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Abstract

Anadromous brown trout (sea trout), Salmo trutta, is currently in decline throughout

its range, largely due to anthropogenic stressors in freshwater and marine habitats.

Acoustic telmetry was utilized to study the marine migration of sea trout post-smolts

from three populations in a relatively pristine subarctic fjord system. While at sea,

the sea trout spent a substantial part of their time close to their natal river, preferred

near shore over pelagic habitats and were strongly surface oriented. Despite a fidelity

towards local areas, the sea trout utilized various parts of the fjord system, with max-

imum dispersion >30 km and total migration distance >300 km. Almost half of the

sea trout (44%) migrated between river outlets, indicating that a metapopulation

approach may be appropriate when managing neighbouring sea trout populations at

high latitudes. Furthermore, the different populations displayed different migratory

behaviours in terms of distance migrated, dispersion from origin and the likelihood of

leaving their home area. This variation in migratory behaviour is likely influenced by

spatiotemporal differences in habitat quality between sites, indicating that local habi-

tat variations may promote population-specific behavioural responses even in rela-

tively confined fjord systems.
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1 | INTRODUCTION

Describing migration is challenging for aquatic animals, and for many

species improved knowledge of the spatiotemporal distribution and

habitat use is of great importance for management and conservation

(e.g., Mazor et al., 2016; Walli et al., 2009). This is emphasized for

fishes that migrate over large areas and encounter a variety of

stressors (Campana et al., 2010; Walli et al., 2009), but is also highly

relevant for species with smaller distribution ranges (Aspillaga

et al., 2016; Thorbjørnsen et al., 2019), as they can be more vulnerable

to negative impacts at local and regional scales.

Brown trout Salmo trutta L. 1758 is a facultative anadromous spe-

cies indigenous to Europe, North Africa and western Asia, with

populations ranging from being completely freshwater resident to

consisting only of anadromous individuals (Klemetsen et al., 2003).

The distribution of anadromous brown trout, hereafter referred to as

sea trout, extends from the Bay of Biscay off northern Spain to the

Cheshkaya Bay in the south-eastern Barents Sea (Klemetsen
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et al., 2003). Sea trout can perform multiple feeding migrations into

the marine environment, with fish re-entering fresh water to either

spawn or overwinter (Thorstad et al., 2016). The duration of the

marine migration is highly variable, and although many sea trout spend

only the summer months in the marine environment (Flaten

et al., 2016; Jensen et al., 2020), year-round migrations are frequently

observed, occasionally also in the northern populations (Jensen &

Rikardsen, 2012; Rikardsen et al., 2006). While at sea, sea trout spend

most of their time close to the surface and typically reside within

fjords and in coastal areas close to their natal river (Thorstad

et al., 2016). Nonetheless, the distance of the marine migration varies

extensively both among and within populations (Kallio-Nyberg

et al., 2002; Pratten & Shearer, 1983). Examples of sea trout migrating

several hundred kilometres from their origin have been documented

throughout large parts of their distribution range (Birnie-Gauvin

et al., 2019; Thorstad et al., 2016).

Since the 1980s, many sea trout populations have declined due

to anthropogenic stressors occurring in fresh water and at sea

(ICES, 2013). In the marine environment, habitat loss, overfishing, eco-

system changes, and pathogen spill-over from aquaculture have all

contributed to the decline (ICES, 2013). The parasitic salmon louse

Lepeophtheirus salmonis Krøyer 1837 is an example of a stressor that

impacts anadromous salmonids on local and regional scales. In areas

with open net cage farming of Atlantic salmon Salmo salar L. 1758,

the density of salmon lice can increase by orders of magnitude, to

levels that harm wild salmonids (Bøhn et al., 2020; Krkošek

et al., 2011; Thorstad et al., 2015). Although sea trout populations can

cope with the parasite at natural levels, infections exceeding a certain

threshold level increase mortality and reduce individual growth, either

directly though physiological processes or indirectly via premature

returns to fresh water (Serra-Llinares et al., 2020; Thorstad

et al., 2015). In Norway, open net cage farming of salmon occurs along

almost the entire coast, with the highest activity in the south-western

and central parts where numerous sea trout populations are declining

(Anon, 2019). In comparison, subarctic sea trout populations are more

pristine, but with the expected northward shift of the Norwegian

salmon farming industry, there are growing concerns for these

populations (Vollset et al., 2021).

In recent years, there has been an increased effort in quantifying

the marine habitat use of sea trout, and several studies using elec-

tronic tags have provided detailed documentation of their marine

migration (e.g., Eldøy et al., 2015; Kristensen et al., 2019). Although

these efforts have increased our knowledge of the marine migration

of sea trout, they have also highlighted the extensive behavioural vari-

ability that exists within the species. This emphasizes the importance

of quantifying the marine migration of sea trout throughout their

range, particularly in areas where anthropogenic stressors are

expected to increase (Thorstad et al., 2016).

This study describes the marine migratory behaviour of sea trout

post-smolts from three populations within a subarctic Norwegian

fjord system, using acoustic telemetry. The main aim is to provide a

detailed description of the marine migration and habitat use of sea

trout from different populations within a relatively pristine fjord

system. Specifically, the horizontal distribution and depth use of indi-

viduals are quantified, to further the understanding of the behaviour

of sea trout post-smolt at high latitudes and to investigate if

population-specific migration patterns are present within the same

fjord system. Based on a recent observation of the behaviour of sea

trout post-smolts from one of the populations included in this study

(Atencio et al., 2021), it is expected that fish will spend most of their

time close to their natal river, primarily occupying near shore surface

waters.

2 | MATERIALS AND METHODS

The handling of experimental animals complied with Norwegian ani-

mal welfare laws, guidelines and policies as approved by Norwegian

Animal Research Authority (permit reference number 12267).

2.1 | Study area

The study was conducted from June to September in 2018 in the Alta

Fjord system in northern Norway (70� N, 23� E, Figure 1). The

Alta Fjord system refers to the Alta Fjord and the Stjernsund,

Rognsund and Vargsund straits, which all connect the fjord to the

Norwegian Sea (Figure 1). The Alta Fjord itself is 38 km long, is 4–

14 km wide and has a maximum depth of 488 m. The inner part of the

fjord is categorized as a National Salmon Fjord (Figure 1), which is a

conservation measure to protect important Atlantic salmon

populations by preventing potentially harmful industrial activities,

such as aquaculture facilities, to establish nearby (Serra-Llinares

et al., 2014). The fjord is considered subarctic despite its Arctic loca-

tion due to the inflow of Atlantic Ocean waters (Skarðhamar

et al., 2018). The summer surface temperature in the Alta Fjord varies

between 5 and 16�C with an average temperature of 10�C in August

(Skarðhamar et al., 2018). During summer, the upper layer (down to

5–10 m) is brackish, with relatively high salinities below (>33)

(Skarðhamar et al., 2018).

2.2 | Study populations

A total of 92 sea trout were tagged at three sites in the Alta Fjord sys-

tem: (a) in the fjord 2.5 km south of the Hals River outlet between

24 June and 5 July (n = 35), (b) in the fjord 0.8 km west of the

Skillefjord River outlet between 2 and 9 July (n = 35) and (c) 8 km

upstream the Alta River either in late April (n = 1) or between 13 and

16 July (n = 21) (Table 1; Figure 1). Fish caught in the marine

envrionment were assumed to originate from the nearby rivers, and

the sea trout were classified into three separate groups (hereafter ter-

med populations): Hals River, Skillefjord River and Alta River.

The Hals River has a mean annual water flow of 4.3 ms�1 and an

annual within-river angling catch of sea trout averaging 157 kg (www.

ssb.no). The river has a 20 km stretch accessible to anadromous
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salmonids. The marine habitats north and south of the Hals River out-

let are shallow and characterized by patches of sandy bottoms. The

Skillefjord River is located at the base of a small fjord arm (Skillefjord)

of the Alta Fjord. The river has a mean annual water flow of 3.1 ms�1

and an annual within-river angling catch of sea trout averaging 92 kg

(ww.ssb.no). The river has a 13 km stretch accessible to anadromous

salmonids. The Alta River is the largest river draining into the Alta

Fjord, with a mean annual flow of 88 ms�1 and an annual within-river

angling catch of sea trout averaging 2816 kg (www.ssb.no). The river

has a 46 km stretch accessible to anadromous salmonids.

2.3 | Fish capture and tagging

Fish captured at sea were caught in bag-style fjord nets, which were

inspected and cleaned at least once per day. Fish in good condition

F IGURE 1 Map of the Alta Fjord system. Shaded area depicts the part categorized as a National Salmon Fjord. Points show the positions of
the acoustic receivers, with the number of hourly detections at each receiver coded by size and colour. Receivers with no detections are shown in
dark grey. Yellow diamonds denote the location of the Hals River, the Alta River and the Skillefjord River outlets. Inserted map denotes the
location of the Alta Fjord system (yellow square) in Fennoscandia

TABLE 1 Overview of Salmo trutta post-smolts tagged with acoustic tags in the Alta Fjord system and whether they were included or
excluded in the analyses

Population Tagged Included Excluded FW-return Alta River Other areas

Hals River 35 (175 ± 15) 13 (178 ± 17) 22 (173 ± 13) 6 3 4

Skillefjord River 35 (178 ± 17) 27 (179 ± 16) 8 (176 ± 19) 13 9 14

Alta River 22 (179 ± 19) 5 (169 ± 25) 17 (182 ± 17) 3 4 2

Note. Mean fork lengths LF and standard deviations of the different groups are given in parentheses. FW-return refers to the number of S. trutta assumed

to end their migration in fresh water. Alta River refers to the number of S. trutta that entered the Alta River at some point during the migration. Other

areas refer to the number of S. trutta detected within or in proximity to the other study rivers.
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were selected for tagging and transported by boat to the nearest

shore or marina in large (≥100 l) holding tubs, with continuous water

exchange to ensure good water quality. Fish captured within the Alta

River were caught using a fyke net or by electrofishing.

For surgery, the fish were anaesthetised using benzocaine (0.1–

0.2 ml Benzoak ® l�1, c. 3 min immersion in aqueous solution), and

placed with the ventral side up with the head and gills submerged in a

v-shaped surgical tray. The tags were implanted into the body cavity

through an approximately 1 cm long incision made with a scalpel pos-

terior to the pelvic girdle. The incision was thereafter closed using a

braided silk suture (5-0 Ethicon Inc., Sommerville, NJ, USA). Tagged

fish were subsequently placed in a large holding tub for recovery and

transported to the release site, with at least 15 min of recovery time

between tagging and release. Fish caught near the Hals River were

released in the Hals River outlet or in the nearby marina during bad

weather, whereas fish caught in the Skillefjord were released approxi-

mately 500 m from the catch site (Figure 2). Fish caught in the Alta

River were released approximately 200 m downstream of the capture

site in calm shore waters. The acoustic tags deployed outside the Hals

River, in Skillefjord and in the Alta River in July (n = 91) transmitted

an identification number and depth (pressure) (model D-LP7; diame-

ter: 7.3 mm; length: 21.5 mm, mass in water: 1.1 g; transmission rate:

40–100 s random interval; lifespan: 5 months, Thelma Biotel AS,

Trondheim, Norway). The tag deployed in the Alta River in April

(n = 1) only transmitted an identification number (model ID-LP7;

diameter: 7.3 mm; length: 18 mm, mass in water: 1.1 g; transmission

rate: 30–90 s random interval; lifespan: 5 months, Thelma Biotel AS).

2.4 | Receiver deployment

A total of 144 acoustic receivers (model TBR700, Thelma Biotel AS)

were deployed in 15 arrangements, hereafter termed arrays, within

the Alta Fjord system (Figure 1). This included high-density receiver

arrays placed near the Hals River outlet and in Skillefjord, nine across-

fjord receiver arrays positioned throughout the fjord system, three

receiver arrays placed strategically within the Alta Fjord and one

receiver array placed around the Alta River estuary (Figure 1). In addi-

tion, two acoustic receivers were placed within the Alta River. In the

Hals River and Skillefjord River, no receiver was placed in fresh water,

but one receiver was positioned at the outlet of each river. Receivers

deployed in the across-fjord arrays were positioned approximately

400 m apart, thus providing good across-fjord coverage given the

expected detection range of 200–800 m in the Alta Fjord (Jensen

et al., 2014).

2.5 | Data filtering

The data set was filtered manually before analyses. Only tag numbers

corresponding to tags included in the study were evaluated, and tags

from other ongoing studies and acoustic noise were removed from

the data set without evaluation. After the initial filtering, the data set

consisted of 179,192 detections. Based on these, hourly positions,

depths and habitats (near shore or pelagic) were estimated. This down

sampling to hourly data was done to reduce the impact of multiple

detections within a short period of time, i.e., a biased sampling distri-

bution when the fish resided close to the receivers. Hourly positions

were calculated using a weighted mean (Simpfendorfer et al., 2002),

whereas arithmetic means were used to derive hourly swimming

depths. Habitat use was only estimated for the hourly positions at the

receiver arrays that provided complete coverage across the fjord

(Figure 1). Detections at the receivers located closest to land (approxi-

mately 200 m from the shore) were classified as near shore, whereas

detections at all remaining receivers were classified as pelagic. If fish

were located both in the pelagic and near shore habitats within the

same hour, the habitat was set as missing.

Of the 92 tagged sea trout, 45 generated sufficient data to be

included in the analyses. This included 13 fish tagged outside the Hals

River Bay, 27 fish tagged in Skillefjord and 5 tagged in the Alta River

(Table 1). The 47 fish omitted from the data set consisted of 23 sea

F IGURE 2 Maps of the area near the Hals River (a) and of
Skillefjord (b). Points show the positions of the acoustic receivers,
with the number of hourly detections at each receiver coded by size
and colour. Blue lines represent the 10, 50 and 100 m bathymetry
contours. Yellow diamonds denote the location of the river outlets,
and crosses denote the release locations
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trout that were never detected at sea, 13 sea trout that were only

registered for shorter periods (days) before disappearing and 11 sea

trout that were only detected shortly after tagging before the tags

were registered as stationary on the bottom (e.g., due to tag rejection,

mortality or predation). The fork length LF of the 45 sea trout included

in the analyses ranged between 140 and 216 mm (mean ± S.

D. = 177 ± 17 mm). No significant difference in LF was detected

between sea trout from the three populations (Fisher-Putman permu-

tation test: P-value = 0.64) or between the sea trout included and

excluded from the analyses (Fisher-Putman permutation test: P-

value = 0.85).

2.6 | Data analyses

All statistical analyses were conducted using the R software ver-

sion 4.0.2.

2.6.1 | Track estimation

Individual tracks were estimated by first executing a linear interpola-

tion between all hourly positions. If the corresponding track resulted

in fish crossing land between detections, the shortest possible in-

water path was generated. This was done by first generating an adja-

cency matrix from a spatial grid encompassing the Alta Fjord system,

weighted by the distance between grid cells. Subsequently, the

shortest path was derived using Dijkstra's algorithm for weighted

graphs using the shorthest_path function from the igraph package

(Csardi & Nepusz, 2006). Track endpoints were set as the last detec-

tion at sea, or as the first detection in fresh water if none of the fol-

lowing detections were in the marine environment.

2.6.2 | Site fidelity

To investigate site fidelity, the probability of sea trout leaving their

home areas was modelled using binomial generalized linear models

(GLM), with Population, fork length LF and Track duration in days as

fixed effects (Table 2). For each population, the home area was

defined as the receiver array close to the tagging sites (Figure 1), and

sea trout was considered to have left if they were detected at other

arrays.

2.6.3 | Total migration distance

The total migration distance of individual fish was measured as the

total distance travelled between (i.e., not within) receiver arrays

(Figure 1). This was done due to the nested spatial distribution of

receivers in the study area and effectively prevented overestimating

the distance travelled by sea trout that resided in areas with a high

density of receivers for prolonged periods. The total migration

distance was then modelled using linear models (LM) with Population,

LF and Track duration in days as fixed effects (Table 2). To prevent

violations of model assumptions a log transformation was applied to

the response variable.

2.6.4 | Distance from natal river

Distance from origin (i.e., river closest to the tagging sites) was calcu-

lated to all positional estimates, along the shortest possible path. To

quantify seasonal variation in how far the fish dispersed, daily maxi-

mum distance from origin was modelled using a set of generalized

additive mixed-effect models (GAMM), with LF as a fixed effect, Day

TABLE 2 Overview of models used to describe the migration and habitat use of Salmo trutta post-smolts tagged with acoustic tags in the Alta
Fjord system

Model type Response variable Fixed effects 95% CI Smoother RE R2 ΔAICc

GLM Probability of leaving home area Population †
LF
Track duration †

0.26–4.74
�0.01–0.13
0.03–0.18

0.30 �0.2

LM log (Total migration distance) Population †
LF
Track duration †

0.66–2.61
�0.01–0.05
0.05–0.10

0.49 �0.9

GAMM Daily distance from origin LF �0.02–0.14 Day(Skillefjord)†
Day(Hals)†

ID † 0.59 —

LMM log (Depth) Population

LF
Day of the year

Solar elevation †
Temperature †
Salinity †

�0.002–0.179
0.002–0.007
�0.001–0.002
0.004–0.005
0.048–0.070
0.017–0.026

ID † 0.05 (0.11) �2.52

Note. † denotes model terms included in the most parsimonious model. 95% C.I. denotes the 95% confidence intervals for regression coefficients. RE gives

the random effects used on the models' intercept. R2 gives the adjusted r-squared for the GLM, LM and GAM and the marginal R2 for the LMM, with

conditional R2 in parenthesis. ΔAICc denotes the difference in AICc value between the most parsimonious model and the one providing the second-lowest

AICc value.
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of the year as a population-specific smoothing term and Fish ID as ran-

dom effect on the model's intercept to account for repeated observa-

tions of individual fish (Table 2). GAMMs were fitted using the mgcv

package (Wood, 2011).

2.6.5 | Habitat use

When investigating habitat use (near shore vs. pelagic), only detec-

tions at the three complete receiver arrays within the Alta Fjord

were included due to the low number of detections in the outer

straits (Figure 1). For each fish detected at these arrays, the propor-

tional number of near shore and pelagic registrations were investi-

gated, and potential differences in habitat use were tested using a

χ2 test.

2.6.6 | Depth use

To determine what influenced the depth use of sea trout, a set of

linear mixed-effect models (LMM) were used. The most complex

model included Population, LF, Day of the year, Solar elevation, Tem-

perature at the surface and Salinity at the surface as fixed effects;

and Fish ID as random effects on the model's intercept (Table 2).

Solar elevation in degrees was derived using the suncalc package

(Thieurmel & Elmarhraoui, 2019) and used to determine if sea trout

displayed diurnal variation in depth use. This was done because the

study was conducted during parts of the year when the sun is con-

stantly above the horizon at theses latitudes (70� N), which

prevented assigning a diel period (i.e., day and night) to the depth

observations. For Temperature and Salinity at the surface, numerical

model data obtained on an hourly basis from the A12 model grid of

the IMR NorFjords-160 hydrodynamical model which works with a

160 � 160 m horizontal resolution and 35 vertical layers were used

(for details see Myksvoll et al., 2020; Skarðhamar et al., 2018).

These data were also used to summarize the temperatures and

salinities experienced by the sea trout. To prevent violations of

model assumptions a log transformation was applied to the

response variable.

2.7 | Model selection

In the models that included repeated observations of individual fish, tem-

poral autocorrelation was investigated and, if necessary, corrected for

using a first-order autoregressive process that accounts for the immedi-

ately preceding value. In the mixed-effect models, parameters were esti-

mated by the restricted maximum likelihood to prevent potential biases

(Zuur et al., 2013). For the linear models, the fit of all model combinations

was assessed using the dredge function from the MuMIn package

(Barton, 2020) and the models that provided the lowest conditional AIC

(AICc) value were considered the most parsimonious. In the additive

model, model terms were selected based on their significance.

3 | RESULTS

A total of 11,898 hourly observations were made from n = 45 sea

trout post-smolts in the marine environment from 26 June to 2

September. Of these, 9563 (80%) and 2094 (18%) were made in July

and August, respectively. During the marine migration, sea trout

experienced temperatures ranging from 7.3 to 16.3�C (mean ±

S.D. = 10.9 ± 1.4�C) and salinities ranging from 14.7 to 33.7 (mean ±

S.D. = 30.7 ± 1.7).

Track duration ranged between 2 and 65 days (mean ± S.D. = 33

± 19 days). Overall, 22 sea trout (49%) were assumed to have ret-

urned to the three study rivers, with migrations lasting from 8 to

65 days (mean ± S.D. = 44 ± 16 days). This included 6 sea trout from

the Hals River, 13 from the Skillefjord River, and 3 from the Alta River

(Table 1). Of the Hals River sea trout assumed to have returned to

fresh water, three were last detected at the Hals River outlet, whereas

the remaining three individuals were last observed within the Alta

River. Of the Skillefjord River sea trout assumed to have returned to

fresh water, five were last observed at the Skillefjord River outlet,

whereas eight were last detected within the Alta River. In contrast, all

sea trout from the Alta River that returned to freshwater were last

detected within the Alta River (n = 3). The authors found that 16 of

the 45 (36%) sea trout entered the Alta River at some point during the

tracking period, with date of first river entry ranging from 26 July to

30 August. This included four sea trout from the Alta River (80% of

the fish tagged there), nine from Skillefjord (33%) and three from the

Hals River (23%) (Table 1). Of the 16 fish that entered the Alta River,

eight re-entered the marine environment after residing in freshwater

from 1 to 10 days.

3.1 | Horizontal migration

During the tracking period, sea trout spent most of their time in the

inner parts of the fjord system, and only 4 of the 45 sea trout (9%)

were detected at the outer fjord straits and only for shorter periods

(Figure 1). The highest densities of detections were at the receiver

arrays close to the tagging sites in Skillefjord (51%) and adjacent to

the Hals River (31%) (Figure 1). When present in these areas the sea

trout displayed no apparent attraction towards the receivers closest

to the rivers (Figure 2), and the mean distance from the river outlet

was 2.2 km (range = 0.5–3.8 km) in Skillefjord and 1.1 km

(range = 0.1–3 km) in Hals.

Overall, there was a large variation in horizontal migration, both

within and among populations, with some individuals from all three

populations migrating between distant receiver arrays (Figure 3). In all

three populations, movements between river outlets were evident,

and 44% (n = 20) of the fish were observed within or in proximity to

rivers other than their natal river (Table 1). This movement trend was

particularly high for sea trout from the Skillefjord River, where 52%

(n = 14) were observed in proximity to the other rivers (Table 1). For

the Hals and Alta River sea trout, 31% (n = 4) and 40% (n = 2) visited

areas close to the other rivers in the study (Table 1). From here on,
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fish tagged in the Alta River are included in the descriptions of the

migration metrics but omitted from the statistical models due to the

low sample size (n = 5).

3.1.1 | Site fidelity

Overall, 76% (n = 34) of the sea trout left their home area, with 85%

(n = 23) of the Skillefjord River fish, 62% (n = 8) of the Hals River fish

and 60% (n = 3) of the Alta River fish being detected at receiver

arrays beyond their local area. The difference between sea trout from

Skillefjord and Hals was confirmed significant by the generalized linear

mixed-effect model (GLM) analysing the probability of leaving the

home area. The model that provided the best fit included a significant

effect of Population, with fish from the Skillefjord River displaying a

much higher tendency to leave their local area compared to fish from

the Hals River (β ± S.E. = 2.23 ± 1.10, P-value = 0.04); and a positive

effect of the Track duration, with fish tracked for longer periods dis-

playing a greater likelihood of being detected outside their home area

(β ± S.E. = 0.09 ± 0.04, P-value = 0.02). No effects of fork length LF

were detected (Table 2).

3.1.2 | Total migration distance

The total migration distance (distance migrated between receiver arrays)

ranged between 0 and 308.1 km (mean ± S.D. = 72.4 ± 68.7 km,

n = 45). The most parsimonious linear model (LM) explaining total migra-

tion distance for Skillefjord and Hals fish included a difference between

Populations, with sea trout from the Skillefjord River migrating further

than fish from the Hals River (β ± S.E. = 1.63 ± 0.48, P-value = 0.002),

and a positive effect of Track duration in days (7.7% increase per day,

β ± S.E. = 0.07 ± 0.01, P-value <10�8). No effect of LF was detected

(Table 2).

3.1.3 | Distance from natal river

Maximum distance from the origin ranged between 2.7 and

39.3 km (mean ± S.D. = 18.9 ± 12.3 km, n = 45). For the

Skillefjord fish (n = 27), maximum dispersion ranged between 3.3

and 39.3 km (mean ± S.D. = 22.3 ± 12.6 km), whereas for sea trout

from the Hals River (n = 13) maximum dispersion ranged between

2.73 and 24.3 km (mean ± S.D. = 12.5 ± 9.0 km) (Figure 4a). For

the daily maximum distance from origin, the parsimonious general-

ized additive mixed-effect model (GAMM) included a significant

effect of Population as a smoothing term and Fish ID as random

effects on the model's intercept. The population-specific smooth-

ing terms were significant for both Skillefjord (EDF = 6.54,

P < 10�15) and Hals (EDF = 1.31, P = 10�4), and revealed a strong

seasonal difference with fish from the Skillefjord River dispersing

further away for their origin than fish from the Hals River from

mid-July onwards (Figure 4b). No effect of LF was evident

(Table 2).

F IGURE 3 Examples of Salmo trutta post-smolt migrations observed with acoustic telemetry in the Alta Fjord system. (a, b) fish from the
Skillefjord River, (c, d) fish from the Hals River and (e, f) fish from the Alta River
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3.2 | Habitat and depth use

Of the 45 sea trout, 36 were detected on at least one of the fjord-

covering receiver arrays with a total of 772 hourly detections. Of

these, 60 included detections both in near shore and in pelagic hab-

itats within the same hour and were consequently omitted from the

analysis. Of the remaining 712 detections, 398 were at the inner-

most transect, 161 at the middle transect and 153 at the outermost

transect in the Alta Fjord (Figure 1). Sea trout spent significantly

more time in near shore areas (mean = 66 ± 27%, range = 11–

100%) compared to pelagic habitats (χ2 (n = 36, df = 35): 135.3, P-

value <10�3). No correlation was present between the number of

hourly recordings and time spent in near shore areas (Spearman

rank correlation: P = �0.07).

During the marine migration, hourly depth recordings of sea trout

ranged between 0.2 and 16.0 m (mean = 1.7, S.D. = ±1.1 m). The fish

displayed a strong surface orientation with individuals spending on

average 77% of their time in the uppermost 2 m of the water columns

(range = 55–100%, SD = 11%) (Figure 5). The parsimonious linear

mixed model (LMM) explaining hourly depth use included a positive

effect of Solar elevation (0.5% increase per degree, β ± S.E. = 0.0045

± 0.0005, P-value <10�16), Temperature (6.1% increase per �C, β ± S.

E. = 0.0589 ± 0.0055, P-value <10�16) and Salinity (2.1% increase per

unit, β ± S.E. = 0.0204 ± 0.0031, P-value <10�16). To compare the

fixed effects included in the most parsimonious model, an additional

model was constructed with standardized fixed effects. This revealed

a 6.6% increase in depth per Solar elevation standard deviation (β ± S.

E. = 0.064 ± 0.007, P-value <10�16), a 9.3% increase per Temperature

standard deviation (β ± S.E. = 0.089 ± 0.008, P-value <10�16) and a

4.8% increase per Salinity standard deviation (β ± S.E. = 0.047

± 0.007, P-value <10�16). This indicated that sea trout utilized slightly

deeper depths in warmer and more saline waters, and during periods

with higher solar elevation. Notably, LF, with larger individuals found

at slightly deeper depths compared to smaller fish (β ± S.E. = 0.004

± 0.001, P-value = 0.003), and Population, with sea trout from

Skillefjord recorded deeper than fish from Hals (β ± S.E. = 0.089

± 0.044, P-value = 0.054), were either significant or close to signifi-

cant predictors of depth use at a 0.05 significance level. Nonetheless,

F IGURE 4 Distance from the origin for Salmo trutta post-smolts from the Skillefjord River (green) and the Hals River (orange), observed with
acoustic telemetry in the Alta Fjord system. (a) The maximum dispersion distance of individual fish. (b) The daily distance from the origin for
individual fish with lines depicting population-specific smoothers

F IGURE 5 Depth use of Salmo trutta post-smolts observed with
acoustic telemetry in the Alta Fjord system. Bars depict the mean
proportion of time spent at different depths during their marine
migration, with whiskers indicating standard deviations
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the model that included these additional fixed effects had a

higher AICc value compared to the most parsimonious model (Δ

AICc = �6.9).

4 | DISCUSSION

During the marine migration, sea trout post-smolts displayed a certain

affinity towards areas close to their natal river, however, large varia-

tion in migratory behaviour was present both within and among

populations. Many of the sea trout migrated far from their origin,

some occasionally visited areas in proximity to the other rivers and

some fish even entered rivers not associated with their tagging loca-

tion. This suggests that neighbouring sea trout populations in subarc-

tic fjords may need to be considered as a larger metapopulation in a

management context.

During their marine migration, the sea trout post-smolts were

mostly observed in the inner part of the Alta Fjord, with only a few

individuals observed at the outer straits. This fjord-bound migration

coincides with previous observations of sea trout from the Alta Fjord

and other Norwegian fjord systems (Atencio et al., 2021; Flaten

et al., 2016; Jensen et al., 2014), and likely reflects favourable feeding

habitats as well as suitable abiotic conditions within the fjords. In

comparison, sea trout from Denmark have been recorded to migrate

between 130 and 580 km away from their natal river, likely because

they encounter a less suitable environment once they enter the sea,

thus promoting longer-distance migrations in search of favourable

habitats (Kristensen et al., 2019).

In addition to the tendency to stay within the fjord, a substantial

proportion of the sea trout (24%) displayed a spatial distribution lim-

ited to their home area. Sea trout are often observed to reside close

to their natal river, and in some populations individuals are assumed

to spend most of their time in estuaries, likely due to superior foraging

conditions compared to adjacent marine habitats (Davidsen

et al., 2014). Although a substantial utilization of local areas was evi-

dent in the current study, there was no indication of a particular

attraction towards the receivers closest to the river for neither the

Skillefjord nor the Hals fish. Furthermore, the tendency to utilize local

areas varied significantly among populations. Fish from Skillefjord had

a greater tendency to leave their home area, migrating longer dis-

tances and dispersing further from their origin, particularly from mid-

July and onwards, than fish from Hals. It is possible that this observed

difference could be a result of spatiotemporal variations in habitat

quality between sites, and that habitats in proximity to the Hals River

outlet may offer more suitable ecological conditions throughout the

summer. This may indicate that even in relatively confined fjord sys-

tems, local habitat variations may promote population-specific migra-

tion patterns.

In addition to these described interpopulation differences, the sea

trout post-smolts in this study displayed substantial intrapopulation

variation in migratory behaviour. Individuals from all three populations

displayed migrations throughout large parts of the Alta Fjord. Large

variation in migration distance is common within sea trout

populations, and for veteran migrants it has been documented that

migratory behaviour is condition-dependent, with individuals in a

poorer nutritional state performing longer migrations (Bordeleau

et al., 2018; Eldøy et al., 2015). In this study, no attempt was made to

attribute migratory behaviour to body condition. The only physical

variable related to individual fish investigated was body length, which

did not influence neither migration distance nor dispersion from ori-

gin. This absence of a size effect on the migratory behaviour of first-

time migrants concurs with a previous study, where sea trout post-

smolts' tendency to either stay within the fjord system or travel to the

open sea was independent of body size (del Villar-Guerra et al., 2014).

Future studies on the migratory behaviour of sea trout post-smolts

should therefore investigate which factors drive this variability, as this

would improve our understanding of the spatial ecology of sea trout,

which in turn could enable more efficient management and

conservation.

While at sea, anadromous salmonids spend most of their time in

the upper part of the water column (e.g., Spares et al., 2012; Strøm

et al., 2017), and for sea trout a strong surface orientation is well

documented across geographical regions and life stages (Eldøy

et al., 2017; Gjelland et al., 2014; Kristensen et al., 2018). In the cur-

rent study, the sea trout post-smolts spent most of their time in the

uppermost 2 m of the water column, with temperature and salinity

slightly influencing the depth use of individuals. Previous studies have

documented that veteran sea trout utilize deeper waters during

periods with high surface temperatures, and it has been suggested

that this behaviour could be explained by sea trout seeking out depths

with preferred temperatures (Eldøy et al., 2017; Rikardsen

et al., 2007). Although our results concur with these findings, other

factors, such as the presence of predators and the vertical distribution

of prey, are considered as more important predictors of the depth use

of sea trout. This is primarily because sea trout in the Alta Fjord spent

most of their time at sea close to the surface, where there is little ver-

tical temperature variation during summer (Skarðhamar et al., 2018),

hence it is unlikely that the slight temperature effect on depth use is

caused by thermal preferences. Nonetheless, the factors determining

the vertical movement of sea trout should not be viewed in isolation,

as most aspects of their migratory behaviour are likely shaped by

complex interactions between predator and prey abundances and abi-

otic conditions (Kristensen et al., 2019).

Diel vertical movement is a widespread phenomenon among

fishes (e.g., Righton et al., 2016; Walli et al., 2009), and for anadro-

mous salmonids it is generally considered to reflect feeding behaviour

or predator avoidance as a response to diurnal variation in light avail-

ability (Strøm et al., 2017). The current study was largely limited to

the period of the year when the sun is constantly above the horizon

at these latitudes (i.e., midnight sun); nonetheless, a diurnal effect on

depth use was still evident with fish utilizing slightly deeper depths

during periods with higher solar elevation. This coincided with a previ-

ous study on veteran sea trout from northern Norway, where a slight

difference in depth use between day and night persisted through the

year (Eldøy et al., 2017). This may indicate that either sea trout are

able to adjust their vertical behaviour to subtle difference in light
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intensity or diel variation in depth use may represent a more general

behavioural pattern rather than an explicit response to daily variation

in light (Eldøy et al., 2017).

For anadromous salmonids, the bulk of the lifetime growth is

obtained at sea, and for sea trout, growth in the marine environment

correlates with the duration of the summer feeding migration (Berg &

Jonsson, 1990; Jensen et al., 2018). Currently, a major concern for sea

trout populations is how increased infections by salmon lice influence

the duration of the marine residency (Thorstad et al., 2015). In a

recent infection experiment it was documented that the time spent at

sea may be reduced by up to 80% under heavy salmon lice burdens

(Serra-Llinares et al., 2020). Although the marine residency times

reported in the current study are slight underestimations, because

most of the sea trout were tagged at sea, the true durations of the

marine migrations are likely representative of the natural behaviour of

sea trout at high latitudes, as salmon lice infections are low in subarc-

tic areas (Nilsen et al., 2020). Nonetheless, with the projected expan-

sion of aquaculture farming in subarctic areas (Vollset et al., 2021), a

potentially dramatic increase in salmon lice burden and other stressors

can be expected. This could lead to substantial negative effects on sea

trout populations by altering the migratory behaviour of individuals,

and reducing their marine growth and survival.

One major caveat of this study is the uncertain origin of sea

trout from the Hals and Skillefjord Rivers. All individuals from these

sites were tagged while at sea. The sampling of sea trout at sea

(late June–early July) coincided with the peak smolt migration in

the Hals River (Jensen et al., 2020), and therefore it is likely that

most of the sea trout caught in the marine environment were cor-

rectly assigned. If this assumption is false, it could potentially

weaken the study result regarding behavioural difference among

and within populations. Nonetheless, it would not affect the con-

clusion that sea trout post-smolt from different populations utilized

similar and overlapping parts of the fjord system, emphasizing the

need for a metapopulation approach when managing the marine

phase of these sea trout populations. Furthermore, it may be possi-

ble that the results are somewhat biased by the sampling methods.

Whereas the post-smolts caught in Skillefjord and Hals were all

caught by bag-style fjord nets, during overlapping sampling periods,

most sea trout from the Alta River were sampled with a fyke net,

within the river, later in the year. Consequently, it is possible that

the fish sampled in the Alta River represent a different constituent

of the sea trout population, than the fish sampled in Skillefjord and

Hals. Nonetheless, as the sea trout from the Alta River were

excluded from most of the analyses, any sampling bias would have

limited impact on the conclusions.

In summary, sea trout post-smolts spent most of their time close

to their natal river. Nonetheless, longer migrations were observed in

all three study populations and 44% of the sea trout migrated

between river outlets. While at sea, substantial variation in horizontal

migration was present both within and between populations. The

observed interpopulation variation in migratory behaviour is likely

influenced by differences in habitat quality between sites, indicating

that local ecological conditions may determine the migration strategy

of sea trout post-smolts.
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