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Climate change can hamper sustainable growth in the aquaculture industry by amplifying and adding to other environmental challenges. In
Norway, salmon lice-induced mortality in wild salmonid populations is identified as a major risk factor for further expansion. Higher tempera-
tures will induce increased production of salmon lice larvae, decreased developmental time from non-infective nauplii to infectious copepods,
and higher infectivity of copepodids. In a warmer climate, a modelling exercise shows how these three factors lead to a significant increase in
the infection pressure from farmed to wild salmonids, where the infectivity of copepodids is the term with the highest sensitivity to tempera-
ture changes. The total infection pressure gradually increases with increasing temperature, with an estimated twofold if the temperature
increases from 9�C to 11�C. Thus, making it even harder to achieve a sustainable expansion of the industry with rising water temperature.
This study demonstrates how bio-hydrodynamic models might be used to assess the combined effects of future warmer climate and infection
pressure from salmon lice on wild salmonids. The results can be used as an early warning for the fish-farmers, conservation stakeholders and
the management authorities, and serve as a tool to test mitigation strategies before implementation of new management plans.
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Introduction
Climate change is altering the marine environments throughout

the world (IPCC, 2014) projecting an increase in global mean sur-

face air temperature between 1�C and 4�C by year 2100 depen-

dent on the greenhouse gas emission scenario chosen. Finfish

aquaculture is an increasingly important source of protein pro-

duction for human consumption (FAO, 2018), contributes to

food security (Pradeepkiran, 2019) and is responsible for

more than half of the global seafood production as a growing

population creates an increased demand for food. Due to over-

exploitation of wild fish stocks (FAO, 2018), it is expected

that aquaculture will be even more important in the future.

However, this industry is becoming increasingly scrutinized in

terms of environmental impact, sustainability and, for salmonid

aquaculture, consequences for conservation for wild salmonid

populations.

Norway is one of the largest producers of Atlantic salmon in

the world with a political ambition to further increase, from 1.3

in 2018 to 5 million metric tons by 2050 (Statistics Norway,

https://www.ssb.no/fiskeoppdrett). To support a predictable and

environmentally sustainable growth in salmon aquaculture, the

Norwegian government has implemented a science-based man-

agement system where the coast is divided into 13 production

zones (see Figure 1). In this management system, popularly

named the “traffic light (green-yellow-red) system” (Norwegian

White Paper: St. Meld. 16, 2014–2015), the sustainability status

within each zone is assessed every year. Salmon lice has been

identified as one of the main risk factors for a further increase in

Norwegian salmon farming (Taranger et al., 2015), and salmon

lice-induced mortality in wild salmonid populations is currently

used as the key sustainability indicator in the traffic light system

(Vollset et al., 2019).
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Salmon louse (Lepeophtheirus salmonis) is a naturally occurring

ectoparasite, which parasitize salmonid fish [in Norwegian water:

Atlantic salmon (Salmo salar), Sea trout (Salmo trutta), and

Arctic charr (Salvelinus alpinus)]. The number of hosts for

salmon lice has increased dramatically in parallel with the expan-

sion of Atlantic salmon farming, and an imbalance has developed

between lice abundance and susceptible wild hosts (Serra-Llinares

et al., 2014, 2018; Vollset et al., 2014; Thorstad et al., 2015;

Fjørtoft et al., 2017, 2019). Salmon lice have been correlated to

reductions in wild populations of both sea trout and Atlantic

salmon (Vollset et al., 2018 ; Forseth et al., 2019; Bøhn et al.,

2020; Serra-Llinares et al., 2020), and therefore limits the ability

of Norway to fulfil its responsibility for the conservation of wild

salmon stocks (Convention for the Conservation of Salmon in

the North Atlantic Ocean, 1982, www.nasco.int/convention.html

and the law of nature biodiversity §8). Finally, salmon louse can

represent a welfare problem for farmed salmon due to delousing

methods (Overton et al., 2019; Bui et al., 2019). To successfully

estimate the salmon lice infection pressure on wild and farmed

salmonids, a good and science-based understanding of parame-

ters that influence the distribution and biology of the planktonic

stages of lice are needed.

Salmon lice eggs carried by the mature females hatch directly

into the water masses and develop through three non-feeding

planktonic stages: two nauplius stages and the infective copepo-

did stage. Lice larvae that do not locate a host fish in time will die

from starvation or predation. The duration of the planktonic

stages depends on the ambient water temperature lasting up to 35

and 10 days at 5�C and 15�C, respectively. Thus, lice larvae can

potentially drift several tens of kilometres away from the source

(Asplin et al., 2014; Johnsen et al., 2014; Samsing et al., 2015),

and therefore contribute to an elevated infection pressure over a

large geographic area. Hydrodynamic models are a widely used

tool for simulating dispersion of planktonic matter (Stucchi et al.,

2011; Adams et al., 2016; Salama et al., 2018; Cantrell et al.,

2020b; Rabe et al., 2020; Toorians and Adams, 2020). Combined

with individual-based models (IBMs) where known behaviour

and development parameters have been implemented, it is

possible to quantify the number of salmon lice and their infec-

tivity with high resolution in both space and time (Sandvik

et al., 2016, 2020c; Myksvoll et al., 2018; Johnsen et al., 2020a).

Based on such a coupled model system, a warning system

describing areas with elevated lice infection pressure [the rela-

tive operating characteristic (ROC), see “Relative operating

characteristic” section], was first presented in Sandvik et al.

(2016), and further developed in Sandvik et al. (2020c). This

method is currently an operational part of the Norwegian traffic

light management system. Such models are well suited to per-

form simulations and do theoretical assessments of the infection

pressure from salmon louse on wild salmonids. In this way,

e.g. mitigation strategies can be tested before management plans

are implemented, both through manipulating environmental

factors and the magnitude of nauplii releases from fish farms

(Sandvik et al., 2020b).

In this study, the main objective has been to investigate the

combined effect of two of the major challenges to Norwegian

aquaculture: increased temperatures due to climate change and

salmon lice. The focus has been to investigate and decipher three

known temperature impacts on salmon lice: number of hatched

eggs (Stien et al., 2005), copepodid infectivity (Skern-Mauritzen

et al., 2020), and larval (nauplii and copepodid) mortality (Stien

et al., 2005) that are all expected to give a positive feedback

on the infection pressure in a warmer climate. The study on

temperature impacts is general and will be valid for all farming of

Atlantic salmon. In addition, and assessment of the temperature

induced changes in infection pressure from the aquaculture

industry on wild salmonids has been exemplified for the

Hardangerfjord area using the ROC method (Sandvik et al.,

2020c) and year 2019 as a reference.

Material and methods
Production zones and study area
Since 2017, the Norwegian coast has been divided into the 13

production zones based on an analysis of the dispersion of lice

between the aquaculture sites. The boundaries between the

zones were drawn where there was minimum cross-dispersion

(Ådlandsvik, 2015). This zoning approach using connectivity

implies that lice released from farms within one production zone

are likely to stay within that production zone, making it beneficial

to consider each zone as an independent management unit.

The Hardangerfjord system is located in Western Norway

(Production Zone 3), south of Bergen. The fjord system stretches

179 km from the coast into the mountainous interior of Norway.

It consists of a number of large and small fjord arms and has sev-

eral connections to the open sea, thus the circulation pattern is

relatively complicated with large spatial and temporal variability.

A detailed description of the fjord physics can be found in Asplin

et al. (2014), Johnsen et al. (2014), Asplin et al. (2020), and

Dalsøren et al. (2020).

In Production Zone 3 around 170 locations are approved for

aquaculture production (2012–2020), producing ~80 000 tons of

salmon annually. The production cycle generally lasts 15–

18 months, and legislation rules say that the locations must be fal-

lowed between cycles. Thus, not all farms are active and in the

same stage of the production cycle at a given time. In the targeted

Figure 1. The 13 aquaculture production zones along the Norwegian
coast, with Production Zone 3 and Hardangerfjord highlighted. The red
dots in the zoomed-in area show the location of sea farms in
Production Zone 3.
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period (1 April to 31 August 2019) 107 farms had reported

mandatory measures on numbers of fish (around 60 million), lice

and temperature in 3-m depth to the authorities. From the recent

evaluation, based on data from 2018 and 2019 (Ministry of

Trade, Industry and Fisheries, 4 February 2020), the environmen-

tal impact of salmon lice on wild salmonid stocks in Production

Zone 3 was classified as medium (yellow) in the Norwegian traffic

light system (Vollset et al., 2019).

Salmon lice dispersion model
The density of infective salmon lice was computed using a bio-

hydrodynamic lice dispersion model system (Johnsen et al., 2014,

2016; Myksvoll et al., 2018; Sandvik et al., 2016, 2020c). In this

system, an IBM with known behaviour and life development for

salmon louse is coupled to an ocean model system based on

the Regional Ocean Modelling System (www.myroms.org;

Shchepetkin and McWilliams, 2005; Haidvogel et al., 2008),

implemented for the Norwegian cost and fjords (Albretsen et al.,

2011; Asplin et al., 2020; Dalsøren et al., 2020). The salmon lice

advection and growth model is based on the Lagrangian

Advection and Diffusion Model and the code is available in an

online repository (LADiM; Ådlandsvik, 2019). As the salmon lice

model is used in management, it is updated regularly as new bi-

ological knowledge is available. For this work the LADiM model

was implemented with biological parameters using the salmon

lice plugin, version 1.2 (Sævik, 2020). In the vertical, the water

column is divided into 35 sigma levels, and the horizontal qua-

dratic grid cell size is 160 � 160 m. The biology and life history

of the lice are handled with an IBM using the super-individual

(SI) approach (Scheffer et al., 1995). The model is initiated

without any salmon lice SI, while new louse SIs are added

hourly as newly hatched nauplii at a rate of five SI/farm/hour

with the internal number of each SI scaled to represent the

estimated (Stien et al., 2005) reported egg numbers that week.

The model output consists of 3D hourly fields of spatial distri-

bution and density of salmon lice copepodids in the sea. The de-

velopmental rate of an individual louse is purely temperature

dependent and is parameterized as a function of degree-days

(Hamre et al., 2019).

The results from the lice dispersion model are publicly avail-

able weekly (www.lakselus.no) and as an archive from 2012 to

2019 (Sandvik et al., 2020a). Similar approaches to predict

salmon lice density in the water masses have been widely used in

the scientific community (Adams et al., 2012, 2015, 2016; Salama

et al., 2013, 2018; Kough et al., 2015; Samsing et al., 2017;

Cantrell et al., 2018; Kristoffersen et al., 2018; Kragesteen et al.,

2018; Samsing et al., 2017).

Hatching rate, mortality, infectivity, and temperature
All active Norwegian Sea farms are obliged to report water tem-

peratures at 3-m depth and the average number of adult female

lice pr. fish from their site every week to the management author-

ities. The total number of fish on their site is reported once a

month. The daily number of hatching eggs is temperature depen-

dent and was calculated using a formula from Stien et al. (2005),

assuming that the adult females were continuously producing

batches of eggs in paired egg strings, with each string containing

150 eggs (Johnsen et al., 2016):

Negg ¼ Nfish � Nfemale � 0:17 � ðT þ 4:28Þ2; (1)

where T is the temperature, Nfish is the number of fish and Nfemale

is the number of adult female lice pr. fish.

The larvae develop to infective copepodids after 40 degree-

days and die after 170 degree-days if they are not successful in

finding a host (Samsing et al., 2016a). The planktonic larvae mor-

tality is assumed to be constant in time and space at 17% per day

(Stien et al., 2005). Thus, given a batch of eggs the temperature,

and thereby also the time spent from hatching and through the

infective period, will decide the number of infective copepodids

at a given time.

Ncop ¼ Negg � e�0:17�AT ; 40 � A � 170; (2)

where A is the age in degree-days (¼ temperature � time). At

15�C, the infective period (A) will start after 2.7 days and last un-

til day 11.3, whereas at 5�C the infective period will start later but

last three times longer. Beginning with 1000 nauplii at 15�C the

number of individuals will thus be reduced to 636 as they become

infective (at 40 degree-days) and further reduced to 145 after 170

degree-days, whereas at 5�C the corresponding numbers are 256

and 3.

The infection pressure (IP) for a given position and time is the

number of infective salmon lice copepodids ðNcopÞ multiplied by

their infectivity (I) such that:

IP ¼ Ncop � I : (3)

Based on laboratory experiments at 5�C, 10�C, and 15�C,

Skern-Mauritzen et al. (2020) estimated the infectivity, I, as a

function of temperature and age as:

lnðIÞ ¼ �34:660þ 2:306 � T � 2:585 � 10�2 � T 2 þ 7:156 � 10�1 � A
�5:354 � 10�3 � A2 þ 1:191 � 10�5 � A3 � 3:577 � 10�2 � A � T
�2:526 � 10�4 � A2 � T � 5:541 � 10�7 � A3 � T :

(4)

The infectivity (I) can then be calculated from:

I ¼ elnðIÞ

1þ elnðIÞ ; 5
�
C � T � 15

�
C: (5)

Relative operating characteristic
The ROC is a graph of the hit rate, H, against the false alarm rate,

F, for different decision thresholds (Mason, 2003). Assuming a bi-

nary forecast system, the ROC becomes a pure index of accuracy

that gives quantitative estimates of the probabilities of forecast

outcomes for any decision threshold that the system might use,

and the trade-offs between these probabilities as the decision

threshold varies. An empirical ROC can be plotted from forecasts

of salmon lice density by stepping through different forecast sys-

tems, each system generating a 2� 2 contingency table and values

of H and F (Mason, 1982). For a forecast system with zero skill,

H¼ F, whereas in a perfect system, H¼ 1 and F¼ 0. Based on

observations from sentinel cages for the years 2012–2017, a ROC

was developed to predict the potential salmon lice infection pres-

sure (Sandvik et al., 2016, 2020c). The system uses three categori-

cal events (high, medium, and low) for a potential lice infection

Effect of a warmer climate on the salmon lice infection 3
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pressure, and is at present in use as one of the components of the

“Traffic light system” for a sustainable management of

Norwegian salmon farming. In the present work using the ROC-

parameters R¼ 0.50 lice/m2 in 9 out of 9 (¼3 � 3) neighbouring

points as thresholds between red (> 10 salmon lice per smolt)

and yellow (between 1 and 10 salmon lice per smolt), and

R¼ 0.22 in 6 out of 9 points between yellow and green (<1

salmon lice per smolt), the method’s skill score (red to yellow)

becomes 0.12 (Skern-Mauritzen et al., 2020). For more details on

the ROC method see Sandvik et al. (2020c).

The ROC-products constitutes a combination of: (i) salmon

lice infestation maps in three colours (hereinafter named ROC-

maps), where the colours indicate the local severity of salmon

lice-induced mortality on wild salmonids, and where a subjective

assessment is performed based on overlap between areas with ele-

vated salmon lice pressure and assumed salmon post-smolt mi-

gration routes, and (ii) a time series of an index (hereinafter

named ROC-index) defined for 30 days periods and calculated as

a weighted mean of these categorical areas relative to the total

area using this formula from Sandvik et al. (2020b):

ROCindex ¼
Areared þ 0:5 � Areayellow

Areared þ Areayellow þ Areagreen

� 100; (6)

where Areared is the size of the red area, and similar for the other

colours.

In this work, the total infection pressure is defined as the value

of the ROC-index from the estimated date that 50% of salmon

post-smolts would have migrated (Production Zone 3: 21 May)

and 30 days thereafter. This period is covering a large part of the

salmon smolt migration period and the early feeding period for

Sea trout and Arctic charr. In the traffic light evaluation the ROC-

index is defined to be low (ROCindex < 10), moderate (10 < R

OCindex < 30) and high (ROCindex > 30). Thus, if only a small area

within the production zone has elevated salmon lice pressure (i.e.

ROCindex < 10), this method will suggest that the production zone

should be categorized as having a low risk for salmon lice-induced

mortality on the wild fish population (green colour), while if there

is a large portion of the area with elevated salmon lice infection

pressure (i.e. ROCindex > 30) the indicator will suggest that the

production zone should be categorized as having a high risk of

mortality in the wild fish population (red colour).

Results
In our model experiments, the nauplii become infective copepo-

dids after 40 degree-days and die after 170 degree-days (Samsing

et al., 2016a) if they are not successful in finding a host, thus the

total infection pressure (IPT) from a batch of eggs can be consid-

ered to be the integral of the infection pressure IP [Equation (3)]

through this period. For a given temperature, the total infection

pressure ðIPT Þ from a batch of eggs becomes:

IPT ¼
ð170

40

IP dA ¼ IH � IM � II ¼ Negg �
ð170

40

e
�0:17� A

T0 � elnðIÞ

1þ elnðIÞ dA; (7)

when combining Equations (1), (2), and (5). Omitting the num-

ber of fish (Nfish) and number of female lice per fish (Nfemale) in

Equation (1), the total infection pressure for 5�C � T � 15�C is

given in the left panel of Figure 2, normalized by setting IPT ¼ 1

at 5�C. IPT increase from 1 to 55 going from 5�C to 15�C, and

with a factor 2 when the temperature increases from 9�C to 11�C.

In the right panel of Figure 2, the individual contributions

from each of the three temperature dependent terms in Equation

(7) are estimated separately. The temperature effect of the first

term ðIH Þ (the batch size Negg), is computed from Equation (1).

For a given number of fish and adult female lice, the number of

hatched eggs increases with a factor 4.3 when the temperature

increases from 5�C to 15�C, and with 30% from 9�C to 11�C.

The effect from this is shown in the right panel of Figure 2, again

setting IH ¼ 1 at 5�C.

The second term in Equation (7), IM, accounts for the number

of infective copepodites from the mortality of 17% per day

[Equation (2)]. The mortality is temperature independent, but as

the infective period is given in degree-days the time window and

thereby the number of infective salmon lice will depend on the

actual temperature. The effect from mortality due to the length of

the infective period and the number of salmon lice ðIM Þ is also

shown in the right panel of Figure 2. Again, the numbers are
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Figure 2. Normalized total infection pressure, IPT, for temperatures 5–15�C relative to 5�C (left panel) and the different infectivity
components: hatching rate ðIH), mortality ðIMÞ and infectivity ðIIÞ also normalized to 5�C (right panel).
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normalised so that IM ¼ 1 at 5�C. IM is lower than IH with an in-

crease of a factor 1.9 when going from 5�C to 15�C, and with a

9% increase when the temperature goes from 9�C to 11�C.

Finally, using a constant temperature, Equations (4) and (5)

can be used to compute the temperature dependent infectivity

ðII Þ between 40 and 170 degree-days, which is the third term of

Equation (7). This line is again given in Figure 2 normalized to 1

at 5�C. II shows the largest temperature dependency of the three

terms, increasing with a factor 6.7 when going from 5�C to 15�C,

and 40% from 9�C to 11�C. In total, when isolating the three dif-

ferent temperature dependency terms of the total infectivity pres-

sure on wild salmonids, the largest, II, equals the sum of the two

others (IH and II) when the temperature increases.

The spatio-temporal variability in the total infectivity pres-

sure is large, as is the estimated mortality on wild salmon post-

smolt populations migrating from the rivers (Johnsen et al.,

2020a). How much the salmon-lice-induced mortality on wild

salmonids will increase in a future warmer climate, is to our

knowledge not established. We therefore show an example on

how the infection pressure changes using the ROC-method for

a regional area (Production Zone 3) in a specific year (2019).

In Figure 3, the ROC-map for Production Zone 3 (the

Hardangerfjord area, reference case) is shown together with

the effect of a 2�C increase in the temperature for a stepwise in-

clusion in the different temperature dependent processes above

for three different simulations:

21-May - 20-Jun-2019, S2

   6oE 

 40' 

 20' 

 40' 

 20' 

  60oN 

   7oE  30'  30'    5oE 
 30'    4oE 

21-May - 20-Jun-2019, S3
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 40' 

 20' 

 40' 

 20' 

  60oN 

   7oE  30'  30'    5oE 
 30'    4oE 

21-May - 20-Jun-2019, S0
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 20' 

 40' 

 20' 

  60oN 
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21-May - 20-Jun-2019, S1
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 40' 
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 40' 

 20' 

  60oN 
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Figure 3. ROC maps that display areas where wild salmonids, occupying the area for the given time period, are expected to be infected
by more than 10 lice (red colour), between 1 and 10 lice (yellow colour), and less than 1 lice (green colour). Outcomes are shown for the
four different simulations in the Hardangerfjord area 2019 as defined in the “Results” section. Reference (upper left), S1 (upper right), S2
(lower left), and S3 (lower right).
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S1: Effect of increased temperature in the mortality [2nd

term in Equation (7)].

S2: S1 and effect of increased temperature in infectivity

[2nd þ 3rd term in Equation (7)].

S3: S2 and effect of increased temperature in the nauplii

production [all terms of Equation (7)].

Note that, it is only in the salmon lice calculations that tem-

perature has been changed, while the temperature in the circu-

lation model, and thus the hydrodynamics is the same in all

four simulations. As seen in Figure 3 only a slight increase in

the yellow area from the reference case to S1 can be detected.

When going from S1 to S2 there is a slight further increase in

the yellow area, but in addition, a part of the central

Hardangerfjord is changing from yellow to red. For S3 most of

the central Hardangerfjord becomes red. The ROC-index for

the four different simulations is given in Table 1. The index

shows a slight increase from the references to S1, and a further

increase as successively more of the temperature dependent

terms are included in the salmon lice dispersion model. The fi-

nal assessment for the area goes from yellow (ROC-index be-

tween 10 and 30) to red (higher than 30) with such an increase

of the temperature with 2�C.

Discussion
Three different temperature-dependent processes and their

impacts on the total salmon lice infection pressure from parasites

on farmed fish in aquaculture to wild salmonids have been inves-

tigated: the number of hatched eggs produced, the infectivity of

the copepodid, and the larval (nauplii and copepodid) mortality.

In a warmer climate, all three processes lead to negative effects

and are likely to lead to a large increase in the total infection pres-

sure. Due to the non-linearity in the temperature dependent in-

fectivity, the effect of a warmer climate will differ between seasons

and the geographical areas where aquaculture activity is present.

The infection pressure is estimated to increase by a factor two go-

ing from 9�C to 11�C, and the relative impact of a 2�C increase

will be highest at low temperatures (factor 4.4 from 5�C to 7�C)

with a decreasing trend towards the highest temperatures (factor

1.4 from 13�C to 15�C; Figure 2, left panel). With an equal num-

ber of fish and equal number of female lice per fish, the infection

pressure is estimated to increase by a factor 55 over the tempera-

ture window we have examined (5�C to 15�C). The annual vari-

ability in water temperature at 3-m depth (as reported from the

sea farms) in Production Zone 3 is around 10�C (6–18�C in 2019,

with a SD of 1.2�C for both the minimum winter temperature

and the maximum summer temperature in the period

2012–2020), thus the seasonal variability in infectivity is higher

than that from the projected climate change. However, this tem-

perature increase will be on top of the seasonal cycle, and its con-

sequences should therefore be considered separately.

The projected annual mean sea surface temperature increase in

the North Sea area by the end of the century is in the range 1–3�C
for the A1B greenhouse gas emission scenario (IPCC, 2014), with

the highest projected increase in spring (Schrum et al., 2016).

Thus, a temperature increase in the order 2�C is within a realistic

window. A bio-hydrodynamic model was used to estimate the

heterogeneous increase in the salmon lice infection pressure, and

the ROC-index was further used to objectively quantify how such

a projected temperature increase might change the sustainability

assessment. As seen from the results, the ROC-index increases

from 21.9 to 30.9 (40%), which is a substantial increase keeping

in mind that values below 10 are considered as low in the traffic

light evaluation. However, a 40% increase is less than the direct

effect on the infectivity (Figure 2), indicating that the ROC-index

has a relatively low sensitivity to changes in the infection pressure.

The main reason for this is the definition of the ROC-index

(Sandvik et al., 2020c) and that the ROC-index only changes

when there is a change in the assessment level (colour) in a given

position. Due to a high (but variable) freshwater runoff, the salin-

ity in the inner part of the Hardangerfjord is generally low

(Dalsøren et al., 2020). The combination of salmon lice avoidance

to low salinity (Crosbie et al., 2019) and the low number of fish

farms in this area (Figure 1) will generally result in low (green)

salmon lice infection pressure on wild salmonids here. There is

also a relatively large green area at the coast, which in most cases

will continue to be green under different scenarios and years due

to the geographical localization of the farms (Figure 1) and local

currents. These areas will act as a buffer and efficiently prevent

the ROC-index from reaching 100. On the other hand, if an area

already is red, it will not change even if the infection pressure

increases. From a biological point of view, there is however a dif-

ference between areas with high infection pressure (few fish will

survive) to very high infection pressure, where no fish are

expected to survive. In the present assessment example

(Production Zone 3, 2019), the main area of interest for changes

is limited to the middle and outer part of the fjord. This is also an

important area as salmon post-smolt from many rivers must mi-

grate through here on their way towards the open ocean

(Halttunen et al., 2018; Johnsen et al., 2020a). Parts of this area

change from yellow to red, also changing the ROC-method as-

sessment of Production Zone 3 from moderate to high impact

(Table 1).

Uncertainties in the three infection pressure terms
In this study, the sensitivity to the temperature increase was high-

est in the infectivity term [term three ðIH Þ of Equation (7)]. This

term is estimated as a function of both temperature and age, with

newly moulted copepodids being less infective than those having

matured 1–2 days ago followed by a decline of infectivity towards

the end of their life expectancy (Brooker et al., 2018; Skern-

Mauritzen et al., 2020). In the experiments in Skern-Mauritzen

et al. (2020) the infectivity was investigated for three different

temperatures (5�C, 10�C, and 15�C). Over the infective period

the total infectivity increased with a factor four from 5�C to

10�C, and another factor 1.5�C to 15�C (Figure 2, right panel,

blue line). Similarly, other studies confirm infectivity as a func-

tion of temperature, but with variable sensitivity: Samsing et al.

(2016a) showed that the infectivity is an order of magnitude

higher at 10�C compared with 5�C (and slightly higher than the

success at 20�C), and Dalvin et al. (2020) found that the infectiv-

ity increased from 20% at 3�C to 50% at 10�C. In accordance

with the findings of (Samsing et al., 2016a), II seems to level out

above 15�C, indicating that higher temperatures will limit the

Table 1. ROC-index [Equation (6)] for the four different simulations.

Reference S1 S2 S3

ROC-index 21.9 23.2 26.5 30.9
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infectivity. However, more experiments are needed to estimate

infectivity at such high temperatures. In the future, more infectiv-

ity profiles and potential temperature adaptations should be

established in laboratories, and the results from all these studies

should be analyzed and included in a common model for salmon

louse infectivity.

The effect of temperature on production of eggs has not been

thoroughly explored but appears to affect both qualitative and

quantitative parameters (Brooker et al., 2018; Skern-Mauritzen

et al., 2020). Based on reports from the fish farms (water temper-

ature, adult female lice per fish, and number of fish) the number

of nauplii released into the water masses from each farm was cal-

culated using a published formula from Stien et al. (2005). In this

study, each pair of egg strings on the female lice was assumed to

contain 300 eggs (150 eggs in each of 2 egg strings). This is a con-

servative estimate considering that numbers of eggs produced per

female lice commonly varies in the range of 300–600 eggs per fe-

male at intermediate temperatures (Ritchie et al., 1993; Heuch

et al., 2000; Stien et al., 2005; Samsing et al., 2016b) with extreme

cases reporting more than 900 eggs per batch of egg strings origi-

nating from wild fish (Jackson and Minchin, 1992). Although

Heuch et al. (2000) observed no difference in fertility at 9�C and

12�C and despite the large variability in absolute numbers of eggs

produced at intermediate temperatures there does appear to be a

systematic temperature driven component in fecundity. For in-

stance, a seasonal temperature-correlating variability in fecundity

is evident in Ritchie et al. (1993) and a decrease in number of

eggs between 5�C and 15�C has been reported by (Samsing et al.,

2016b). Such systematic variability is also expressed at the daily

production rate level where, at 6�C, 12�C, and 18�C, daily pro-

duction is estimated to be 18, 45, and 84 by Stien et al. (2005),

and 30, 81, and 91 by Hamre et al. (2019) at the same tempera-

tures. However, in this work, we are only focusing on the relative

changes, thus as long as a fixed egg string length is used the effect

from fecundity would be the same. Samsing et al. (2016b) suggest

a temperature dependence in the egg string length. Using this for-

mulation, the total effect from fecundity on the infection pressure

would have been less for high temperatures.

The mortality term was found to be the least important

(Figure 2), but is probably also the term supported with the least

biological evidence. The daily mortality rate from Stien et al.

(2005) of 17% day�1 is not directly dependent on temperature,

rather the temperature dependence is indirect and due to the lon-

ger development time at lower temperatures. The large seasonal

and environmental variability in high latitude spring bloom sys-

tems, leads to a large difference in survival of plankton (Eiane

and Ohman, 2004). There is no reason to believe that this is dif-

ferent for salmon lice, thus the use of a constant mortality rate is

an oversimplification that should be refined in the future.

Johnson and Albright (1991a) estimated the mean survival time

of infective copepodids, and found no clear trend with increasing

temperature, but a slightly higher mean mortality rate of 22%

day�1 was estimated. An increased daily mortality rate will de-

crease the total infection pressure as the number of infective

copepodids will be lower, but the temperature dependency curve,

IM, will be almost unchanged.

Further refinements of the salmon lice dispersion model
Validation of the salmon lice dispersion model against available

data has shown that it is able to reproduce the observed lice level

on salmonid fish (Sandvik et al., 2016, 2020c; Myksvoll et al.,

2018). However, it has also been shown that vertical distribution

of the lice larvae might have a large influence on the horizontal

distribution (Heuch, 1995; Johnsen et al., 2014). The salmon lice

larvae are known to have a vertical behaviour where they swim

towards the surface light and sink to avoid low-salinity water

(Bron et al., 1991; Heuch, 1995; Heuch et al., 1995; Flamarique

et al., 2000; Crosbie et al., 2019), and both these responses are

implemented in the IBM. Nevertheless, laboratory experiments

show large individual variability in these responses, and the salin-

ity in the surface layer in many fjords are in the range where only

a proportion of the lice is swimming/sinking downwards (salinity

between 23 and 31; Sandvik et al., 2020c). In addition, Coates

et al. (2020) recently showed that the planktonic larvae also re-

spond to hydrostatic pressure, which will increase if larvae sinks

out of low salinity surface water. The final vertical response of

salmon lice larvae should therefore be determined integrating all

these three factors, and further experiments and sensitivity simu-

lations should be performed to reduce the uncertainty in the

modelled vertical behaviour.

As discussed in Sandvik et al. (2016) and Myksvoll et al. (2018)

the observed temperature and number of female lice are reported

weekly (with week number as the time reference), whereas the

number of fish in the farms are reported monthly (with month as

time reference). Thus, there is a temporal uncertainty in calcula-

tions of the number of salmon lice larvae released into the water

masses, which could have been reduced with a more precise time

information and a higher frequency. In addition, the accuracy of

lice counts is hampered by the difficulty of reliable counting

based on the small size of the parasite, the conditions for count-

ing and the large number of fish that needs to be inspected

(Heuch et al., 2011; Thorvaldsen et al., 2019; Dalvin et al., 2020).

The vertical temperature gradient within a cage might be several

degrees (Johnsen et al., 2020b), and the salmon (and thereby also

the attached female lice and their eggs) often swim deeper to find

their preferred temperature. Thus, the present legislation routines

(temperature at 3-m depth only) is likely to give an underestima-

tion of egg and larvae production in winter and overestimation in

summer for a range of sites (Johnsen et al., 2020b).

The infection efficiency of salmon lice is influenced by several

factors such as salinity, temperature, water currents, and the age

of the copepodid (Hevrøy et al., 2003; Brooks, 2005; Genna et al.,

2005; Bricknell et al., 2006; Samsing et al., 2015, 2016b; Skern-

Mauritzen et al., 2020). Quantitative relationships between the

factors are only known in part, and in this study only temperature

and age were considered. When better knowledge on the other

terms is available, these relationships should also be included in

the model. Also, some data indicate that preexisting lice infec-

tions makes fish more vulnerable to new infections (Ugelvik

et al., 2017).

Other climate change impacts on salmon lice
There are several other factors that have not been taken into con-

sideration when investigating the impact of temperature on the

infectivity of salmon lice on wild salmonids. In addition to the ef-

fect that the infection pressure is likely to increase as fewer lice

will die before development to the infective copepodid stage, de-

velopment time from copepodids to reproducing adult females

will decrease Hamre et al. (2019). At 6�C development to adult

females lasted 432 degree-days, but was significantly shorter at
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higher temperatures with an almost linear decrease to only 271

degree-days at 21�C.

A warmer climate will also change the hydrology with more

precipitation and an earlier snow-melt (Hanssen-Bauer et al.,

2017). As the salmon louse tries to avoid the brackish surface

layer (Crosbie et al., 2019; Cantrell et al., 2020a), more freshwater

will potentially give a deeper infective zone, change dispersion

and decrease the surface infection pressure. However, with a mis-

match between the spring-flood and the time when the salmon-

smolt migrates towards the sea, there is also a possibility for an

increased salmon lice exposure.

The main driver for climate change is the increased concentra-

tion of pCO2 in the atmosphere. Due to this, the average pH of

the surface waters of the global oceans has decreased from �8.2

before the onset of the industrial revolution to a present average

of �8.1 (Orr et al., 2005). Studies of biological consequences of

ocean acidification indicate that large groups of organisms will

confer induced stress or reduced success rate in seawater with re-

duced pH (Fabry et al., 2008). However, Thompson et al. (2019)

investigated the effects of increased pCO2 on growth and meta-

bolic rates in the planktonic stages of salmon louse from eggs to

copepodids. The results indicate that salmon louse have mecha-

nisms to compensate for increased concentration of pCO2 and

that populations will be tolerant of projected future ocean acidifi-

cation scenarios.

With increasing temperature it is expected that climatic bar-

riers in northern polar regions will weaken, and enabling an ex-

change of Pacific and Atlantic species, including salmonid fishes

(Wisz et al., 2015). Riding their backs, literally, we can expect the

Atlantic L. salmonis salmonis and Pacific L. salmonis oncorhynchii

subspecies (Skern-Mauritzen et al., 2014) to reunite. The size of

adults and development time of planktonic stages of Pacific

(Skern-Mauritzen et al., 2014) and Atlantic salmon lice appear to

be comparable (Johnson and Albright, 1991b; Schram, 1993;

Stien et al., 2005) whereas post infestation development of Pacific

salmon lice may exhibit a slower rate of development (Johnson

and Albright, 1991a; Hamre et al., 2019). The latter observation

was potentially caused by the study on the Pacific lice being con-

ducted using Atlantic salmon (S. salar) as host. Reported fecun-

dity of salmon lice is highly variable (Brooker et al., 2018) but

reported egg production and rate of maturation of the two sub-

species are comparable (Johnson and Albright, 1991a; Samsing

et al., 2016b; Hamre et al., 2019). Hence, data on fecundity and

development do not suggest that the modelled results should be

invalid for migrant L. salmonis oncorhynci or introgressive hybrids

(Skern-Mauritzen et al., 2014) with L. salmonis salmonis.

Other climate change impacts on fish farming
In addition to the changed infection pressure from salmon louse,

climate change will affect Norwegian aquaculture in general as

southern sites already experience temperatures that are higher

than optimal for the currently farmed species during summer

months. Optimal farming conditions for Atlantic salmon occurs

between 10�C and 18�C, decreasing significantly above 18�C
(Handeland et al., 2008). In the future, temperatures might be so

high that they would pose considerable risk to production

(Falconer et al., 2020), and farm management strategies and feed

composition may have to adjust to changes in temperature affect-

ing feed utilization, metabolism, disease treatment, and growth

(Handeland et al., 2000). Warmer water will also reduce the

dissolved oxygen levels. Due to this the fish will prefer to stay

deeper, and to avoid crowding the farmers will need to build even

deeper cages or compensate by pumping oxygen rich water from

depth to surface. As salmon lice are mainly found in the upper

metres of the water column (Heuch, 1995; Johnsen et al., 2014)

this will lead to a decrease in infection pressure on farmed fish

and subsequently less transfer to wild fish.

Concluding remarks
A warmer climate will significantly increase the salmon lice infec-

tion pressure from fish in aquaculture to wild salmonids. This

may hamper a further sustainable growth in Norwegian fish farm-

ing. A shorter developmental time from eggs to infective copepo-

dids, will also alter the pattern of transportation of salmon lice

from the fish farms resulting in areas with increased infection

pressure to be closer to the farms where releases occurs, which

has to be considered in future management plans.

A good management plan is therefore necessary to ensure envi-

ronmental sustainability and further growth in the Norwegian

aquaculture industry in a warmer climate. To mitigate the in-

creasing infection pressure on wild salmonids with higher tem-

peratures, there is a need to minimize the release of salmon lice

from farmed fish. Today the lice level in many production zones

are critically high (Vollset et al., 2019; Sandvik et al., 2020b), and

closed cages, lice skirts, and submerged cages are among the inno-

vative solutions, which are tested to reduce the encounter

rates between wild fish and the parasitic salmon lice (Barrett

et al., 2020).
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Ådlandsvik, B. 2019. Ladim documentation. https://ladim.readthe
docs.io.(last accessed April 2021).

Albretsen, J., Sperrevik, A., Staalstrøm, A., Sandvik, A., Vikebø, F.,
and Asplin, L. 2011. NorKyst-800 Report No. i. User Manual and
Technical Description. Technical Report Fisken og Havet 2-2011,
Institute of Marine Research.

8 A. D. Sandvik et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsab069/6280175 by Institute of M

arine R
esearch user on 28 June 2021

https://ladim.readthedocs.io
https://ladim.readthedocs.io


Asplin, L., Albretsen, J., Johnsen, I., and Sandvik, A. 2020. The hydro-
dynamic foundation for salmon-lice dispersion modeling along
the Norwegian coast. Ocean Dynamics, 70: 1151–1167.

Asplin, L., Johnsen, I., Sandvik, A., Albretsen, J., Sundfjord, V., Aure,
J., and Boxaspen, K. 2014. Dispersion of salmon lice in the
Hardangerfjord. Marine Biology Research, 10: 216–225.

Barrett, L., Oppedal, F., Robinson, N., and Dempster, T. 2020.
Prevention not cure: a review of methods to avoid sea lice infesta-
tions in salmon aquaculture. Reviews in Aquaculture, 12:
2527–2543.

Bøhn, T., Gjelland, K., Serra-Llinares, R., Finstad, B., Primicerio, R.,
Nilsen, R., Karlsen, Ø. et al. 2020. Timing is everything: survival
of Atlantic salmon Salmo salar postsmolts during events of high
salmon lice densities. Journal of Applied Ecology, 57: 1149–1160.

Bricknell, I. R., Dalesman, S. J., O’S, S., Pert, C. C., and Mordue
Luntz, A. J. 2006. Effect of environmental salinity on sea lice
Lepeophtheirus salmonis settlement success. Disease of Aquatic
Organisms, 71: 201–212.

Bron, J. E., Sommerville, C., Jones, M., and Rae, G. H. 1991. The set-
tlement and attachment of early stages of the salmon louse,
Lepeophtheirus salmonis (Copepoda, Caligidae) on the salmon
host, Salmo salar. Journal of Zoology, 224: 201–212.

Brooker, A., Skern-Mauritzen, R., and Bron, J. 2018. Production,
mortality, and infectivity of planktonic larval sea lice,
Lepeophtheirus salmonis (Kroyer, 1837): current knowledge and
implications for epidemiological modelling. ICES Journal of
Marine Science, 75: 1214–1234.

Brooks, K. 2005. The effects of water temperature, salinity, and cur-
rents on the survival and distribution of the infective copepodid
stage of sea lice (Lepeophtheirus salmonis) originating on Atlantic
salmon farms in the Broughton Archipelago of British Columbia.
Canada. Reviews in Fisheries Science, 13: 177–204.

Bui, S., Oppedal, F., Sievers, M., and Dempster, T. 2019. Behavior in
the toolbox to outsmart parasites and improve fish welfare in
aquaculture. Reviews in Aquaculture, 11: 168–186.

Cantrell, D., Filgueira, R., Revie, C., Rees, E., Vanderstichel, R., Guo,
M., Foreman, M. et al. 2020a. The relevance of larval biology on
spatiotemporal patterns of pathogen connectivity among open--
marine salmon farms. Canadian Journal of Fisheries and Aquatic
Sciences, 77: 505–519.

Cantrell, D., Groner, M., Ben-Horin, T., Grant, J., and Revie, C.
2020b. Modeling pathogen dispersal in marine fish and shellfish.
Trends in Parasitology, 36: 239–249.

Cantrell, D., Rees, E., Vanderstichel, R., Grant, J., Filgueira, R.,
and Revie, C. 2018. The use of kernel density estimation with a
bio-physical model provides a method to quantify connectivity
among salmon farms: spatial planning and management with
epidemiological relevance. Front Vet Sci. 2018 Oct 30;5:269.
doi: 10.3389/fvets.2018.00269. PMID: 30425996; PMCID:
PMC6218437.

Coates, A., Phillips, B., Oppedal, F., Bui, S., Overton, K., and
Dempster, T. 2020. Parasites under pressure: salmon lice have the
capacity to adapt to depth-based preventions in aquaculture.
International Journal of Parasitology, 50: 865–872.

Crosbie, T., Wright, D. W., Oppedal, F., Johnsen, I. A., Samsing, F.,
and Dempster, T. 2019. Effects of step salinity gradients on
salmon lice larvae behavior and dispersal. Aquaculture
Environment Interactions, 11: 181–190.

Dalsøren, S., Albretsen, J., and Asplin, L. 2020. New validation
method for hydrodynamic fjord models applied in the
Hardangerfjord Norway. Estuarine, Coastal and Shelf Science,
246: 107028.

Dalvin, S., Hamre, L., Skern-Mauritzen, R., Vågseth, T., Stien, L.,
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