to a lesser degree than age-3 capelin.
This assumption, however, warrants further investigation that is
beyond the scope of this manuscript.

In addition, for younger age-groups, more stochastic (e.g.,
defined by stochastic differential equations) prey model(s) may
be required. Consequently, our modeled prey dynamics may repre-
sent a single realization of several stochastic dynamic prey
trajectories.

In general however, we see good model fit to empirical data, for
stable and unstable system equilibria (see Fig. 3).



A. Frank, S. Subbey, M. Kobras et al.

Since C1 and C2 apply, Theorem 1 defines the condition for sta-
bility of the predator-prey system. This is confirmed by the results
in Table 1 and Fig. 3, where for 7 € [0, 77], the system dynamics is
stable, but becomes unstable when 7 = 7' > 7*.

Table 1 shows that the optimized delays (7°) and critical values
(t*), are age-class dependent. Put together, these delay values
define a time-window, At=([1° t*], for stability of the
predator-prey system. From (2), we note that for {c,d,h} > 0,
the growth rate G(x,y,8,) at any time t satisfies (22),

G(x,y,0,) <dy- [{na)a[xr]. (22)
-1,

Hence, predator growth is optimized when x; is maximum in
[t — 1, t], for T € At, and that this time-window is age-dependent.
For the optimized time-delay window (in weeks), we observe that
AT =8, 16],A,T = [3, 16],A37 = [4, 8], where A; is the time-
window for predator of age j.

Combining (22) and the results in this manuscript translate, in
ecological terms, to mean that the growth rate (and stability) of
the predator at any time t is determined by the size of prey bio-
mass within t — A; (for j = 1,2, 3), weeks in advance. These differ-
ences in At are reflective of the age- or length-specific feeding
needs and prey types for capelin (see discussion in Gjosa&ter
et al,, 2002b). An example of age-specific feeding needs of capelin
is that age-1 capelin feeds on smaller zooplankton, while age-3
capelin prefers larger zooplankton species (Gjos&ter et al,
2002b; Dalpadado et al., 2014). The difference in food supply might
explain the variations in the t-window for the three age groups.

We extend interpretation of our results in an ecological context
by firstly noting that feeding among fish is a dynamic process. A
newly hatched capelin larva would, for instance, depend on avail-
ability of food objects of a narrow size spectrum. If such food (for
instance eggs and young stages of crustacean plankton) is not
available soon after the capelin larvae are hatched, they will have
minimal chance to survive. In theory, similar mechanisms may
exist also for older fish, but since they can choose among a wide
range of food objects, they are much less prone to lack of suitable
food. Adult fish are also extremely flexible as to when food is avail-
able; they may survive for long periods without eating anything,
thanks to their low resting metabolism.

Our results show that the dynamic optimal growth rate (not
necessarily the maximum) at any time ¢ is determined by the size
of prey abundance in the time-window t — A; in advance. Note that
what constitutes maximum predator growth rate is not only
dependent on the prey abundance per se, as growth rates may be
dictated by other factors, e.g., ratio of prey to predator biomass, han-
dling time, and optimal spatial overlap between predator and prey.

Hence, optimal growth conditions might be a consequence of
spatio-temporal overlap between prey and predator.

Though the MMH has gained acceptance, the literature lacks
empirical evidence for its validity (see discussion in Durant et al.,
2007). Our derived time windows, A;, provide a possible link
between capelin phenological growth and that of its prey. To the
authors’ knowledge, this is the first time such evidence of the
MMH has been provided.

Although our results show that the observed cyclic variation in
biomass of age-1 and older capelin is consistent with the hypoth-
esized bottom-up regulation, this does not preclude the existence
of top-down regulation both on early life stages (reviewed by
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Gjos&ter et al., 2016, and not dealt with in our modeling) or
among adult capelin. The importance of bottom-up and top-
down regulation might shift among various life history stages of
capelin.

6.1. Conclusions

Our modeling results shed light onto the regulatory effect of
prey on BS capelin biomass dynamics. Results from theoretical
analyses and numerical simulations were consistent. We could also
show that the simulated prey dynamics are synchronous with AWI,
and have thus validated our model formulation of the prey.

Three key ecological highlights result from our analyses.

Firstly, we have presented results in support of a bottom-up
regulation for the biomass dynamics of capelin age-1 and older.
Secondly, based on combination of theory and simulations, we
have identified time-frames for predator-prey overlap, which lead
to optimal predator growth and stability of the predator-prey sys-
tem. The identified time-frames differ for different age groups, and
probably reflect age-specific feeding habits of the predator.

Thirdly, we have provided evidence, perhaps for the first time,
of MMH applicability to capelin and its prey.

Our results present evidence that prey have strong regulatory
effect on the biomass dynamics of predators of age-1 and older.
However, we cannot infer from our results whether this can also
partly explain the episodic collapses seen in the capelin biomass
dynamics. In our opinion, such inference should be based on find-
ings from this paper, combined with analyses of other biophysical
information in space and time. However, this undertaking is
beyond the scope of this paper and will therefore be investigated
in a sequel paper.
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Fig. A.1. Scaled total biomass prey, R((ti) and normalized Atlantic water influx (AWI), for predator of age-1 (1990-2018) (a.), and age-2 (1989-2018) (b.).
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