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Abstract: The use of habitat distribution models (HDMs) has become common in benthic habitat
mapping for combining limited seabed observations with full-coverage environmental data to
produce classified maps showing predicted habitat distribution for an entire study area. However,
relatively few HDMs include oceanographic predictors, or present spatial validity or uncertainty
analyses to support the classified predictions. Without reference studies it can be challenging to assess
which type of oceanographic model data should be used, or developed, for this purpose. In this study,
we compare biotope maps built using predictor variable suites from three different oceanographic
models with differing levels of detail on near-bottom conditions. These results are compared with a
baseline model without oceanographic predictors. We use associated spatial validity and uncertainty
analyses to assess which oceanographic data may be best suited to biotope mapping. Our results
show how spatial validity and uncertainty metrics capture differences between HDM outputs which
are otherwise not apparent from standard non-spatial accuracy assessments or the classified maps
themselves. We conclude that biotope HDMs incorporating high-resolution, preferably bottom-
optimised, oceanography data can best minimise spatial uncertainty and maximise spatial validity.
Furthermore, our results suggest that incorporating coarser oceanographic data may lead to more
uncertainty than omitting such data.

Keywords: biotopes; habitat distribution modelling; spatial uncertainty; spatial validity; oceano-
graphic models; seabed mapping

1. Introduction

Several recent studies have highlighted the importance of including variables from
oceanographic models in benthic habitat distribution models (HDMs) (e.g., [1,2]). Although
such variables are generally recognised as important and have been included in some earlier
HDMs (e.g., [3–6]), oceanographic data are all too often excluded from published HDM
studies due to lack of availability at relevant resolutions and/or extent (e.g., [7]). Even
well-funded seabed programmes including Norway’s national offshore seabed mapping
programme MAREANO (https://www.mareano.no/en) have only relatively recently
gained access to oceanographic model data to support seabed habitat mapping and, to
date, these are opportunistic rather than custom-produced data.
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MAREANO uses HDMs to produce maps showing the spatial distribution of general
benthic biotopes (i.e., combined characteristic species composition and environmental
settings) as well as maps of vulnerable biotopes. Both products fall under the umbrella
of ‘habitat mapping’ relative to mapping outputs from other projects worldwide. All the
maps use numerous, but nevertheless limited, seabed observations from video data, in
combination with full coverage environmental data to predict the biotope distribution
between these observations using HDMs. Early MAREANO general biotope maps were
based on limited suites of environmental data including topographic, geological, and other
proxy variables [8–10]. The most recent maps [11] incorporate near-bottom oceanographic
predictor variables (temperature, salinity, currents), and highlight how important such vari-
ables are in shaping biotope distribution. Similarly, early MAREANO models of vulnerable
biotopes [12], a sister product to the general biotope maps, did not use oceanographic data
but later updates have benefitted considerably from their inclusion [13].

Modern oceanographic models apply advanced numerical solutions to solve the prim-
itive equations. They are generally multi-layer and some use terrain-following vertical co-
ordinates (e.g., the Regional Ocean Modelling System, ROMS (http://myroms.org) [14,15]).
They are, however, often developed for purposes other than seabed mapping, including as
a supplement to weather and wave forecasting (http://yr.no), fisheries- and aquaculture-
related studies of fish egg and larval drift, dispersion of contaminants and pathogens, and
climate change research [16–19]. To avoid prohibitively long computation times and high
costs, oceanographic models are not generally produced with high horizontal and vertical
resolution throughout the water column. Instead, models are optimised to represent condi-
tions in the part of the water column most important for the primary intended end use.
Following the mainstream applications noted above, optimisation is often selected to give
most accurate results in the upper waters, i.e., near the sea surface, rather than near the
seabed. Results from multi-layer models, even if surface optimised, nevertheless include
information on near bottom currents, temperature, and salinity characteristics which may
influence the distribution of benthic habitats. Although the lowest layer in many such
models may summarise this information tens to hundreds of metres above the seabed,
(this distance increasing with water depth for models applying terrain-following vertical
coordinates), it seems intuitive that inclusion of variables quantifying seabed climate and
dynamics should be beneficial in HDMs, even if the information is rather generalised.

Work is currently ongoing to update MAREANO general biotope maps from areas
where HDMs were developed before oceanographic data were available (i.e., before 2014).
Oceanographic model data have also become an integral part of MAREANO sample station
planning in recent years where data are available at appropriate resolutions relative to the
mapping area. As MAREANO’s experience with the benefits and limitations of oceano-
graphic data grows, and as seabed mapping extends to new areas, beyond the coverage of
contiguous oceanographic model results, there is a demand for extended oceanographic
model coverage with accurate representation of seabed conditions, particularly in deeper
waters. This study seeks to start addressing the question of what form such models need
to take by examining the predicted outputs of biotope HDMs in a case study area where
we have three alternative suites of oceanographic data available, each representing a
different level of information on near-bottom conditions in terms of horizonal and/or
vertical resolution.

The majority of HDM studies will naturally use what is perceived to be the best
available oceanographic model data in terms of spatial/vertical resolution, whilst covering
suitable time periods for their application. In many cases, relatively coarse global and
regional datasets are all that are available (e.g., via Bio-ORACLE [20] or https://marine.
copernicus.eu, the European Union’s Observation Programme). It is not yet generally
known how accurately oceanographic data need to represent near-seabed conditions to be
useful in predicting seabed habitat distribution. Comparative studies allowing insights
into this issue are, to date and to our knowledge, absent from the scientific literature: we
presume due to lack of suitable data and/or funding to facilitate comparisons. This can

http://myroms.org
http://yr.no
https://marine.copernicus.eu
https://marine.copernicus.eu
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make it difficult to objectively select the best available data and/or exclude unsuitable
data. The lack of citable literature also hinders the case for improved oceanographic model
development matched to the needs of seabed habitat mapping. Oceanographic model
development is far from a trivial exercise requiring specialist expertise, large computing
resources, and sufficient model validation data, and although the numerical model may
be open source, it requires extensive adaptations to be able to model the area of interest
properly. Evidence that existing oceanographic model data are not fit for purpose, or incur
considerable uncertainties when used in HDMs, will likely be important in leveraging
resources for the development of oceanographic models matched to the needs of seabed
habitat mapping. If, however, coarse regional and even global datasets originally developed
for other purposes are of equal value, then available resources can be channelled towards
other aspects of the seabed habitat mapping effort.

Just like the HDMs (and other applications they feed into), it is important to remember
that oceanographic models are just that, models. Results are generally compared with
available field measurements (e.g., [21]) to verify that the model is able to reproduce all
potential outcomes but, since observations are limited, spatial uncertainty results are not
usually available for the entire model extent. Uncertainty is therefore an integral part of
the oceanographic data we extract from such models, just as uncertainty is intrinsic to the
bathymetric terrain models and derived variables (e.g., [22,23]), geological classifications
(e.g., [24,25]), biochemical parameters (e.g., [20]), and other data used as predictor variables
in HDMs. It is the knock-on spatial effects of this uncertainty on HDMs which will likely
be a determining factor in selecting which oceanographic models are suitable for HDMs,
or in providing the impetus for developing better suited oceanographic model data.

It is important to convey to end users where uncertainties exist in the output classified
habitat map in a suitable and spatially explicit manner. Generic (non-spatial) accuracy
statistics (e.g., confusion matrix and/or summary statistics such as the Kappa Index) can,
at best, only partly summarise to what extent the map can be trusted [26]. To determine the
spatial uncertainty underlying a classified map, it may be necessary to generate additional
outputs from our HDMs, such as class probabilities. These class probabilities can in turn be
used to compute uncertainty metrics such as the confusion index [27] or Pielou’s evenness
metric [28] recently highlighted by Fiorentino et al. [29]; or Shannon entropy [30] and
related measures of dominance [31] as well as other indices used in disciplines such as
soil science [32–34] and land-cover mapping [35]. It may also be beneficial to compute
spatial uncertainty metrics based on multiple models to produce metrics that combine the
frequency at which a class is predicted with its probability (e.g., [36]). While the reasons
for map uncertainty can be numerous, as discussed by Lecours et al. [37] and Strong [38], it
is particularly useful to know whether spatial uncertainty is linked to sub-optimal training
data with poor spatial coverage (e.g., [39]) or thematic confusion (e.g., [40]) and/or more
closely tied to predictor variables. Therefore, in addition to spatial uncertainty metrics, we
should also include methods to evaluate to what extent our HDMs are valid across the
study area.

Within the case study area presented in this study, we apply a selection of methods for
assessing spatial validity and uncertainty in biotope HDMs. By applying these methods
to biotope HDMs employing different suites of predictor variables, we aim to determine
which versions of available oceanographic data are suitable for biotope modelling at the
meso-mega scale (sensu Greene et al. [41]) relevant to MAREANO and similar seabed
mapping initiatives. Each of the three alternative suites of oceanographic model data used
as HDM predictor variables in this study gives a different level of detail of near-seabed
conditions in terms of temperature, salinity, and current speed. The oceanographic model
data are from three different model simulations with the same model code (ROMS) that
has been set up for different purposes (optimized differently): (i) a 4 km resolution surface-
optimised model, (ii) an 800 m resolution surface-optimised model, and (iii) an 800 m
resolution bottom-optimised model. Since it is difficult to quantify multiple potential
sources of error, and in order to have a yardstick to aid our comparisons, we also make a
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baseline HDM with no oceanography data included, based on just a few basic predictor
variables which are common to all our HDMs. Using the same response variable (observed
classified biotope) data in each of our four HDM setups employing alternative suites of
predictor variables, we compare the predicted spatial distribution of seabed biotopes and
their respective spatial uncertainty and validity metrics. The results aim to provide insight
into how reliable maps from each HDM are, which is fundamental in evaluating which
oceanographic model suite may be considered fit for purpose.

2. Methods
2.1. Study Area

The study area (Figure 1) includes part of the continental shelf and slope in the western
Barents Sea, off Northern Norway. This location was selected due to the availability of
multiple suites of oceanographic model data which we use here in a comparative case
study for modelling the distribution of seabed biotopes. This is the only area within
Norwegian waters where these alternative versions of oceanographic model simulation
results are presently available, and where video data (necessary for the interpretation of
seabed geology and biotope classification) have already been acquired by MAREANO.
Previous studies explain the geological [42–44], oceanographic [45], and biological context
of the region [11].

MAREANO video and sampling surveys were conducted in this area during several
research cruises between 2006 and 2010, providing the necessary biological, geological, and
geochemical data to supplement multibeam mapping (bathymetry and backscatter data)
for the development of MAREANO’s portfolio of map products [46,47].

2.2. Biotope Modelling

Machine learning algorithms are now in widespread use for seabed HDMs and related
studies. One of the most popular approaches, random forest (RF) modelling [48], is used in
this study. Random forest, and variants of this approach, are generally well matched to
seabed geospatial data and are a good fit for predicting the distribution of biotopes [11].
As RF and related modelling has been more widely utilised in spatial applications, the
need for adaptations or extensions to standard methods has emerged including the need
for spatial cross-validation [49–52] and methods for determining spatial validity [39,53,54].
Selected methods for addressing both these issues are adopted in the present study.

We produced HDMs of biotope distribution, associated accuracy statistics, spatial
validity, and uncertainty using four biotope model setups, each employing a different suite
of predictor variables. Three of our HDM setups include predictor variables from each of
the available oceanographic model data (Section 2.2.2) while the fourth is a baseline model
that does not use oceanographic data. The modelling workflow is described in Section 2.2.3.
We first introduce the HDM response and predictor variables.
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Figure 1. The study area in the Barents Sea, NW Norway showing classified biotope points over colour shaded bathyme-
try. The inset zoom box shows how 200 m long biotope samples are distributed along video lines of c. 700–1000 m at video 
reference stations (Section 2.2.1). The biotope classification is modified after Buhl-Mortensen et al. [11] where the merged 
classes GG and MM incorporate classes from the original classification hierarchy which were observed too infrequently 
to model within this study area [GG includes G and F, MM incudes N, M, O, P, S, and U]. Symbology is as per the 
MAREANO published map with modifications for biotopes GG and MM. The legend indicates the water mass class to 
which the biotope class belongs, as per [11]. AW and SAW = Arctic Water and Slow Atlantic Water (Slow Atlantic water 
generally has maximum current speeds <0.4 m/s while Faster Atlantic water may rise to 0.8 m/s). Key place names men-
tioned in the manuscript are also indicated Tromsøflaket (TF) and the Bjørnøya Slide (BS). Bathymetry data Kartver-
ket/MAREANO. 

  

Figure 1. The study area in the Barents Sea, NW Norway showing classified biotope points over colour shaded bathymetry.
The inset zoom box shows how 200 m long biotope samples are distributed along video lines of c. 700–1000 m at video
reference stations (Section 2.2.1). The biotope classification is modified after Buhl-Mortensen et al. [11] where the merged
classes GG and MM incorporate classes from the original classification hierarchy which were observed too infrequently to
model within this study area [GG includes G and F, MM incudes N, M, O, P, S, and U]. Symbology is as per the MAREANO
published map with modifications for biotopes GG and MM. The legend indicates the water mass class to which the
biotope class belongs, as per [11]. AW and SAW = Arctic Water and Slow Atlantic Water (Slow Atlantic water generally has
maximum current speeds <0.4 m/s while Faster Atlantic water may rise to 0.8 m/s). Key place names mentioned in the
manuscript are also indicated Tromsøflaket (TF) and the Bjørnøya Slide (BS). Bathymetry data Kartverket/MAREANO.
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2.2.1. Response Variable–Classified Biotope Point Data

Video sample stations which were classified into biotopes in a related study for a
wider area in the Norwegian part of the Barents Sea [11] serve as the response variable
in our biotope HDMs. Full information on the video data, taxonomic identification and
classification process, and biotope characteristics are detailed in Buhl-Mortensen et al. [11].
Briefly, the classification is based on species compositions identified from MAREANO video
data using a TWINSPAN analysis. Each classified biotope observation (point shapefile of
video sample locations) used in HDM represents a summary of the benthic megafaunal
community observed on video over a distance along the seabed of approximately 200 m.
The spatial distribution of these classified points is shown in Figure 1 with the inset map
highlighting how each 200 m classified biotope sample originates from video lines which
are c. 700–1000 m long. Usually there is only one video line at a video reference station,
hence 3–4 samples, but occasionally additional video surveys lead to more samples at a
reference station. Since the spatial extent of the present study is smaller than that covered
by Buhl-Mortensen et al. [11], not all reported biotopes are present within the study area or
are observed too sparsely to facilitate HDM. We have therefore modified the classification
slightly, merging biotope classes with too few observations (<20) into a higher level in the
classification hierarchy. Figure 1 shows the modified classification with the water masses
associated with the biotope classification hierarchy indicated in the legend. This provides
consistency with the previously published results, with necessary modification to facilitate
this study. The fact that the classification may not be optimal for the study site is not a
major concern since our aim is to explore the effects of the different oceanographic model
data in HDMs rather than trying to make the most reliable biotope HDM for this area.

2.2.2. Predictor Variables–Oceanographic and Common Baseline Data

The predictor variables used in this study were selected to facilitate the comparative
study presented here and are a subset of all variables considered in biotope modelling over
the wider area reported by Buhl-Mortensen et al. [11]. Each variable type is described in
turn below.

Bathymetric Data

Bathymetric data are from multibeam surveys conducted for MAREANO by the
Norwegian Hydrographic Service (NHS). The surveys utilised multiple systems and survey
vessels and are of varying resolution and quality. Bilinear resampling was used to convert
the original high-resolution data (5–10 m) to a 200 m grid, matching the distance over
which biotope observations are summarised. This resampling operation also minimises
any quality differences between the original resolution data. Note that no bathymetric
derived terrain attributes (slope, ruggedness, etc.), commonly used in seabed HDMs, have
been included in this study. This is a deliberate omission based on (a) a desire to simplify
the study and retain focus on the differences between the model predicted outputs based
on the various suites of oceanographic variables, (b) the fact that terrain attributes have
been shown to be of quite minor importance relative to oceanographic and geological
variables in our previous biotope modelling work at the relevant spatial scales, including
Buhl-Mortensen et al. [11]. This observation is based on variable rankings obtained from
HDMs where all these variable types were included (c) methods for the derivation and
selection of terrain attributes, including data resolution are a topic unto themselves which
is beyond the scope of this study and would detract from the investigation of the influence
of the oceanographic variables if included. We use only a minimum number of non-
oceanographic variables (bathymetry, sediment class, X, Y) to construct a baseline model
which acts as a yardstick against which we can compare the outputs using the different
suites of oceanographic variables.
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Geological Data

Sediment grain size information used in this study comes from the 1:100,000 classi-
fied polygon grain size map produced by the Geological Survey of Norway (NGU) for
MAREANO (available from https://www.ngu.no/en/topic/datasets). Grain size classes
are interpreted from acoustic, video, and physical sample data and represent dominant
sediment types at the given map scale. Bellec et al. [55] provide a recent summary of the
methods for sediment map production, based on earlier standards [56]. The categorical
grain size data were converted to a 200 m raster grid for use in our HDMs.

A map of broad-scale geomorphology (MAREANO landscape map) was not used in
the present study despite being a useful predictor variable (although ranked with lower
variable importance than sediment class) in the Buhl-Mortensen et al. [11] study. This is
because, within the limited study area, there are relatively few landscape classes present.
In addition, we aim to minimise the number of common (non-oceanographic) variables
used in the present study and therefore retain only the generally more important sediment
class from available geological variables.

Geographic Variables

Raster grids of X and Y coordinates (UTM33N, WGS84) were used as additional
variables in all models. These were generated using the init() function from the raster
package [57] in the statistical software environment, R [58] using the 200 m bathymetry data
as a template. We note several discussions in the literature regarding the wisdom of using
geographic variables in spatial modelling. Whilst several authors argue for their inclusion,
others note the limitations and potential issues related to their use (e.g., [59,60]) for HDMs
of biotope distribution across large areas (hundreds of kilometres), we have found that
these variables often serve as useful proxy variables for some controlling variable we do not
have data for and generally improve model outputs. Inclusion of these variables supports
the uncertainty methods we are exploring in this case study, although we remain mindful
of the limitations of this type of variable for spatial modelling in general.

Oceanographic Model Data

We used three separate suites of oceanographic variables in our case study, each from
oceanographic model applications produced independently by the Institute of Marine
Research for different purposes. Below we provide a brief technical overview of the oceano-
graphic models highlighting the differences between models which may help explain the
variations in their outputs (Figure 2) and potential limitations for use in HDMs.

The coarsest data are extracted from the Nordic-4km (N4k) model [61,62] for the
years 2005–2007 which are deemed to be reasonably representative. The N4k model was
designed primarily to investigate hydrography and transports in the Barents Sea with focus
on the flow of surface and Atlantic water. Although the model has provided realistic results
for the surface and intermediary ocean levels, it is shown that the model has deficiencies
in deep basin hydrography. However, we have not clarified if these offsets have any
significant implications related to the circulation pattern. The coarse horizontal resolution
also makes the model unsuitable for detailed analyses, but it is the only model (excluding
global alternatives, generally of even poorer resolution/quality) presently available for
large parts of Norwegian waters.

The Barents-800 (B) model is a standard, surface optimised, ROMS model, at 800 m
resolution. It is an extension of the NorKyst-800 model [21] run for 2010 only. The Barents-
800 model was selected for use here in preference to the longer historical run by the
NorKyst-800 model (1995–2018 as explained in Asplin et al. [21]), which also covers the
study area, because results from Barents-800 were used in the precursor to this study [11].
The unified results over a wider area, beyond the extent of the NorKyst-800 model, afforded
by the Barents-800 model, were advantageous to that study. Note also that the Barents-800
model was forced by input from the N4k model along its open boundaries.

https://www.ngu.no/en/topic/datasets
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Figure 2. Raster map examples of near-seabed maximum temperature, salinity, and current speed data from each of the
three oceanographic models used in this study.

The Sandwave-800 model (SW), also at 800 m resolution and also forced by input from
the N4k model along the open boundaries, is an inverted (bottom-optimised) model [45]
which was produced for a project studying sandwaves on the continental slope [43,44]. The
Sandwave-800 model is set up such that it has more layers near the seabed, and therefore
can more accurately represent near-seabed conditions. The extent of the Sandwave-800
model was limited due to the specific objectives of the original project for which it was
produced. Consequently, this model dictates the boundaries of the present study area. It is
currently the only bottom-optimised model available for offshore areas of Norway.

Regardless of their original, coarser resolution (Table 1) all three suites of oceano-
graphic variables were resampled to 200 m resolution using bilinear resampling. This
resolution matches the distance over which biotope observations are summarised. In this
study, we restrict ourselves to those variables which are available in all three model suites
(Table 1). Maps of example variables from each of the three oceanographic models are
shown in Figure 2 where we see that near-seabed conditions appear somewhat different
in each model. For HDMs, it is important how these differences manifest themselves at
the biotope sample locations (Figure 1). We performed some exploratory analysis to help
visualise differences in the distribution of our response variable (biotope samples) across
each of the oceanographic models. Some examples are shown in Appendix A.
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Table 1. Summary of the variables considered in each biotope HDM-Base (no oceanography), N4k
(oceanographic variables from Nordic-4km model), B (oceanographic variables from Barents-800
model), SW (oceanographic variables from Sandwave-800 model). All oceanographic variables
are the modelled values from the deepest layer of the N4k, B, and SW models respectively (i.e.,
near-seabed values).

Variables
HDM

Base N4k B SW

Common
variables

Bathymetry 5–10 m floating point geotiff (resampled to 200 m)

Easting (X),
Northing (Y) 200 m

Sediment class 1:100,000 polygon (resampled to 200 m)

Oceanographic
variables

Temperature
(Maximum,

Minimum, Mean *)

n/a

4 km Surface
optimised

floating point
geotiff

(resampled to
200 m)

800 m Surface
optimised

floating point
geotiff

(resampled to
200 m)

800 m Bottom
optimised

floating point
geotiff

(resampled to
200 m)

Salinity (Maximum,
Minimum, Mean)

Current Speed
(Maximum, Mean)

* Mean temperature was removed following VIF checks for multicollinearity and not used in our
HDMs (see Section 2.2.3).

2.2.3. Biotope Modelling Workflow

The HDM workflow is summarised in Figure 3 and the predictor variables available
for each HDM setup are listed in Table 1. Response variable data was common to all
HDM setups. Prior to the main modelling and prediction steps, some initial preliminary
data exploration was undertaken to explore how the biotopes (response variable) are
distributed in relation to the oceanographic predictor variables and to what extent they
are distinct relative to these variables. Brief checks for multicollinearity were undertaken
using variance inflation factor analysis (VIF), but only one variable was removed (mean
temperature) due to being particularly correlated with other variables. This process should
be taken much further along with testing for individual variable significance in most
biotope modelling studies, but here it would be counterproductive when comparing the
influence of variable suites from different oceanographic models, not individual predictors.

Biotope HDMs were developed for each suite of predictor variables (Table 1) in R using
the Ranger implementation of random forests [63] via the Caret package [64]. RF modelling
uses a machine learning algorithm that provides a convenient and suitable method for the
present study, consistent with that used by the authors in [11]. Following initial testing
to explore suitable model settings and based on our experience with modelling the wider
area [11], the same settings were used to generate all HDMs. Since the RF approach will
naturally result in slight differences between runs, fixed seeds were used to ensure that
the results are fully reproducible. To facilitate examination of the relative importance of
predictor variables, we computed unscaled permutation importance for each HDM by
activating the appropriate settings in Ranger via Caret.

To provide a broader basis upon which to evaluate HDM results and associated
spatial validity and uncertainty, we developed ensemble HDMs set up to use each of
the four suites of predictor data variables (Table 1) following the approach described by
Mitchell et al. [36] which also allows us to obtain their combined confidence measure
(Section 2.2.5). The ensemble approach to HDM is one that is gaining popularity for many
applications. Here, it allows us to both investigate the variation in results between HDM
runs and to summarise results, including relative variable importance, over many models.
To facilitate the development of our ensemble HDMs, the original sample data were split,
with replacement, into 25 training- and test- sets with an 8:2 ratio using methods to preserve
the ratios of the response variable (biotope class).
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To facilitate model tuning (not used in [36]), and later assessment of the area of
applicability (Section 2.2.4), our training data were further split into 10-folds which are
used for cross-validation (CV). We use spatial CV as opposed to standard random CV, in
keeping with the recognised need to use cross-validation methods adapted for spatial data
(e.g., [49–52]). Spatial CV was implemented in the CAST package [65]. This approach is well
suited for applying spatial CV for irregularly spaced data and/or spatially clustered data
like our video samples (Figure 2) which contain several biotope samples at each reference
station. As in our earlier study [11] we use CAST’s function CreateSpaceTimeFolds() to
apply leave-location-out (LLO) CV. In LLO CV, HDMs are repeatedly trained by leaving the
data from one location out and using the respective held back data for model validation. In
our case, we define the video reference stations as the location and create 10 folds. Hence,
ten model runs are performed, each leaving out one tenth of video reference stations and
holding these data back for validation.

HDM performance using LLO spatial CV assesses models’ ability to predict to new
locations, since the held-back data are used to test model performance distant in space
from the training data. This gives more realistic performance estimates than those based on
random CV [49] where the folds are not spatially aware. We used automatic model tuning
facilities for Ranger in Caret which allow different options for several tuning parameters
(mtry, splitrule, min.node.size) to be tested during cross-validation. The tuneLength
argument was set so that all predictor variable combinations were used in the random
tuning parameter search. The Kappa statistic was used as the assessment metric for model
tuning. This is a reasonable, if not ideal metric, which remains in widespread use for
multiclass problems [26]. The model option with the highest Kappa value (i.e., the best-
tuned cross-validated HDM) was retained from each of the 25 runs and used further in
analysis and prediction.

For each of our four HDM setups, using the different suites of predictor variables, the
same 25 training and test sets were used to generate HDMs including classification and
probability results (Figure 3). From these, we generate standard (non-spatial) accuracy
statistics, including balanced accuracy [66], overall Kappa [67], and accuracy, as well as
spatially explicit validity and confidence assessments as outlined below.
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2.2.4. Area of Applicability

HDMs based on machine learning are good for modelling complex relationships
but gaps in predictor space cause problems because the model has no knowledge of the
expected outcome in these areas. To determine whether our model is valid in such locations
or not, we need a measure for how well it can predict into unknown space i.e., combinations
of environmental variables the model has never seen. One such method, developed by
Meyer and Pebesma [39], is to use a dissimilarity index (DI) that incorporates the (RF)
model’s weighting of each variable in quantifying how well the total environmental space
is represented by the training data both in space and values. The DI in turn provides
the basis for defining a model’s area of applicability (AOA) which summarises where
the model can be considered valid. In a broad sense, the AOA is a component of model
uncertainty but since it is based on quite different principles and gives an indication of
overall spatial validity, rather than the potential confusion between classes, we keep it
separate in this study. The AOA threshold is provisionally set as the outlier-removed DI
of the (spatially) cross validated training data based on results from the simulation study
reported by Meyer and Pebesma [39]. The AOA is implemented in the CAST package
for R, [65] which since version 0.4.2 allows categorical predictors to be used. Here, we
compute summary statistics for DI and AOA based on spatial CV for each of our 25 models
for each suite of predictors. Whilst AOA is an emerging concept, the AOA and DI results
should provide information which is complementary to the spatial uncertainty indices
and therefore information which is useful in elucidating differences between the HDMs
based on different suites of predictor variables. The extent of the realised AOA should also
be important in prioritising which predictor variables, in particular which oceanographic
model data, should be prioritised for future use in similar modelling work.

2.2.5. Spatial Uncertainty

Several authors have discussed and applied metrics for spatial uncertainty in classifi-
cation studies. Drawing on their own work and that reported in the literature, Fiorentino
et al. published an opinion paper [29] advocating increased use of soft classifications in
spatial ecology. Citing several examples from seabed habitat mapping studies, the authors
highlight use of the Burrough’s confusion index [27], Pielou’s evenness index [28], and
a red-green-blue (RGB) representation of a multiband raster comprising the probability
of the three most likely classes for each pixel. The latter is not strictly quantitative but
each of these approaches gives insight into the spatially explicit uncertainty underlying the
predicted classification. The combined confidence index introduced by Mitchell et al., [36]),
comes from a similar school of thought. It aims to offer a more accessible alternative
for quantifying spatially explicit uncertainty to approaches cited by the authors which
frequently have unrealistic demands for the volume of test data, way beyond what is
generally achievable in the marine realm. Computation of their combined confidence index
is dependent on multiple model runs, making it more computationally intensive than the
abovementioned indices which can equally well be applied to single HDM outputs. A
selection of these quantitative methods were applied here in addition to visual comparison
of the classified map.

Visual Comparison of Classified Map

The first and simplest of the methods used, is just a visual comparison of the classified
maps produced using each of the four suites of predictor variables. Both the individual
and ensemble model outputs from R were exported as geotiff files for easy display in
ArcGIS 10.7.1 (ESRI) which provides a more convenient interface for map exploration than
R. Predicted biotope distribution from individual model runs gives us a visual insight into
the relative stability and agreement of the models from each suite of predictor variables
between runs. The ensemble model displays the most commonly predicted class per pixel
across all 25 model runs (i.e., the maximum frequency class as per the Mitchell et al. [36]
code used). This can be considered as the final output, which is linked to the combined
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confidence measure below. To aid this visual assessment, we also compute the class variety
for each pixel in our ensemble HDMs using ArcGIS Spatial Analyst. This statistic indicates
the number of different biotope classes predicted for each pixel ranging from 1 (all ensemble
HDMs agree) to 4 (different biotope predicted by each of the four HDMs).

Combined Confidence

Combined confidence (CombConf) is a metric proposed by Mitchell et al. [36] as
a relatively simple, spatially explicit summary, allowing users to assess to what extent
a map offers reliable (stable) results and where they can most trust the classification.
The computation of CombConf is dependent on multiple model runs being performed
(generally 25 or more) using bootstrapped training and test data. The CombConf metric
merges model stability with the likelihood of the most common class occurring at any
location on a pixel by pixel basis and is computed by multiplying the frequency of the most
common class and the average probability of the most common class for each mapping unit.
We expect CombConf to be low near class boundaries where there is a transition between
the most likely class, but the effects of this should be moderated by the plurality vote for
the most common class so class boundary effects should be less than, for example, those
from the confusion index. We used the relevant part of the script published by Mitchell
et al. [36] to generate the CombConf outputs but implemented a modified function to
generate an ordered probability raster stack (identical to MaxClassAveProb in Mitchell
et al.’s script [36]) which could more intuitively be reused in other metrics below. For each
pixel, we obtain a stack of the probability values across all 17 biotope classes ranked from
highest to lowest. The result is identical to the values produced as input to the average
probability computation using the Mitchell et al. [36] method but offers a more convenient
workflow for use in the present study.

Confusion Index

The confusion index, introduced by Burrough et al. [27], originated from soil sciences
but has seen several applications to seabed mapping studies (e.g., [68,69]). We use the
simpler alternate formula from Burrough et al. [27]:

CI =
pmax−1

pmax
, (1)

where pmax is the highest probability for any location (pixel) and pmax−1 is the second
highest probability for the same pixel. In the present case study, the probabilities used
in Equation (1) are the average probabilities for the most common class in our ensemble
models. For single (non-ensemble) models, the highest probability and second highest
probability for each location (pixel) would be used directly.

CI provides a measure of how dominant the most likely class is relative to the second
most likely class on a scale of 0 to 1. Where CI approaches zero, then the most likely
class dominates i.e., there is little confusion, but high CI values approaching one indicate
confusion, with the second most likely class having a similar probability of occurrence to
the most likely class. We expect CI to be high in transition zones between classes but a high
CI across wider areas of the map indicates poor separation in the probability of occurrence
i.e., high levels of class uncertainty.

We also exported multiband rasters of the top three average probabilities from our
ordered probability stack. These can be displayed as RGB images with colour bands
corresponding to each of the probability layers. The results give an initial insight into
uncertainty [68].

Shannon Entropy Index

Similar to the Pielou evenness index [28] mentioned by Fiorentino et al. [29], the
Shannon entropy index has been used by several authors as an uncertainty measure for
soil classification maps (e.g., [32,70]), so was favoured in this study. Shannon entropy [30]
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is a generic method (from which Pielou Evenness is computed) which has recently been
adopted for uncertainty quantification in several spatial classification studies broadly
similar to our biotope HDMs (e.g., [32]). It quantifies the overall uncertainty associated to
the probability of encountering each class. The scaled Shannon entropy index (Hs) [70] is
given by:

Hs(x) = −
N

∑
n=1

pn(x). logN(pn(x)), (2)

where pn(x) is the per class (n) probability map and N is the total number of classes,
used as the base of the logarithm. Alternate versions of Hs can be computed using other
bases (commonly log2 or loge), but the scaled version (Equation (2)) outputs values scaled
between 0 and 1 which may be useful for combination with other outputs.

In the present case study, the probabilities used in Equation (2) are the average
probabilities for each class in our ensemble models. For single (non-ensemble) models, the
class probabilities would be used directly. At locations where the probability of one class
equals one and the others are zero, then Hs = 0 (no uncertainty), whereas where all classes
have equal probability Hs = 1 (maximum uncertainty). Note that this index offers only an
internal uncertainty measure, it is not checking how correct the classification is, merely
how well the class probabilities are separated.

In order to summarise the results of our uncertainty analyses, we also created density
plots for each HDM for each uncertainty metric. Both overview plots for the entire area and
plots per class were created. The class plots were produced by masking each uncertainty
map (CombConf, CI, and entropy) by the areas covered by each biotope in the respective
ensemble maps for each model suite.

3. Results
3.1. Accuracy Statistics

25 HDMs and one ensemble HDM were successfully produced with associated clas-
sification and probability results for each of our four suites of predictor variables (Base,
SW, B, N4k—Table 1). Using the (as yet unused) bootstrapped test data, we computed the
accuracy statistics summarised in Figure 4.

These non-spatial accuracy statistics indicate that there is negligible difference in the
overall accuracy between the four ensemble models. We do observe some differences in
terms of which classes are most accurate, but these are relatively minor, with the same
classes generally showing accuracy issues. For example, classes C, E, J, MM, and Y show a
consistently wide range (low average) of balanced accuracy scores across all HDMs, we
suspect this is primarily linked to the relatively low number of samples for these biotopes.
Additional accuracy and Kappa statistics from constituent model’s 10-fold spatial CV also
do little to differentiate between the models. These values are, as expected, somewhat lower
values than the results from comparison with the test data which were subdivided on class
rather than spatial variables. Although supposedly offering a more realistic assessment
of the models’ ability to predict to new locations [49], the overall accuracy and Kappa
statistics from spatial CV seem to be just as ineffective at distinguishing between our HDMs
as those based on comparison with test data.
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3.2. Relative Variable Importance

The relative importance of each predictor variable varies across each of our four
HDMs. In addition, the importance varies across the constituent models for each ensemble.
This information is summarised in the boxplots in Figure 5. Across all HDM, bathymetry is
the most important variable (barring outliers in the N4k model). In the base HDM, this
is followed by the geographic variables X, Y with sediment class contributing minimally.
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In the other HDMs, sediment class is often more important than bottom current speed,
possibly because the two are related, with coarser sediments occurring in areas with higher
current speeds. Geographic variables are of moderate importance in all HDMs containing
oceanographic variables, suggesting they are still a proxy for some indirect effect not
captured in the other variables. In both the N4k and SW HDMs, temperature variables
are next most important to bathymetry. Temperature variables are also important in the
B HDM, but here they are of similar importance to mean and maximum salinity. These
results, with salinity relatively more important in the B model, highlight how we can gain a
different impression of what we interpret biologically, depending on the predictor variables
available. In reality, the water masses are not different but the representation of them across
the three oceanographic models is (Figure 2), especially near the shelf edge where it is
challenging to represent that water masses of different densities are forced up and down
the slope due to the diurnal topographic waves [45].
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3.3. Visual Comparison of Classified Biotope Maps

Examining the spatial distribution of biotopes output by the ensemble models (Figure 6),
we see that there is remarkably little difference in the general distribution of biotopes, with
at least the most dominant biotopes exhibiting similar patterns of distribution. When we
compare these results visually with the biotope sample data (Figure 1), it appears that the
ensemble method has produced reasonable results across all HDMs, at least when viewed at
a broad scale, regardless of the predictor variables used. These initial observations would also
seem to confirm the similarities in our accuracy statistics (Figure 4).
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Even the baseline model (Figure 6a) with no oceanography data included appears to
give a decent indication of the biotope distribution and there are only relatively fine scale
differences in biotope distribution and/or the extent of individual biotope classes across
all HDMs, as highlighted by the class variety map (Figure 7). Based on these ensemble
results alone, it appears that, for broad-scale predictions of biotope distribution within
this case study area, there is no major impact of including oceanography data in any form.
Nevertheless, we reserve judgement on which, if any, oceanographic inputs are best suited
until we have seen the results of the spatial validity and uncertainty analyses.
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all models agree, with variety rising to four in pixels where all four models predict different biotopes.

Examination of the output from individual spatially cross-validated HDMs that are
input to the ensemble result, however, provides further insight into the model stability
and reveals important differences between the stability and quality of the output across
each of our four ensemble HDMs (see Supplementary Material S1). Whilst the ensemble
results give the same general impression, the predicted biotope distribution maps from the
25 runs of each HDM-setup show that the results of the constituent models are far from
consistent. This leads us to question the reliability of the ensemble map, or at least desire
more information on its associated validity and uncertainty.

Since non-spatial accuracy statistics (Figure 4) appear to do little to discriminate
between spatially differing model predictions, we see that it is important to include a
spatial check on model outputs, at least visually but preferably, using quantitative methods.

3.4. Spatial Validity

A summarised version of the AOA results is shown in Figure 8. We observe differences
in the AOA across each of our HDMs. The SW HDM has the least area outside of the
AOA (gaps in weighted predictor space), followed by the B HDM, whilst both the N4k
and Base HDMs show quite large areas falling outside of the AOA, suggesting weaknesses
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in these models. Of the two latter HDMs, the N4k model result reveals the broadest and
most consistent areas with problematic AOA. This is likely because more variables are
included in the N4K relative to the Base model, leading to more scope for variation between
model runs.
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Each map shows an average of binary AOA results (where 0 is outside the AOA and 1 is inside) across the 25 HDMs per
predictor suite to produce an AOA summary relevant to the ensemble output. Areas outside of the AOA in >50% of the
25 models appear in the red part of the colour ramp (i.e., blues are more acceptable results). See also AOA maps from
constituent models in Supplementary Material S2.

3.5. Spatial Uncertainty

The results shown in Figure 9 illustrate the results of the CombConf index which
assesses the stability of prediction across the 25 constituent models. It is immediately
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clear that CombConf maps do indeed summarise the instabilities which are visible when
examining the 25 constituent models, but which are not clear in the ensemble maps
themselves. Firstly, we can observe that the uncertainty varies across the study area. This
is new information that the non-spatial accuracy statistics did not capture. Further, as
we compare the results from all four HDMs, we note that the uncertainty is consistent in
some areas but exhibits distinct differences in others. We observe low confidence in all
four models on the continental slope. This uncertainty extends beyond class boundaries,
suggesting that this is an area that is difficult to predict using the available training data,
probably compounded by the relatively high number of classes observed in this area. This
result is not unexpected when we refer to our preliminary data explorations (Appendix A)
where we saw that the slope-associated classes (A-E) are quite poorly separated with
respect to several oceanographic variables. In addition, we have relatively few samples for
each of these classes. Elsewhere across the maps we see that the uncertainty varies away
from class boundaries for some of our HDMs, which, in this case, is directly indicative of
instability and low confidence.
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CombConf results from the Base model on the shelf shows linear artefacts in uncer-
tainty, reflecting the issue with overreliance on geographic variables mentioned above.
Some parts of the map are quite certain, but it is very certain in far fewer areas than the
other HDMs. The N4k model has large areas of certainty on the shelf but the weaknesses
in this model output are suggested by the relatively high uncertainty across much of Trom-
søflaket (see Figure 1 for location) even relative to the Base model. This may imply that
the oceanographic variables from the N4k do not aid the classification over and above the
information already included in the Base model. Instead, the extra variables, which do not
adequately capture the variations in water mass properties relevant to biotope distribution,
may lead to more uncertainty. This may also be linked to the fact that Tromsøflaket has a
low sample density due to logistical issues during fieldwork. Both the B and SW models
perform better, but whilst the B model still indicates uncertainty in parts of Tromsøflaket
and on the shelf to the northwest, the SW model displays uncertainty that is almost en-
tirely linked to class boundaries (i.e., where it is of least concern), in contrast to the N4k
model (Figure 10).
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The SW model appears, however, less certain than the other models on the shelf
directly above the Bjørnøya slide (see Figure 1 for location). This is likely due to lower
average probabilities for the most common class relative to other classes in the SW model.
Whilst the most frequent class is still dominant (has a relatively low CI), the average
probability values for the SW model are slightly lower than for the other models. At the
same time, the probabilities for the next two most frequent classes are slightly higher than
for the other models. A first impression of this difference in the probability weighting
between models is visible in RGB images which combine the average probability values
for the top three most common classes (Appendix B). These RGB images, whilst largely
qualitative, can give a useful first indication of uncertainty issues.
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The CI results from each of our four ensemble models are shown in Figure 11. The
confusion index (CI) provides a useful summary of where the class separation is most
problematic. As expected, high CI values do occur close to class boundaries, but other high
CI values beyond these zones are indicative of questionable model performance (e.g., on
Tromsøflaket). Although based on different criteria, these maps present quite a similar
story to that gained from the CombConf results. All models show high confusion on the
slope as they did with the CombConf index. Since the CI is not scaled by probability,
however, the confusion is potentially overexaggerated in areas where the probabilities are
relatively high (on the shelf), making them appear similar to areas where the probabilities
are lower (on the slope).
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Figure 12 again shows clearly that the continental slope is the most uncertain part
of the predicted maps, across all model suites. Entropy results for the B and SW models
are broadly similar, showing reasonable separation in class probability across much of the
shelf area. The N4k model also shows reasonably good results and is not as affected by
problems on Tromsøflaket as the other indices were. The Base model only achieves the
lowest category of entropy in a few locations with most of the shelf having more similar
class probabilities (high entropy).
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Based on our results, the Shannon entropy maps appear to provide useful supporting
information showing more generalised trends in confidence that are not overly influenced
by class boundaries. This can be very useful supporting information for the classified maps.
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Density plots for each of the uncertainty indices can complement the maps presented
above (Figures 9, 11 and 12). Overview plots showing the relative distribution of uncer-
tainty values across each of our four ensemble HDMs as well as density plots by class are
presented in Appendix C. The latter are particularly useful in assessing which classes are
worst affected by spatial uncertainty issues, although the plots themselves are non-spatial.

4. Discussion

This study aimed to discern whether data from any of three oceanographic models,
with different properties, was better suited to use as predictor variables in seabed biotope
HDMs. We used an ensemble modelling approach and accompanying metrics of spatial
validity and uncertainty to compare the performance of HDMs using four suites of predictor
data, three of which included different versions of oceanographic data, the fourth using
only basic predictor variables common to all models. The results illustrate the benefits
of generating validity and uncertainty metrics to accompany classified biotope maps and
indicate that different recommendations could be drawn based on the scale at which
the maps are considered relevant. Here, we draw some initial conclusions at broad and
finer scales, evaluate the metrics of spatial validity and uncertainty, make a provisional
assessment of which oceanographic predictor suite seems most preferable going forwards,
and discuss the limitations of this work.

4.1. Scales of Evaluation of the Classified Maps

Classified biotope maps were produced that are broadly similar for ensemble HDMs
based on each of the four suites of predictor data, but clear differences are visible when
zooming in to finer scales.

All four ensemble maps could potentially be used at scales of around 1:2 million
(whole area) where they may be suitable for regional applications focussed on the most
widely occurring biotopes. The maps could also possibly be used to guide future efforts
for finer resolution mapping or modelling within the dominant classes. At this scale, and
with these purposes in mind, it does not seem important what type of oceanographic
predictors are used, or, cautiously, if they need to be included at all (given that the Base
model, without oceanographic predictors performed similarly, and for some areas, like
Tromsøflaket, better than those using the coarsest version of oceanography data).

However, when zoomed in to finer scales, including the still relatively coarse 1:400,000
scale at which our 200 m biotope map would be suitable for conversion to a polygon map
according to Tobler’s rule [71], differences are observed across ensemble maps based on
the different suites of predictors. Scales of 1:400,000 and finer scales might be relevant
for marine managers searching for the best locations to set boundaries for management
areas or when using models to guide targeted sampling. Given the differences at these
finer scales, it is difficult to know which map to trust the most without supporting (e.g.,
uncertainty) information. Yet the observations of linear artefacts in several of the constituent
baseline HDMs do suggest that oceanographic predictors are useful in refining these finer
scale predictions.

The ensemble models conceal much of the variation between model runs, indeed this
is the very point of ensemble models-many outputs, even including single divergent (‘bad’)
ones leads to a better overall result, provided the ensemble is based on enough results.
Here, we followed Mitchell et al. [36] and used the standard practice of 25 bootstrapped
models [72]. Initial testing with just ten bootstrapped models produced much less satisfac-
tory ensemble models. Intuitively it makes sense to use more models: with fewer models,
stability is not reached unless their results are similar. Yet, more models require more
investment in terms of processing resources and may become prohibitive when modelling
over large areas with large volumes of input data.

It is possible that constituent HDMs trained on the full dataset (without withholding
some data for testing) would have higher stability between runs. There is, however, no
guarantee that the results would approach the best of those from the 25 bootstrapped
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models developed here. Given the relatively uniform results from each of our models, it
seems that ensemble modelling is a smart approach to reduce uncertainty and to provide
a more extensive basis for production of accompanying spatial uncertainty maps. The
(non-spatial) accuracy statistics do not provide an adequate means by which to distinguish
between ensemble HDM outputs in the present study and risk, giving an overoptimistic
summary of performance. We therefore recommend that reported uncertainty should be
spatially explicit and preferably incorporate probability information which facilitates the
use of metrics like those employed in this study. Where such computations are prohibitive,
a basic measure of spatial uncertainty can be obtained simply from tallying differences
in the classified map outputs from bootstrapped HDMs e.g., calculating the pixelwise
standard deviation [7] or the frequency of occurrence component of the CombConf index
to summarise how the map varies between runs.

4.2. Spatial Validity and Uncertainty Indices

The area of applicability [39] appears to offer a promising method for checking the
spatial validity of HDMs which incorporates variable weighting. Weaknesses in our AOA
results were identified in all our HDMs regardless of the input predictor variables, although
the results using 800 m model data (SW HDM, followed by B HDM) showed the least
AOA-related problems. We suspect that the AOA may be underestimated in this study
due to the inclusion of categorical predictor variables (sediment grain size classes) which
are mapped at 1:100,000. Unlike the other continuous predictors, the HDM and hence the
AOA analysis has no way of knowing which sediment classes are most closely related,
which may lead to more areas than strictly necessary being masked out as outside the AOA.
Further investigation on the best way to incorporate such categorical variables is advised,
along with possible refinement of the AOA threshold. Possible solutions include using
ordered variables, or conversion of the sediment grain size classes to generalised sediment
fractions [73]. We also note that the survey design (video stations) was made long before
these oceanographic datasets were available. More recent standard MAREANO practice
is to use the best available oceanographic model data in station planning using methods
suited for achieving good coverage of environmental space, e.g., [74]. For the purposes
of this study, the AOA provided a useful basis for HDM comparison, with several areas
being highlighted to have AOA issues, particularly in the Base and N4k models. Further,
the case study provides a means to raise awareness of this spatial validity topic both to
marine scientists and resource managers.

All uncertainty metrics concur that HDM results on the continental slope are uncertain,
regardless of the predictor variables used. This can be attributed to the high degree of
environmental variation combined with quite a high number of biotope classes with
relatively few observations in each class and little separation between classes in terms of
several predictor variables. The study area, for which video surveys were planned prior
to the availability of oceanographic data or development of MAREANO’s environmental
variability index [75] which is used to guide sampling effort, currently has few samples
relative to its environmental and biological complexity, particularly on the slope. Where
possible, the sampling effort should be increased in such areas, although we recognise this
is rarely likely to occur in costly offshore surveys. In the absence of additional samples,
future biotope HDMs that include this area should consider the merging of these classes to
increase the certainty. However, if the biotopes have very different biological characteristics,
it may be preferable to retain the classes, even if this means accepting higher uncertainty. In
any case, it is important that uncertainty information is flagged for map users so that they
know which areas of the map can be trusted and which should be treated with caution.

All the uncertainty metrics used in this study provide important insights into the
variations between our HDMs, thereby giving an insight into which suite(s) of oceano-
graphic data may be preferable. Each metric offers a slightly different perspective making
it difficult to select one best method.
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Model stability is best captured by the CombConf measure since this is directly linked
to the frequency of occurrence of the most likely class. This measure is made more useful
by its intrinsic link with probability which means that class boundaries in areas with lower
probabilities are highlighted as being more uncertain. This index provides a good overall
measure of where the predicted most likely class is certain or potentially confused, yet it is
dependent on a relatively large number of model runs so is probably better suited to final
modelling (i.e., once final classes are decided upon) than initial model development (where
classes may be considered for merging until an acceptable level of uncertainty is reached).

Maps of CI provide useful information but are dominated by (expected) high confusion
near class boundaries. High confusion beyond class boundaries is of greater interest when
identifying weaknesses in model predictions. For example, this index captures weaknesses
in the N4k-based models in an area with few observations. The index is limited since it
only considers confusion between the two most likely classes, when in fact three or more
classes may have similar probabilities, as we see from the entropy results. It may be of
value to combine this index with the entropy results.

The Shannon entropy maps provide a good general overview of where the maps are
uncertain and this index is not fragmented by confusion (similar probabilities) at class
boundaries in the same way as CI, or CombConf. This is an advantage on an overview
level e.g., identifying areas which should be considered for merging or further sampling,
however the lack of specific information on uncertainty at class boundaries means that the
use of this index alone may be insufficient.

4.3. Based on the Map Results Which Oceanographic Data Do We Need, If Any?

Despite the superficial similarity between classified biotope model outputs based on
the four sets of input data, at a coarse scale, the finer scale uncertainty and spatial validity
results concur that, in this case, spatial uncertainty is minimised, and spatial validity
maximised by using the SW data. This predictor suite still perpetuates some confusion on
the continental slope that is common to all models, but otherwise appears to be the most
stable and certain of the three being tested in this region. The SW data represent the only
predictor suite that was bottom optimised.

The B model would be second choice: it retains some issues in relation to some uncer-
tainty metrics, but seems to be fit for purpose at least for maps to be used at moderate scales
e.g., 1:400,000, which is in keeping with the 200 m modelling resolution. Both the B and SW
predictor suites are based on relatively fine scale (800 m) regional oceanographic models.

Whilst the ensemble classified maps based on the N4k and Base predictors appear
superficially reasonable the uncertainty and spatial validity analyses reveal considerable
problems with these HDMs. The N4k model shows large areas of uncertainty particularly
in areas where few samples are available, but we suspect that additional uncertainty
may be linked to the overly generalised nature of the oceanographic variables. The N4k
oceanographic model that supplied these data was designed to cover a larger area (than
the SW and B models) and therefore had a much coarser resolution (4 km). This may be too
coarse to capture the biologically relevant oceanographic dynamics of the region of interest.

The Base model, while sometimes exhibiting lower uncertainty than the N4k model,
is overly dominated by linear artefacts related to the geographic variables. These artefacts,
which are also visible in some of the individual classified maps but are highlighted in most
of the uncertainty metrics, are not acceptable. They indicate an over-reliance on spatial
variables which have made the RF modelling akin to a spatial interpolation exercise from
the training points (see variable importance plots Figure 5). Where X and Y variables are
not sufficiently supported (diluted) by other variables, they are known to cause problems
(e.g., [59]). We would not recommend using this model for fine (meso) scale applications.

Based on the results of this case study, we recommend incorporating oceanographic
data in future biotope HDMs in MAREANO and similar studies. This data should be from
oceanographic models of at least ~1 km resolution if possible, and preferably from bottom
optimised models. High uncertainty associated with HDMs with no oceanography data
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or coarse oceanography data (4 km) mean that these variable suites are not advised for
modelling at the finer scales relevant to MAREANO users (primarily marine managers
and industry) unless spatial uncertainty and validity can be shown to be at an acceptable
level. Although it is possible that the inclusion of additional, alternative predictor variables
e.g., terrain attributes, could improve the B and N4k HDMs, the strong oceanographic
characteristics of many biotopes [11] and the uncertainty/validity issues demonstrated here
make it unlikely that the inclusion of such data could outperform HDMs including good
(800 m) oceanographic data. This comparison has not been tested here but we recommend
that if coarse oceanographic data are the only option, these may be included initially,
subject to a full variable selection process, possibly including automated methods such as
recursive feature elimination [76] or forward feature selection [49,59].

4.4. Limitations and Further Work

Random forest modelling provided a suitable method for the present study. We
recognise that other modelling approaches could also be employed, but this study is
focused on comparing results based on different suites of predictor variables, and their
associated spatial uncertainty/validity, rather than on comparing different modelling
algorithms as some other authors have done (e.g., Pearman et al., 2020).

The response variable used in this study (biotope classes [11]) was trusted as-is. MARE-
ANO biotope classification is data driven and is updated as new video data are acquired
and mapping is extended into new areas. Consequently, there is inherent uncertainty in the
definitions of these classes. Indeed, in this case, the classes were defined from a much larger
region than is covered by this study. This means that some biotopes were underrepresented
and were merged to reduce class imbalance. Had they been analysed separately, they may
have been grouped differently.

This imperfect classification system represents both a potential limitation and an
opportunity in relation to the present study. Our results indicate that it would be beneficial
to incorporate the outputs of preliminary HDM development, including spatial uncertainty
metrics, into the process of refining the biotope classification itself. This is especially true
where the classes themselves are being defined by local analysis, similar to the considera-
tions discussed by Gonzalez-Mirelis et al. [77]. Classes associated with higher confusion or
predictive uncertainty could then be examined further to double check whether a) there is
an ecological basis for this confusion e.g., there are enough shared species and environmen-
tal conditions for a class to be better redefined as a subclass, or b) the model predictors are
likely to be limiting that classes predictability e.g., the predictor suite does not adequately
capture the different environmental conditions that drive a class divide. Either way, such
classes may be candidates for merging for the purposes of modelling. In other cases, where
the habitat classification is pre-determined e.g., using accepted systems such as EUNIS [78],
NiN [79], CMECS [80], it may still be appropriate to use the uncertainty results to merge
classes for modelling purposes. In both cases, this should ideally be done in consultation
with major end-users to achieve a good balance in terms of information and acceptable
levels of uncertainty.

The bottom-optimised Sandwave-800 model is only available for a small area which
has constrained the geographical extent of this study. Consequently, we can only speculate
as to the effects of using such data in wider area biotope modelling and any advantages they
may have over the standard, surface-optimised Barents-800 model and related NorKyst-800
and Svalbard-800 models ([21] and [81], respectively). Unfortunately, finer resolution (both
horizontally and vertically) models will generally cover smaller areas, due to computational
restrictions, so in practice, resolution trade-offs may be required dependent upon the
domain size of the HDM. Further, whilst our results have highlighted limitations with the
coarser N4k model, we have not been able to explore whether a bottom-optimised model
at this resolution would be a useful option.

Summary variables and limited (different) time periods for each suite of oceanography
data are also a consideration. We may assume that spatial and temporal variability in
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near-seabed oceanography based on model results are an important environmental element
linked to biotope distribution, but further research is required to ascertain at which scale(s)
conditions vary in the real world. Since currents at depth are mainly driven by broad-
scale density gradients which are hard to differentiate between interannually, this variable
is unlikely to be much affected by the time period. Similarly, salinity does not have
a recognisable interannual variation, but temperature gradients do. Nevertheless, it is
likely that the main temperature gradients are represented realistically enough in each
model period used here. In our HDMs we used only max, min, and mean values, not
standard deviations, 90th percentiles etc. (as used in [11]), since these data were not
readily available for all models. We recognise that temperature ranges and interaction
variables may also be useful predictors. We also note a degree of uncertainty linked
to the non-temporal MAREANO video surveys completed over the course of several
years (and in different, non-winter months) whilst using oceanographic data only from
non-corresponding available years across all seasons. Interannual and seasonal changes
at depth have not yet been studied in any detail for the study area. Prioritising such
work would help determine how relevant this may be in relation to habitat mapping and
thereby how to deliver the most ‘representative’ results matched to the time periods over
which MAREANO fieldwork has been conducted. Temporal considerations in relation
to oceanographic data in HDMs are integral to the study by Young et al. [2] and their
uncertainty estimates, whilst presented spatially, are related to time. To facilitate such
studies in Norwegian waters, as well as exploring issues related to community connectivity,
a breakdown of oceanographic model output into finer time intervals, including seasons
per variable may be required. The variables may also have different explanatory power in
relation to habitat distribution at different spatial scales. Oceanographic models capturing
variations at sub-kilometre scales will be key in providing such information. Use of such
data in biotope models is nevertheless likely to require resampling to finer resolutions
more closely matched to the scale of seabed observations and it is important that such
rescaling be done in an optimal manner which respects the limitations of the original
model. We note that both Young et al. [2] and Pearman et al. [1] used alternative methods
for rescaling the oceanographic data. We used simple bilinear resampling here, in keeping
with the Buhl-Mortensen et al. [11] study, but improved methods may be considered for
future work.

The workflow adopted here involves both validation and testing. This facilitated both
model tuning (i.e., validity assessments based on spatial CV) and non-spatial accuracy
assessments using bootstrapped test sets. This workflow could be considered overkill, par-
ticularly since we know in retrospect that the accuracy assessments did little to discriminate
between HDMs based on different predictor suites. However, the multiple sets of training
data from the train/test splits were well matched to the production of ensemble HDMs
and associated uncertainty metrics. We therefore recognise some benefits in retaining both
validation and testing components in future work where computing resources permit, but
alternative workflows may also be suitable as long as they facilitate the production of
both spatial validity and uncertainty metrics. The incorporation of spatial CV should be
a priority for future studies. Besides facilitating more realistic performance metrics than
random CV, it is also well matched with the computation of spatial validity metrics such
as AOA. However, given the limitations of available tuning metrics such as the Kappa
statistic [26], it may not be so important to tie the spatial CV to model tuning as we did
here. Where ensemble modelling is used, then model tuning may be omitted in favour of
a plurality vote from multiple models (e.g., [36]). If internal accuracy assessments from
the spatial CV are considered sufficient for the study in question, then it may not be nec-
essary to use test/training sets and produce bootstrapped HDMs with associated spatial
uncertainty metrics for the ensembles. Rather, constituent models could be obtained from
the spatial CV runs and used to generate classified predictions and class probabilities. A
further advantage of this approach may be that the spatial uncertainty metrics and the
ensemble classified map become linked to spatial CV, rather than being based on a random
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test/training class-based split as used in the bootstrapped models here. Further work is
required to compare the relative merits of different approaches.

5. Conclusions

This case study produced four ensemble biotope HDMs using RF modelling to assess
what types of oceanographic models are suitable for HDM. We examined the predicted
classified output together with spatially explicit uncertainty and validity indices which
helped compare the results. The HDMs differ only in the predictor variables included: one
was built only with the baseline variables included in all HDMs, while the other three also
included alternative sources of modelled oceanography data of varying resolution and
parameterisation.

The spatial validity and uncertainty results gave unique insight into the differences
between our four models and thereby an indication of which suite(s) of modelled oceano-
graphic data are most suited to HDM at the scales considered here (meso-mega scale).

The main conclusions are as follows:
Classified biotope distribution maps can be produced from all our suites of predictor

data based on available training data using ensemble RF modelling. There are negligible
differences between the maps at broad scales such that any of these predictor sets could be
used at scales of around 1:2 million (whole area) if the user is unconcerned with finer scale
spatial uncertainty.

At a finer scale (e.g., 1:400,000), non-spatial accuracy statistics did not adequately
summarise the differences observed between HDM outputs. Spatially explicit uncertainty
analyses, however, revealed considerable differences between the HDMs and confirmed
that some areas and classes are particularly difficult to predict. Each of the uncertainty
measures used here (combined confidence, confusion index, Shannon entropy) provide
complementary information, although there is some agreement between which areas of the
map are most uncertain (continental slope, class boundaries) based on the different metrics.
No single index used here captures all issues, therefore the use of multiple uncertainty
metrics is recommended to support HDMs. Possible combinations of indices should be
explored in future work.

The area of applicability appears to offer a promising method for checking the spatial
validity of HDMs. For the purposes of this study, the AOA provided a useful basis for
HDM comparison and the case study provides a means to raise awareness of this topic
both to marine scientists and resource managers.

Based on these results, we cannot recommend further biotope model development at
the mega-meso scale (i.e., matched to MAREANO mapping) using coarse (4 km or coarser)
or no oceanography data unless the spatial uncertainty and validity of the predicted map
can be shown to be at an acceptable level for end users. Oceanographic data from models
of at least ~1 km resolution should be used if possible. These should preferably be bottom-
optimised models, i.e., have a proper vertical resolution near the sea floor, which minimises
uncertainty and maximises the spatial validity of classified biotope maps. Where ~ 1 km or
better oceanographic model data do not yet exist in contiguous form, development of such
oceanographic models should be prioritised for use in HDM.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-326
3/11/2/48/s1, GIF animation files S1—Classification results from constituent models for all four
HDMs, GIF animation files S2—AOA results from constituent models for all four HDMs.
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Appendix B

When the three highest probabilities are extracted from the multilayer stack described
in Sections 2.2.5 and 3.5, we obtain a multilayer raster which we can use to compare
the separation in probabilities between the top three most likely classes for any pixel
(Figure A2). The red band is assigned to the probabilities of the most likely class, with
green and blue being assigned to the probabilities of the second and third most likely
classes, respectively.
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Figure A2. Multiband rasters of the three highest class probabilities per pixel, represented as RGB maps for each of the four
HDMs (a) baseline model, (b) N4k model, (c) B model, (d) SW model.

As demonstrated by Lucieer and Lucieer, [68] and discussed by Fiorentino et al. [29],
this can offer a useful, if somewhat qualitative, view of the map uncertainty linked to
the relative probability. In areas where the most likely class is dominant, the map will
be red. Where the first and second most likely classes have similar probabilities, the
map will be green, and where all class probabilities are similar, the map will appear blue.
Remember that the results shown here are averaged over all models and only show the
relative probability of the three most likely classes.

These maps suggest possible uncertainty issues with the N4k and Base HDMs with a
considerable confusion vs. the second most likely class (green) common on Tromsøflaket.
The most likely class is slightly more dominant in the B HDM and even better separated
in the SW HDM (red). All maps show blue areas i.e., similar probabilities across the top
three most likely classes, on the slope. These results give a good first impression of spatial
uncertainty the RGB rasters but of limited value as a map product, due to their qualitative
nature. The values are useful, however, and could be worth transferring to a summary. The
RGB maps become more useful when viewed in GIS where the top three probability values
can be queried.
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Appendix C

Density plots summarising raster values for each of the uncertainty metrics are shown
in Figure A3. In analysing the density plots, we should remember that transition zones will
affect the results. For good HDMs, however, the transition zones should be quite tight so
we should expect relatively few pixels with low confidence (high CI and entropy) and the
majority of the map with high confidence (low CI and entropy). The general trends in our
plots indicate good performance with slight trends in the level of skew between models
(e.g., B and SW have generally more similar patterns).
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There are, nevertheless, some important, yet subtle differences as we look closer.
For instance, there is a secondary peak at around CombConf = 0.25 in all but the SW
model. This may be indicative of more instability away from the areas where all models
are uncertain (i.e., at class boundaries and on the slope).

In the CI plot, we see that the density of CI values for the N4k model are much more
uniform across all values, indicating that there is less distinction between certain and
uncertain areas across the map. The SW model shows the highest peak at low CI values,
although the B and baseline models are not far behind. Towards higher CI values, the SW
trails off quickest with the B model following closely. The Base model shows a secondary
peak at around 0.6 which seems likely to be related to the linear artefacts which often occur
at around this value (see Figure 11-CI results). The Shannon entropy map shows a very
similar shape for each of our HDMs, the Base model has the highest peak at moderately
low values, yet fewer occurrences of very low values < 0.3.

Whilst these overview density plots are a useful accompaniment to the respective
maps, it is also possible to generate density plots showing the behaviour of each uncertainty
index by class. These also offer useful information that translates the spatial uncertainty
from each map into class uncertainty summaries. Density plots for CombConf are presented
here in Figure A4, followed by a summary of the main characteristics by class in Table A1.
Equivalent plots for CI and entropy are shown in Figures A5 and A6. These plots reveal
important differences in the uncertainty value distributions across biotope classes.

We see that biotopes B, C, E, J, MM, W, and Y are dominated by low CombConf
values in all models. These are the same classes that got low balanced accuracies in our
non-spatial accuracy assessment (Figure 4) and several of them are among those with
the lowest number of available samples. Such analyses are useful for examining which
classes are weakest and should be candidates for reconsideration or further investigation—
e.g., potentially highlighting a lack of biological distinctness or a lack of distributional
correlation, with the variables being used in the models based on available samples. Based
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on our results, it seems likely that the combination of these effects gives rise to the most
uncertain biotopes, both in terms of classification and prediction. A low number of samples,
combined with relatively indistinct (and often diverse) community and/or intangible or
wide-ranging physical characteristics makes classification and prediction challenging and
results in high spatial uncertainty.
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Table A1. Summary of CombConf characteristics by class. ‘Problem’ classes are highlighted.

Biotope CombConf Density Plot Characteristics

A

Only the SW model performs well with high CombConf values
dominating. B model peaks at only moderately high values, N4k
shows a slight trend toward higher CombConf values while Base

model has peaks at both high and low CombConf.
B All models dominated by low CombConf values.
C All models dominated by low CombConf values.

D
Generally low CombConf values dominate, SW has a peak at
moderately low values. No model achieves high CombConf

values.
E All models dominated by low CombConf values

GG

All models skewed toward high CombConf values. B model
achieves the highest values. SW and N4k trends are similar. Base

model shows a slightly more even distribution including a
secondary peak at low values.

H
All models skewed toward high CombConf values. Base model

peaks at lower CombConf values than the other models.
Secondary peak at low values for all but N4k model.

I Multiple peaks in all models. Low to moderate confidence only.
J All models dominated by low CombConf values.

K
Skew only slightly right of centre indicating slight dominance of

moderately high confidence for all models but most values
between 0.25 and 0.75.

L
Skew to right indicating dominance of high CombConf values for

all models. Secondary peak at low values for Base and N4k
models.

MM All models dominated by low CombConf values.
V All models dominated by moderately low CombConf values.
W All models dominated by low CombConf values.

X

Multiple peaks for all models with low CombConf values
dominant. N4k model peaks in high CombConf but without
general trend towards high values. Base model peaks in low

values.
Y All models dominated by low CombConf values.

Z
Skew to right indicating dominance of high CombConf values for

all models. Slight secondary peak at low values for all but SW
model.

The usefulness of these density curves in the present study is primarily how they high-
light differences in the uncertainty characteristics per biotope from each of our four models.
Similar interpretations can be done for the CI and entropy plots (Figures A5 and A6).
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