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Abstract: Aquaculture produces most of the world’s seafood and is a valuable food source for an
increasing global population. Low trophic mesopelagic biomasses have the potential to sustainably
supplement aquafeed demands for increased seafood production. The present study is a theoretical
whole-chain feed and food safety assessment on ingredients from mesopelagic biomass and the
resulting farmed fish fed these ingredients, based on analysis of processed mesopelagic biomass.
Earlier theoretical estimations have indicated that several undesirable compounds (e.g., dioxins
and metals and fluoride) would exceed the legal maximum levels for feed and food safety. Our
measurements on processed mesopelagic biomasses show that only fluoride exceeds legal feed safety
limits. Due to high levels of fluoride in crustaceans, their catch proportion will dictate the fluoride
level in the whole biomass and can be highly variable. Processing factors are established that can be
used to estimate the levels of undesirables in mesopelagic aquafeed ingredients from highly variable
species biomass catches. Levels of most the studied undesirables (dioxins, PCBs, organochlorine
pesticides, brominated flame retardant, metals, metalloids) were generally low compared to aquafeed
ingredients based on pelagic fish. Using a feed-to-fillet aquaculture transfer model, the use of
mesopelagic processed aquafeed ingredients was estimated to reduce the level of dioxins and PCBs
by ~30% in farmed seafood such as Atlantic salmon.

Keywords: mesopelagic; contaminants; trace elements; arsenic; fluoride; organic pollutants; dioxins;
PCB; farmed seafood; feed safety; food safety

1. Introduction

Seafood from aquaculture is a valuable resource to meet the nutritional needs for
a growing global population [1–3]. Traditionally, aquaculture feed has relied on fish oil
and meal from wild caught pelagic fish (e.g., blue whiting (Micromesistius poutassou)) [4].
However, limited access to pelagic fish oil and fish meal has led to the search for alternative
feed ingredients [2,5–7]. Unexploited marine resources, preferentially from lower trophic
levels such as organisms from the mesopelagic zone [8], could supplement currently used
feed ingredients [9,10]. However, the use of low trophic marine biomasses for aquafeed
would depend on a sustainable harvest, and currently, little is known on the mesopelagic
stocks. Commercial harvesting of this biomass would require assessment in order to set
quotas that will not harm the marine ecosystem or the global CO2 budget and will thereby
not facilitate climate change [11,12].

Processed agricultural plant products (soybean, wheat, and rapeseed) have supplanted
a considerable fraction of pelagic fish oil and meal in aquafeeds [13]. However, the use of
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plant ingredients has introduced new risks to aquaculture (i.e., antinutrients, pesticides,
and mycotoxins) [2] and the sustainability of continued agricultural areal expansion to
produce plant protein and oils has been questioned [14]. Furthermore, the increased use of
plant products has reduced the content of marine nutrients in farmed seafood such as very
long chain n-3 poly unsaturated fatty acids and vitamin D and A, which are associated
with health-benefits [15–18]. On the other hand, the use of plant products has also reduced
the level of potential harmful environmental contaminants that follow marine aquafeed
ingredients such as persistent organic pollutants (POPs) including dioxins (PCDDs), furans
(PCDFs), dioxin-like polychlorinated biphenyls (DL-PCBs), organochlorine pesticides
(OCPs) and polybrominated diphenyl ethers (PBDE), as well as and metals and metalloids
such as arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) [2,19,20]. The suggested
use of mesopelagic marine resources in the now dominantly plant-based aquafeeds can
reintroduce marine nutrients to farmed seafood [21,22], but would also likely reintroduce
marine environmental contaminants [21]. Lipid and protein fractions (i.e., oil and meal),
processed from mixed mesopelagic biomasses, are the most likely nutrient resources for
formulated aquafeeds. Processing of mesopelagic catches into oil and meal alters the
level of the different chemical compound groups of undesirables [21,23]. Fat soluble
organic pollutants (i.e., PCDD/Fs, PCBs, PBDE) are likely to be up-concentrated in the
oil fraction while the metals and metalloids (i.e., As, Cd, Hg, Cd) would increase in the
meal fraction [21,23]. The fat-soluble POPs are known to readily biomagnify in an aquatic
food web resulting in higher levels in organisms at a higher trophic level [24]. Harvesting
mesopelagic biomass that contains lower trophic species could thus potentially lower the
POP loads in farmed seafood when mesopelagic oils are used instead of pelagic fish oils.

Commercial harvest of mesopelagic biomasses used to produce feed ingredients con-
tain different species such as jellyfish, krill, shrimps and mesopelagic fish, and the species
composition can vary widely among catches [9,10]. The different species compositions
of the catches partly explain the variation in metal levels among different hauls [9]. In
addition, as for pelagic fish species, a seasonal and geographic variation in the levels of
undesirables could be expected. The potential large variation in levels of undesirables
in mixed mesopelagic biomasses means that oil and meal produced from some catches
could exceed feed safety limits while for other catches not. For plant food products, pro-
cessing factors databases have been established [25], which are used to assess the level of
undesirables in the processed product compared to those in the harvested raw product
(i.e., rapeseed oil from rapeseed). In the processing of mesopelagic biomasses into feed
ingredients, such processing factors can be applied as a pro-active risk assessment tool in
assessing whether or not different mixed mesopelagic catches would produce oils or meals
that are in compliance with feed and food safety legislation.

The European Union (EU) has set maximum limits (MLs) for contaminants in animal
feeds and feed ingredients [26]. The EU feed legislation aims to control the level of
contaminants at the start of a food production chain, thus protecting consumer safety at
an early stage. As novel mesopelagic feed ingredients are being investigated for possible
implementation in seafood production [9,21], compliance with EU feed and food safety
risk assessment is important. In studies on mixed mesopelagic biomass, catches containing
mixtures of amphiphods had levels of cadmium above that allowed for feedstuffs. [9].
Other studies on individual mesopelagic species have provided theoretical calculations of
the expected levels of contaminants in processed oil and meal fractions [21]. These estimates
indicate high levels of undesirable trace elements such as and F in the protein fraction,
frequently exceeding the MLs for feed ingredients. Despite their lower trophic level, the oil
fraction of mesopelagic fish was estimated to have dioxins and furans (PCDD/Fs) levels
that were above the set MLs [21]. Recently, a new risk assessment has been made on
the tolerable weekly intakes (TWI) for PCDD/Fs+DL-PCBs in humans, which has been
lowered from 14 to 2 pg TEQ per kg bodyweight per week [27]. Food surveillance indicates
that most consumers have an intake of PCDD/Fs+DL-PCBs that exceeds the newly lowered
TWI [27]. Fatty fish, including Atlantic salmon (Salmo salar), are one of the main sources
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for PCDD/Fs exposure in the adult population [27]. New proposals have been made to
lower the MLs for PCDD/Fs+DL-PCBs in feed ingredients to reduce the load of these
contaminants in farmed food. New feed ingredients, including mesopelagic processed
ingredients, can alter the levels of PCDD/Fs+DL-PCBs in farmed seafood [19]. Feed-to-fillet
transfer models in aquaculture have been developed to predict PCDD/Fs+DL-PCB levels
in commercial farmed Atlantic salmon fillet when farmed on new feed ingredients [27,28].
Such models can thus aid a feed and food safety risk assessment when novel aquafeed
ingredients (i.e., mesopelagic oil of meal) are exploited for the farming of seafood.

This study aims to provide a whole-chain feed and food safety assessment of undesir-
ables in processed mesopelagic biomass catches, and in farmed seafood that is raised on
feed containing this processed biomass. These undesirables include trace elements such
as arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb); essential elements such as
selenium (Se); and organic persistent pollutants such as dioxins (PCDD/Fs) and dioxin-like
PCBs (DL-PCBs), non-dioxin-like PCBs (PCB6) polybrominated diphenyl ethers (PBDE-7),
and organochlorine pesticides (OCPs). The levels of the potentially harmful substances in
fishmeal and oil produced from mesopelagic biomass are compared to the levels found in
commercially produced feed containing pelagic biomass (which is currently used in salmon
aquaculture). Model predictions are made on the levels of PCDD/Fs+DL-PCBs in Atlantic
salmon when raised on mesopelagic-based feed versus commercial feed currently used.
The contaminant group of PCDD/Fs+DL-PCBs was selected as it is identified as a potential
food safety risk for fatty seafood, including farmed Atlantic salmon. The predictions are
based on earlier published and validated feed-to-fillet PCDD/Fs+DL-PCBs aquaculture
transfer models developed for commercially produced Atlantic salmon [27,28].

2. Material and Methods
2.1. Sampling
2.1.1. Biomasses Obtained from Commercial Mesopelagic Trawling

Experimental fishery for mesopelagic species was carried out in the Northern Atlantic
by the 62-m-long pelagic trawler “MS Birkeland”, September to November 2019. The
mesopelagic biomasses were thus obtained from one season and one general geographic
area. Trawls were conducted at seven stations. Samples from four of these trawls are
included in this study. Theses samples were collected at 60◦04′ N 03◦20′ W (station 2),
61◦27′ N 01◦55′ W (station 3), 62◦00′ N 03◦41′ W (station 6), and 59◦26′ N 03◦38′ W (station
7). The mean sampling depth of the trawl stations (±standard deviation) was 129 ± 30 m.
Once the catch was on board, a fraction of the catch was sorted out for species identification
and estimation of the catch composition. Mueller’s pearlside (Maurolicus muelleri) Northern
krill (M. norvegica), and helmet jellyfish (P. periphylla) were the most abundant species in
the catch and represented 40%, 0%, 60%; 100%, 0%, 0%; 91%, 0%, 8%; and 37%, 58%, 2%
in station 2, 3, 6 and 7, respectively. For biochemical analysis, representative samples of
unsorted raw material were immediately frozen at −20 ◦C.

2.1.2. Biological Material and Processing

Frozen raw material (either a mixture of Maurolicus muelleri and krill or pure Maurolicus
muelleri, see Section 2.1.1) was ground on a meat grinder immediately before use. A total of
1000 g ground raw material was added to a glass reactor with a heating jacket and overhead
stirring. A total of 2.5 g (corresponding to 500 ppm tocopherols) Grindox 1032 (a water-
dispersible, 20% mixed tocopherols blend in soybean oil and emulsifiers, Canisco Cultor,
Braband, Denmark) and 500 g tap water (to ensure homogenous mixing and heating)
were added. The mixture was heated to 85 ◦C with continuous stirring and kept at 85 ◦C
for 10 min. The mixture was pressed mechanically (tincture press) through a filter cloth
with a metal backing screen (not for all hauls—alternatively, the mixture was centrifuged
directly and the “press liquid” decanted from the “press cake”), and the press liquid was
centrifuged (20,000× g, 40 ◦C, 30 min). The supernatant was poured into a separatory
funnel while the remaining sediment was combined with the press cake and homogenized
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in a food processor. The aqueous phase (stick-water) and the oil were separated in the
separatory funnel. In the present study, a mass balance assessment was made in the
amount of press-cake, oil, and stick-water produced from 1000 g mixed mesopelagic
catch to which was added 500 g water. The mass balance allows investigation of the
distribution of undesirables between the fishmeal and oil from a mixed mesopelagic catch.
In conventional fishmeal production, the stick-water is concentrated and returned to the
press-cake before drying of the mass into a “whole meal” with less than 10% moisture. In
this laboratory study, this final step in meal production (stick-water returned to press-cake)
was not performed. However, the concentrations of undesirables that would be present in
a whole meal is calculated by adding the amounts found in the stick-water and press-cake.

2.1.3. Pelagic Fish Oils and Meals Currently Used in Aquafeeds

A total of 10 randomly selected pelagic fish oils and meals were sampled at seven
different aquafeed production plants in Norway. The samples were taken by the Norwegian
Food Safety Authority (NFSA) in the period of the January 15, 2019 until November 25,
2019, and analyzed by the Institute of Marine Research on behalf of the Norwegian Food
Safety Authority [29]. These commercially produced fish oils and meals are based on
pelagic fish species from the North-Atlantic Ocean, such as blue whiting (Micromesistius
poutassou), capelin (Mallotus villosus) and sandeel (Ammodytes tobianus). The mesopelagic
oils and meals and pelagic oils and meals were analyzed with the same analytical methods
(see below) [30].

2.2. Chemical Analysis

All methods are accredited by the Norwegian Accreditation Authority. Our laborato-
ries participated in ring-testing organized by the European reference laboratories for the
different chemical groups.

2.2.1. Trace Elements

Analyses of trace elements arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb),
selenium (Se), cobalt (Co), copper (Cu), zinc (Zn), manganese (Mn), iron (Fe) are described
in detail by Julshamn et al. [31]. Briefly, the samples were freeze-dried, homogenized, then
digested in nitric acid (69% w/w) before analysis by inductively coupled plasma mass
spectrometry (ICP-MS). The samples (~0.2 g) were digested in 2.0 mL of nitric acid, 130 mL
Milli-Q® water and 5 mL H2O2, in an ultrawave system (UltraWAVE, Milestone, Sorisole,
Italy) and loaded on an autosampler. The concentrations of As, Cd, Hg and Pb were
determined by ICP-MS (iCapQ ICP-MS, Thermo Scientific, Waltham, MA, USA) coupled to
an auto sampler (FAST SC-4Q DX, Elemental Scientific, Omaha, NE, USA). The ICP-MS was
tuned using a 1 ppb tuning solution B (Thermo Fisher, Waltham, MA, USA) in 2% HNO3
and 0.5% HCl. Data was processed with the Qtegra ICP-MS software (Thermo Scientific,
version 2.10, 2018). The method is accredited (NS-EN 17025) by use of certified reference
materials such as lobster hepatopancreas (TORT-3; National Research Council Canada,
Ottawa, Ontario, Canada) and oyster tissue (SMR1566b; National Institute of Standards
and Technology, Gaithersburg, MD, USA). The dry weight-based limit of quantification
(LOQd.w.) was set to 0.005 mg/kg for Cd and Hg, 0.010 mg/kg for As and Se, 0.030 mg/kg
for Pb and Mn, 0.1 mg/kg for Cu and Fe, and 0.5 mg/kg for Zn, with a standard sample
size. The method is accredited according to ISO-17025 for the elements As, Cd, Hg, Pb, Zn,
Se and Cu.

2.2.2. Fluoride

Total fluoride was analyzed according to Malde et al. [32]. The fluorine content in
0.25 or 0.50 g sample material was analysed with a selective ion electrode (Thermo Orion
ionpuls fluorine electrode, Orion 94-09, Beverly, MA, USA). The samples were dry-ashed
in a muffle furnace (CSF 1100, Carbolite Furnaces, Bamford, Sheffield, England) at 550 ◦C
with sodium hydroxide as an ashing aid. The dry-ashed samples were dissolved in distilled
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water (10 to 15 mL) and neutralized with hydrochloric acid and the dissolved samples
were adjusted to the optimal pH range for fluoride determination (pH 5.2 to 5.4). The
precision and accuracy of the method was assessed with certified reference material (i.e.,
oyster tissue, 1566a, NIST Gaithersburg, MD, USA).

2.2.3. Crude Fat

The crude fat content was determined gravimetrically in wet homogenates by extrac-
tion with 30% isopropanol in ethyl acetate. The extract was filtered, the solvent evaporated,
and the fat residue weighed. This method is accredited in accordance with ISO-EN 17025
and registered as a Norwegian Standard, NS 9402 [33].

2.2.4. Determination of Dioxins, Furans, Polychlorinated Biphenyls, Organochlorine
Pesticides, and Polybrominated Flame-Retardants

The methods have been validated by inter-laboratory tests using calibration materials,
and references to the results of the proficiency test, assurance procedures, and quantifi-
cation quality are given in Berntssen et al. [19]. The concentrations of dioxins and furans
(PCDD/Fs) and non-ortho PCBs, mono-ortho PCBs and PBDE were determined by using
high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS)
according to Berntssen et al. [34]. Briefly, the sample material was solvent-extracted by
pressure (n-hexane for all other substances and 80:20 dichloromethane:n-hexane for PBDE)
with a Dionex ASE 300 solvent extractor (Dionex, Sunyvale, CA, USA). For the online
cleanup of NDL-PCBs and PBDEs, acid-impregnated silica was added to the extraction
cell. Co-extracted fat was removed by adding concentrated sulfuric acid. Prior to extrac-
tion, surrogate internal standards were added (PBDE 139 EO-5100 for PBDEs, 13C labeled
EDF-4147, 4097, 5999, 6999, 7999, 8999, 9999-3-4, 9999 for PCDD/F, PCB-53 for NDL-PCBs,
and EC-4935, 4979, 4937, 4976-3, 4976, for DL-PCBs, Cambridge Isotope Laboratories,
Andover, MA, USA). For PCDD/F and DL-PCBs, extracts were purified using H2SO4 on
silica, multilayered silica, basic alumina and carbon columns, respectively (FMS, Waltham,
MA, USA; for solvent conditions, see [18]). The samples were concentrated by pressurized
evaporation (Turbovap II™ Zymark, Hopkinton, MA, USA). A 13C labeled performance
standards mixture (EC-4979 for DL-PCBs and EDF 5999 for PCDD/F, Cambridge Isotope
Laboratories, Andover, MA, USA) was used prior to analyses by HRGC/HRMS (MAT
95XL Thermo Finnigan, Bremen, Germany) using a fused silica capillary column (30 m
× 0.25 mm, i.d. and 0.25 µm film thickness, RTX-5SILMS, Restek, Bellefonte, PA, USA).
Quantification was performed according to the internal standard isotope dilution method
using congener-specific relative response factors (RRFs) determined from three-point cali-
bration standard runs (CS1–CS3, Cambridge Isotope Laboratories, Andover, MA, USA),
USEPA 1613 method [35]. Recovery values were between 78 and 110% and PCCD/F and
DL-PCBs values are expressed as pg upper bound WHO-TEQ g−1wet weight (w.w.) using
the WHO-TEFs from 2005. For OCPs, extracts were purified in an automated column
system (ASPEC™ XL4, Gilson, Winfield, PA, USA) with three sequential solid-phase ex-
traction (SPE) columns (Chem Elut™, BondElut® C18, and BondElut® Florisil columns, in
that order, Varian Inc., Palo Alto, CA, USA. For solvent conditions, see [19]). The levels of
dichlorodiphenyltrichloroethane (DDT) are expressed as the molecular weight-corrected
ortho- and para-forms of DDT and its metabolites dichlorodiphenyldichloroethylene (DDE)
and dichlorodiphenyldichloroethane (DDD). The levels of chlordane are the summation of
oxy-chlordane, trans-chlordane, and cis-chlordane. The levels of hexachlorocyclohexane
(HCH) are the summation of α, β, γ-HCH. The levels of dieldrin are the sum of aldrin and
dieldrin. Determination of indicator non-dioxin-like PCBs (NDL-PCBs) are expressed as the
summation of PCB-28, -52, -101, -138, -153, -180 (PCB-6). The NDL-PCBs and OCPs were
analyzed by gas chromatography/mass spectrometry (TRACE GC Ultra™/DSQ™ Single
Quadrupole GC/MS, Thermo Finnigan, Bremen, Germany) with a fused silica capillary
column (30 m × 25 mm i.d. 25 µm film thickness HP-5MS Column, Agilent J&W, Sanata
Clara, CA, USA). For PBDEs, the on-line purified extracts (by acid-impregnated silica
as a fat retainer in the accelerated solvent extractor extracts) were analyzed by gas chro-
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matography/mass spectrometry (TRACE GC Ultra™/DSQ™ Single Quadrupole GC/MS,
Thermo Finnigan, Bremen, Germany) equipped with an RTX-5MS capillary column (30 m×
0.25 mm i.d. 25 µm film thickness, Restek, Bellefonte, PA, USA). PBDE levels are expressed
as the summation of PBDE-28, -47, -99, -100, -153, -154, -183 (PBDE-7). Quantification was
according to the internal standard (IS) method using congener-specific RRFs from a three-
point linear congener-specific external standard curve relative to the internal surrogate
standard. Recovery was evaluated for each congener by spiking each sample matrix with
internal standards for all congeners at three levels. The recovery of NDL-PCBs and OCP
was between 85 and 110% and recovery for PBDE congeners was between 81 and 118%.
Samples were run in batches of 12, with one procedural blank, one in-house performance
evaluation standard (homogenized salmon fillet) and 10 samples with a duplicate of the
last sample. The limit of quantification was determined for each determination and con-
gener by using nine times the noise level (three times the limit of detection). The limit
of detection (LOD) was statistically estimated as the analyte concentration giving a peak
signal of three times the background noise from an internal-surrogate standard-spiked
procedural blank. The LOD was calculated using a software option for estimating the
signal-to-noise (S/N) ratio and referring this value to an S/N value of three. Trueness
was set to −2.0 ≤ z-score ≤ 2.0 and repeatability as RSD (%) > 10 and better by using
calibration material and spiked samples. The analytical methods have been validated
by inter-laboratory tests using calibration materials, references to the results of the profi-
ciency test, quantification quality, and assurance procedures given by Berntssen et al. [19].
The legislation for the PCDD/Fs+DL-PCBs in feed and food is based on the summation
of 29 different congeners expressed as upper bound (UB) values in which undetected
congeners are expressed as their limit of quantification (LOQ). When concentrations are
expressed as lower bound (LB) values, the congeners that are not detected are set zero.
As the concentrations for contaminant groups that consist of the summation of several
congeners (PCDD/Fs, DL-PCBs, PBDE-7, PCB-6, sum chlordane, sum HCH, sum DDT, sum
aldrin+dieldrin) would strongly depend on the number of congeners detected as well as
their matrix specific LOQ, all POP values are expressed as UB and LB in the present study.

2.3. Processing Factors

Processing factors (PF) are expressed as concentration in mesopelagic oil or meal
(WW) per concentration in the raw mesopelagic biomass (WW).

The processing factors were expressed as:

PF =
COil or meal (WW)

Cmesopelagic biomass (WW)

,

2.4. Predictions of PCDD/Fs+DL-PCBs in Atlantic Salmon Farmed on Mesopelagic Oil and Meal

A simple one-compartment toxicokinetic feed-to-fillet transfer model was used, as
published and validated earlier [19]. The transfer model is derived from a fish biomag-
nification model as described by Sijm et al. 1992 [36] and based on the congener specific
uptake rates (α, ng WHO2005-TEQs day−1) of the 29 different congeners of the PCDD/Fs
and DL-PCBs that are included in the legislation on dioxins and dioxin-like PCBs [27,28].
In addition to the uptake rates, the model includes elimination rates (K, day−1), growth
dilution (γ, % body weight day−1), feeding rate (F, %body weight day−1), and initial
concentration in the fish fillet (Cfish0, ng WHO-TEQs kg−1).

Cfish(t) =
α F t

K + γ
Cfeed

(
1− e−(K+γ)t

)
+ C−(K+γ)t

fish0

The model allows simulation of the long term (>one year) feed to-fillet transfer of
POPs in Atlantic salmon using realistic farming conditions such as feed intake and growth
rates, which determine final PCDD/Fs+DL-PCBs levels in farmed fish [19]. To simulate a
standard commercial production of Atlantic salmon over time (t), a growth rate of 0.64%
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day−1 and a feeding rate of 0.78% BW day−1 was used with a farming time of 13 months
with an expected market-sized weight of 4.5 kg [19]. The levels of PCDD/Fs+DL-PCBs
in mesopelagic or pelagic aquafeeds are based on the currently used salmon feed formu-
lation with marine oil inclusion of about 10% and marine protein inclusion of 15% [37].
PCDD/Fs+DL-PCBs in aquafeeds were based on the standard aquafeed formulation [37],
earlier analysed levels in plant-feed ingredients [19], and the level of PCDD/Fs and DL-
PCBs in mesopelagic and pelagic oil and meal as reported in this study (see above).

3. Results and Discussion
3.1. Essential Minerals

The levels of essential trace-elements in the mixed mesopelagic biomasses and pro-
cessed mesopelagic meal are shown in Table 1. Concentrations are presented on a dry
weight (DW) basis as the biomass water content varies among the different hauls. The
element levels in the meal are a mass-balance summation of the DW levels analyzed in
the press-cake and stick-water. All the water-soluble trace-elements were detected in the
stick-water, which contributed to the final levels in mesopelagic meal (meal = press-cake +
stick-water). Adding the stick water back to the press-cake increased the levels of F, Co,
Se, Mo with 39, 21, 15, and 14%, respectively, while stick-water contributed little (<2%) to
the final mesopelagic meal levels of Cu, Zn, Mn and Fe. In formulated aquafeeds, these
essential trace elements, besides F, are supplemented in the form of a mineral mixture
to cover the nutritional requirement of the farmed fish [18,29]. The natural background
levels of trace elements in processed mesopelagic meal were compared with the levels
analyzed in the monitoring program of commercial pelagic fish meal on the Norwegian
market [29] (Table 1). The processed mesopelagic meal has similar levels of essential trace-
elements as commercial pelagic fish meal on the Norwegian market, indicating that similar
mineral mixes can be used in aquafeeds based on mesopelagic-based meals compared to
conventional commercial meals. An exception is iron (Fe), of which lower levels were
found in the mesopelagic meal compared to the commercial pelagic meals. Iron is one of
the minerals commonly supplemented in the mineral mixture [38]. If mesopelagic meals
are used instead of conventional pelagic meals, an increase in Fe mineral supplementation
is needed if the level of this micronutrient is to be maintained in aquafeeds.

The MLs for undesirables in feed and feed ingredients are set on an 88% dry matter
basis and the levels in the mesopelagic meals are thus given for the same dry matter
content for comparison with legislative limits [39] (Table 1). For all essential trace elements
supplemented to aquafeeds (Fe, Zn, Cu, Mn, Co, Mo), the upper limits are set on the
final feeds and not feed ingredients through the Legislation on feed additives (EC) No
1831/2003). Fluoride (F) is an essential element which is not supplemented to aquafeeds,
and MLs are set for feed ingredients in addition to the final feeds. The level of F in
processed mesopelagic meals in the present study had a large variation, depending on the
relative amounts of krill in the mixed catches, with mean levels of 853 mg kg−1 (min.–max.
93–1804 mg kg−1). The mean F levels in the mixed mesopelagic meals are thus higher
than the ML set for F in feed materials of 500 mg kg−1 [40] (Table 1). The exoskeleton of
marine crustaceans are well-known to contain high F levels, causing concentrations in
mesopelagic catch crustaceans to vary from 2700 to 3700 mg kg−1 DW for species such
as Meganyctiphanes norvegica and 60 to 360 mg kg−1 DW for Periphylla, Eusergestes arcticus
and Pasiphaea spp [21]. The ML for feed ingredients could limit the use of two out of four
mesopelagic meals produced from the mixed mesopelagic catches in the present study.
However, the ML for feed ingredients based on marine crustaceans such as krill is much
higher and was set to 3000 mg kg−1 and none of the mesopelagic meals in this study
exceeded this limit [40]. It is unclear whether meal produced from mixed mesopelagic
biomass from the present study falls under the general ML for feed materials of animal
origin or ML for feed materials of marine crustaceans. Several studies with krill in farmed
fish species have showed that the F in krill or amphipods meals does not elevate the muscle
F level, and thus would not likely form a food safety risk [41]. However, in order to reduce
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the F load in krill meals for human consumption as well as aquafeed ingredients, several
approaches have been investigated, such as chemical extraction [42,43], deshelling [44,45],
or the use of calcium feeds supplement to reduce the bioavailability of F from krill meals
used in the aquafeeds [46]. Supplementation with Ca could alter the bioavailability of other
trace elements as Ca levels in aquafeeds are known to reduce the bioavailability of other
essential trace elements such as Zn [47] and Mg, and Fe [38].

Table 1. Concentrations of the essential trace elements, iron (Fe), selenium (Se), manganese (Mn),
zinc (Zn), copper (Cu), cobalt (Co), molybdenum (Mo), and fluoride (F) in mg kg−1 dry weight (DW)
(mean, (minimum-maximum), n = 4) in the raw mesopelagic biomass, the concentration in processed
mesopelagic meal (DW), commercial pelagic fish meal from the monitoring program (n = 9), and
mesopelagic meal expressed as 88% DW. For comparison, the maximum levels (ML) given in EU
Directive 2002/32/EC and maximum content given in the Register of Feed additives ((EC) 1831/2003)
are shown. * ML for marine crustaceans, ** feed for Salmonids.

Compound Processing Commercial
Samples Comparison to Legislation

Mesopelagic
Biomass

Mesopelagic
Meal

Pelagic
Fish Meal

Mesopelagic
Meal

88%DW

Feed
Material

Animal
Feed

Mean Mean Mean Mean

(min–max) (min–max) (min–max) (min–max) ML ML

Fe 46 80 171 70 750
(38–61) (70–94) (52–470) (62–82)

Se 2.3 2.7 2.5 2.6 0.7
(1.4–3.1) (2.1–3.9) (1.7–3.8) (2.1–3.8)

Mn 2.8 5.0 5.7 4.42 100
(1.8–3.5) (3.4–6.8) (2.5–10) (3.0–5.9)

Zn 35 63 68 55 180 **
(29–43) (57–70) (52–81) (50–62)

Cu 7.6 11 6.2 9.9 25
(2.5–18) (3.63–28) (2.6–26) (3.2–25)

Co 0.053 0.035 0.05 0.031 1
(0.035–0.074) (0–0.076) (0.02–0.08) (0–0.055)

Mo 0.15 0.15 0.23 0.13 2.5
(0–0.23) (0.02–0.23) (0.18–3.8) (0.018–0.20)

F 433 863 NA 853 500/3000 * 350
(17–1157) (92–1804) NA (92–1782)

3.2. Non-Essential Metals and Metalloids

The levels of non-essential metals and metalloids (As, Pb, Cd, Hg) in the mixed
mesopelagic biomasses and processed mesopelagic meal are given in Table 2. As for the
essential trace elements, stick-water contributed to the final mesopelagic levels of water-
soluble non-essential elements (As, Cd, Pb, Hg). Stick-water contributed to 38% of the As
and 14% of Hg, while stick-water contributed little (<2%) to the final levels of Cd and Pb.
None of these non-essential trace elements exceeded the ML for these undesirables in fish
meals (Table 2).
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Table 2. Concentrations of the trace elements, arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) in mg kg−1

dry weight (DW) (mean, (minimum–maximum), n = 4) in the raw mesopelagic biomass the concentration in processed
mesopelagic meal (DW), commercial pelagic fish meals (n = 9), and mesopelagic meal expressed as 88% DW. For comparison,
the maximum limits (ML) given in EU Directive 2002/32/EC is given for fish meals and animal feeds.

Processing Surveillance of
Commercial Samples Comparison to Legislation

Mesopelagic
Biomass

Mesopelagic
Meal Pelagic Fish Meal Mesopelagic

Meal Fish Meal Animal Feed

Mean Mean Mean 88%DW ML ML
(min–max) (min–max) (min–max)

As 9.6 9.7 7.3 8.6 25 10
(7.2–13) (5.8–12) (2.6–12) (5.1–10)

Cd 0.61 0.79 0.47 0.68 2 1
(0.1–1.3) (0.24–1.9) (0.12–1.0) (0.19–1.7)

Hg 0.028 0.05 0.13 0.05 0.5 0.2
(0.016–0.046) (0.016–0.15) (0.02–0.19) (0.014–0.13)

Pb 0.05 0.06 0.08 0.06 10 5
(0.016–0.046) (0–0.13) (<0.005–0.13) (0–0.12)

The Cd levels in mesopelagic meals were higher than in commercial pelagic fish meals
surveyed on the Norwegian market [29] (Table 2). Earlier studies on mixed mesopelagic
biomass intended for aquafeeds showed a large variation in Cd among different catches
from inner fjord systems or open waters off the south-west coast of Norway [9]. Especially
catches from open waters that contained amphipods resulted in cadmium levels exceeding
the MLs in feedstuffs [9]. However, these mixed mesopelagic biomasses were not processed
into meal as performed in this study [9]. Earlier studies on theoretical calculations on meal
produced from single mesopelagic species also reported relative high Cd levels [21,23]. In
general, internal organs such as liver, intestine, and especially kidney have natural high
background levels of Cd, which are often around three to fivefold higher than background
levels reported in muscle [48,49]. A relatively high viscera to muscle ratio for small (3
to 8 cm) mesopelagic fish species (i.e., Maurolicus muelleri and Benthosema glaciale [9,22])
compared to larger (13 to 31cm) pelagic fish species (i.e., Engraulis ringens or Micromesis-
tius poutassou [50,51]) could partly explain the higher Cd levels in meals produced from
mesopelagic fish compared to meals produced from pelagic fish. In contrast to Cd, Pb
is more equally distributed among the internal organs and muscle, while bone structure
carries most of the background Pb levels [52]. The Pb levels in mesopelagic meal are similar
to that of pelagic fish meal (Table 2). As opposed to Cd, the Hg levels in mesopelagic
meals were lower than those seen in commercial pelagic fish meals (Table 2). Mercury in
the marine ecosystem is mostly in the organic form (methylmercury) which is known to
biomagnify in the marine food web, resulting in increased levels in organisms at higher
trophic levels [53]. The biomagnification of methylmercury is reflected in the lower Hg
levels in the lower trophic mesopelagic meal compared to higher trophic pelagic meal.

Total As levels in the mesopelagic meals were in the same range as in commercial
pelagic fish meal (Table 2). The total As levels are 10- to 100-fold higher than the other
non-essential trace elements such as, for example, Cd, Pb, and Hg (Table 2). Marine fish
contain relatively high levels of total arsenic, which is mostly in organic forms, such as
arsenobetaine [54]. These organic As forms can be both water-soluble and lipid-soluble and
they have different extent in methylation and oxidation states [55]. Marine organisms have
a wider range of organic As forms compared to terrestrial samples, where the predominant
forms are inorganic As and simple methylated organic forms [56]. The toxicity of As
depends on the form, where inorganic As is known to be toxic, and the main As form
that is risk-assessed in feed and food products [57]. Within the EU, MLs are established
for total As in feed and feed ingredients, whereas the regulations in food are limited [58].



Foods 2021, 10, 1265 10 of 19

Organic forms such as arsenobetaine are considered to be non-toxic to humans [59]. The
ML for As in feed materials of marine origin are higher (25 mg/kg) than that of feed
materials of plant origin (2 and 4 mg/kg), and the justification for the higher MLs for
marine feed and feed materials is that organic As does not pose a risk because of its lower
toxicity compared to inorganic As [58,59]. However, an overview on recent studies on
arsenic species in marine products showed that some organoarsenicals or their metabolites
are cytotoxic, similar to inorganic arsenic, stressing the need for further development of
analytic methods and toxic assessment of these marine organic arsenic forms [60]. In the
present study, arsenic was the only trace element that was also detected at relatively high
levels in the processed mesopelagic oils, with median levels of 6.3 mg kg−1 (min.–max.
4.4–8.3 mg kg−1). The levels in oils are nearly the same as in the mesopelagic meals (median
6.0, min.–max. 5.1–7.8 mg kg−1) (Table 2). The high As levels in marine oils are dominantly
in organic arseno-lipid forms [61]. As opposed to arsenobetaine, less is known on their
potential toxicity compared to the known toxic inorganic arsenic forms [60]. However,
in vitro and model organism studies indicate the potential toxicity of arsenolipids and their
metabolites [62–64], and hence, the need for a full hazard identification of subclasses of
arsenolipids in order to assess ML for total As in marine oils.

3.3. Organic Pollutants (POPs) in Mesopelagic Oils and Meals

The level of POP in oils processed from mesopelagic biomasses are given in Table 3.
The European legislation for PCDD/Fs+DL-PCBs in feed and food is based on upper
bound (UB) values, which means that when contaminants are not detected, the limit of
quantification (LOQ) for the specific contaminant is presented. In Table 3, the lower bound
(LB) levels are also presented, in which undetectable contaminants are set to zero. Large
differences were seen between PCDD/Fs levels expressed as UB or LB (1.4 and 0.5 WHO-
TEQ pg g−1, respectively) (Table 3). The concentrations for PCDD/Fs and DL-PCBs are
based on the summation of 29 different congeners (seven for PCDD, 10 for PCDF, 12 for
DL-PCBs). The detection, or non-detection, of the 29 congeners will affect concentrations of
PCDD/Fs+DL-PCBs expressed as UB and LB [28]. In the present study, none of the 10 PCDF
congeners and only four out of seven PCDD congeners were detected in the mesopelagic
oils. The reported UB for total PCDD/F levels are thus a summation of 13 different LOQs
for the undetected congeners, accounting for 64% of the reported UB levels. Expressing
PCDD/Fs as UB would, hence, overestimate the actual level present. For DL-PBs, 16 out of
17 DL-PCB congeners were detected, and the difference between UB and LB DL-PCBs is
thus less than for PCDD/Fs (0.74 vs 0.73, WHO-TEQ pg g−1, respectively) (Table 3).
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Table 3. Concentrations of dioxins (PCDD/F), dioxin-like PCBs (DL-PCBs) (WHO-TEQ pg g-1 per DW), polybrominated
diphenyl ether mixtures (PBDEs) and organochlorine pesticides (ng g−1 per DW) (mean, minimum–maximum, n = 4)
in the raw mesopelagic biomass, the concentration in processed mesopelagic oil, commercial pelagic fish oils (n = 9).
Concentrations are expressed as upper-bound (UB) with undetected congeners expressed as limit of quantification or
lower-bound (LB) with undetected congeners expressed as zero. For comparison, the maximum residue level (ML) based
on upper-bound concentrations, given in EU Directive 2002/32/EC, are shown.

Compounds Processing Surveillance of
Commercial Samples Comparison to Legislation

Mesopelagic Oil Pelagic Fish Oil Fish Oil Animal Feed

Mean Mean
(min–max) (min–max) ML ML

Sum (PCDD+PCDF) (UB) 1.4 1.6 5.00 1.75
(1.1–1.6) (0.9–3.2)

Sum (PCDD+PCDF) (LB) 0.50
(0.28–0.71)

DL-PCBs (UB) 0.74 2.4
(0.39–0.90) (0.4–5.1)

DL-PCBs (LB) 0.73
(0.38–0.89)

Sum PCDD/F Dl-PCBs (UB) 2.1 4.0 20 6
(1.5–2.4) (1.0–8.0)

Sum PCDD/F Dl-PCBs (LB) 1.2
(0.66–1.6)

PCB-6 UB 8.9 37 175 40
(6.1–12) (3.0–79)

PCB-6 LB 8.9
(6.1–12)

PBDE (UB) 1.4 4.1
(0.83–2.3) (0.8–9.0)

PBDE(LB) 1.2
(0.54–2.3)

HCB (UB) 5.3 7.5 200 10
(3.3–7.0) (1.2–21)

HCB (LB) 5.33
(3.3–7.0)

sum DDT/E/D (UB) 8.4 40 500 50
(6.1–11) (9.0–73)

sum DDT/E/D (LB) 6.8
(3.8–11)

sum HCH (UB) 1.1 0.92
(1–1.3) (0.0–3.3)

sum HCH (LB) 0.65
(0.50–0.80)

sun aldrin dieldrin (UB) 8.3 8.50 100 20
(6.3–10) (0.6–15)

sun aldrin dieldrin (LB) 8.0
(5.2–10)

chlordane (UB) 2.9 5.90 50 20
(2.3–3.3) (1.5–17)

chlordane (LB) 0.26
(0–0.39)

Despite the relatively large contribution of analytical LOQ, the UB levels of PCDD/
F+DL-PCBs, PCB-6, PBDE-7, and OCP in mesopelagic oil were lower than those seen
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in commercial oils from pelagic fish used in Norwegian aquafeeds. For example, for all
POPs, the highest analyzed UB levels in the four mesopelagic oils were still lower than
the reported mean level for commercial pelagic fish oils (Table 3). The POPs are persistent
fat-soluble environmental pollutants that are globally dispersed and readily biomagnify in
the marine food web, with increasing levels at higher trophic levels [24]. The commercial
fish oils currently used are produced from pelagic fish species such as blue whiting, capelin
(Mallotus villosus) and sandeel (Ammodytes tobianus) and their higher trophic level compared
to the lower trophic mesopelagic biomasses harvested in this study (including jellyfish and
crustaceans) could at least partly explain the lower POP levels observed in mesopelagic
oil compared to pelagic fish oil. The levels of POPs in commercial pelagic fish oils vary
widely depending on season and geographical origin of the pelagic catch [65,66]. Fish
oils from pelagic fish species from the Pacific Ocean generally contain lower PCCD/F
levels and to a lesser degree lower DL-PCBs levels than fish oils produced from fish of
Atlantic Ocean origin [65,67]. Fish oils of Baltic sea origin contain relatively high levels of
both PCCD/Fs and DL-PCBs [67], and Baltic fish oils are often decontaminated in order to
comply with the MLs for PCDD/Fs and DL-PCBs in fish oils [34]. Furthermore, during
early spring, when the fat content decreases in feral fish, the concentration of PCDD/Fs
and PCBs increases in the extracted oil of blue whiting [66]. Additionally, for mesopelagic
biomasses, seasonal variations could be expected. For example, different feeding behavior
through seasons might affect the level of undesirables in Maurolicus muelleri. This species
mainly feeds on copepods in autumn and winter, whereas in early spring, diatoms are
incorporated in their feeding regime [68], and the type of prey is of importance in the metal
accumulation in marine fish [69]. However, in mixed catches, Olsen et al. [9] did not find a
clear relationship between the gross chemical composition and season of catch. The species
composition was the most important factor determining the chemical composition of the
catch [9]. Future surveillance of mesopelagic oils will reveal if there is significant seasonal
variation in undesirables. Earlier theoretical estimations on POP levels in mesopelagic
oils (based on analyzed levels in individual mesopelagic fish species) predicted PCDD/Fs
levels above the permitted levels for feed ingredients [21]. In contrast, the present study
showed that the levels of PCDD/Fs and DL-PCBs in produced mesopelagic oils were below
the set MLs for all POPs, and were in general lower than the pelagic fish oils currently used
in commercial salmon feeds.

Table 4 gives the levels of POPs in mesopelagic raw biomass and the thereof processed
meal. None of the fat-soluble POPs were detected in the stick-water as opposed to the
press-cake that still contained some rest-lipids (9 to 14% of WW) after the production of the
oil fraction. The POPs in stick-water are, hence, solely based on the analytical LOQ levels.
In order not to overestimate the POP levels in meal (press-cake+stick-water), stick-water LB
levels were used in the summation of press-cake+stick-water to give levels in mesopelagic
meals. As for the levels of POPs in the mesopelagic oils versus pelagic oils (Table 3), the
POP levels in mesopelagic meal were similarly lower than those observed in commercial
pelagic fish meals (Table 4). PCDD/Fs, chlordane, and aldrin+dieldrin were an exception
(Table 4): the levels were similar or higher than those observed in surveyed pelagic meals
(Table 4). However, the large difference in UB and LB levels (e.g., 0.49 and 0.01 WHO-TEQ
pg g−1 for PCDD/Fs, respectively) indicate that the UB levels are mostly driven by a
summation of LOQ rather than quantified levels [28].

3.4. Processing Factors

Table 5 lists the processing factors for POPs and trace elements in mesopelagic oil and
meal, expressing the up-concentration (factor > 1) or dilution (factor < 1) of these contami-
nants when mesopelagic mixed biomass catches (DW) are processed into mesopelagic oil
or meal aquafeed ingredients (median, min.–max, n = 4). As for the POPs concentrations in
oils (Table 3), the processing factors for POP were expressed as upper-bound (UB) or lower
bound (LB). Especially for contaminant groups where few congeners were detected (e.g.,
sum PCDD/Fs and sum DDT), a large difference in UB or LB processing factors was seen
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as opposed to the processing factors for contaminants where all congeners were detected
(e.g., DL-PCBs and PCB-6).

Table 4. Concentrations of dioxins (PCDD/F), dioxin-like PCBs (DL-PCBs) (WHO-TEQ pg g−1 per DW), polybrominated
diphenyl ether mixtures (PBDEs) and organochlorine pesticides (ng g−1 per DW) (mean, minimum-maximum, n = 4) in the
raw mesopelagic biomass, the concentration in processed mesopelagic meal (DW), surveyed commercial pelagic fish meals
(n = 9), and mesopelagic meal expressed as 88% DW. Concentrations are expressed as upper-bound (UB) with none detected
congeners expressed as limit of quantification or lower-bound (LB) with undetected congeners expressed as zero. For
comparison, the maximum limit (ML) based on upper-bound concentrations, given in EU Directive 2002/32/EC are shown.

Compound. Processing
Surveillance of

Commercial
Samples

Comparison to Legislation

Mesopelagic
Biomass

Mesopelagic
Meal

Pelagic Fish
Meal

Mesopelagic
Meal

88% DW
Fish Meal Animal

Feed

Mean Mean Mean
(min–max) (min–max) (min–max) ML ML

Sum (PCDD+PCDF) (UB) 0.64 0.49 0.33 0.43 1.25 1.75
(0.49–0.80) (0.38–0.55) (0.26–0.42) (0.39–0.48)

Sum (PCDD+PCDF) (LB) 0.11 0.01 0.01
(0.05–0.17) (0–0.04) (0–0.02)

DL-PCBs (UB) 0.19 0.13 0.50 0.12
(0.11–0.29) (0.08–0.18) (0.08–0.8) (0.07–0.15)

DL-PCBs (LB) 0.19 0.022 0.021
(0.11–0.29) (0.001–0.06) (0–0.059)

Sum PCDD/Fs+DL-PCBs (UB) 0.83 0.64 0.80 0.54 4 6
(0.64–1.0) 0.46–0.73 (0.4–1.2) (0.41–0.64)

Sum PCDD/Fs+DL-PCBs (LB) 0.3 0.10 0.089
(0.16–0.42) (0.01–0.22) (0–0.1)

PCB-6 UB 2.4 2.2 4.7 2.0 30 40
(1.7–3.7) (0.85–1.6) (0.6–8.7) (1.3–2.8)

PCB-6 LB 2.4 1.7 1.5
(1.6–3.7) (0.86–3.0) (0.75–2.6)

PBDE (UB) 0.33 0.48 0.52 0.42
(0.24–0.48) (0.45–0.54) (0.06–1.0) (0.40–0.47)

PBDE(LB) 0.26 0.06 0.05
(0.12–0.43) (0–0.23) (0–0.20)

HCB (UB) 1.6 1.4 2.4 1.2 10 10
(1.3–2.2) (1.0–1.8) (1.2–3.3) (0.91–1.6)

HCB (LB) 1.6 1.4 1.2
(1.3–2.2) (1.4–1.8) (0.91–1.6)

Sum DDT/E/D (UB) 3.4 1.8 6.8 1.6 50 50
(2.7–4.2) (1.0–3.5) (0.6–13.3) (0.91–3.1)

Sum DDT/E/D (LB) 1.1 1.2 1.1
(0.94–2.8) (0.62–2.3) (0.55–2.1)

Sum HCH (UB) 2.4 1.4 1.2
(1.6–3.5) (1.3–1.5) (1.1–1.3

Sum HCH (LB) 0.16 0.16 0.14
(0–0.26) (0.10–0.21) (0.09–0.18)

Sum aldrin+dieldrin (UB) 2.2 1.8 1.3 1.6 10 20
(1.2–4.2) (0.68–2.9) (0.2–2.0) (0.60–2.4)

Sum aldrin+dieldrin (LB) 1.6 0.8 0.69
(0.0–3.3) (0–1.1) (0–1.1)

Chlordane (UB) 4.3 1.8 1.6 1.6 20 20
(3.8–4.9) (1.7–2.0) (0.5–2.6) (1.5–1.8)

Chlordane (LB) 0.25 0.19 0.17
(0–0.99) (0–0.78) (0–0.69)
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Table 5. Processing factors (ratio of wet weight-based contaminant concentrations in raw mesopelagic biomass to produced
oil or meal on dry weight (DW) basis) of dioxins (PCDD/F), dioxin-like PCBs (DL-PCBs) (WHO-TEQ pg g−1 DW),
polybrominated diphenyl ether mixtures (PBDEs), organochlorine pesticides, and the elements arsenic (As), cadmium (Cd),
mercury (Hg), and lead (Pb) (mean, minimum–maximum, n = 4) showing up-concentration or dilution during processing.

Oil Meal Oil Meal

Mean Mean Mean Mean

(min–max) (min–max) (min–max) (min–max)

Sum (PCDD+PCDF) (UB) 2.2 1.3 sum aldrin dieldrin (UB) 3.8 0.7
(2.0–2.3) (1.2–1.6) (2.5–5.3) (0.6–0.8)

Sum (PCDD+PCDF) (LB) 4.5 0.2 sum aldrin dieldrin (LB) 5.1 0.6
(4.0–5.5) (0.0–0.3) (3.0–5.6) (0.5–0.8)

DL-PCBs (UB) 3.9 0.7 sum chlordane (UB) 0.7 0.6
(3.1–3.4) (0.6–0.8) (0.6–0.8) (0.6–0.7)

DL-PCBs (LB) 3.9 0.4 sum chlordane (LB) 1.1 0.6
(3.1–3.4) (0.05–0.6) (0.4–1.3) (0.5–0.7)

Sum PCDD/F DL-PCBs (UB) 2.6 1.2 As 0.6 0.6
(2.3–2.9) (1.0–1.5) (0.6–0.7) (0.5–0.8)

Sum PCDD/F DL-PCBs (LB) 4.1 0.3 Cd 1.1
(3.4–4.4) (0.05–0.5) (0.8–1.5)

PCB-6 UB 3.6 0.9 Hg 1.6
(3.3–3.7) (0.7–1.0) (1.5–2.0)

PCB-6 LB 3.6 0.7 Fe 1.8
(3.3–3.8) (0.5–0.8) (1.5–1.8)

PBDE (UB) 4.2 1.5 Se 1.0
(3.5–4.8) (1.1–1.9) (0.8–1.2)

PBDE(LB) 4.7 0.2 Mn 1.8
(4.5–5.3) (0–0.5) (1.8–1.9)

HCB (UB) 3.1 0.8 Zn 1.8
(2.5–3.3) (0.7–0.9) (1.6–1.9)

HCB (LB) 3.1 0.8 Cu 1.5
(2.5–3.3) (0.7–0.9) (1.5–1.6)

Sum DDT/E/D (UB) 2.5 0.8 Co 0.3
(2.3–2.6) (0.7–0.9) (0.0–1.0)

Sum DDT/E/D (LB) 4.4 0.5 Mo 1.2
(4.0–4.9) (0.4–0.8) (0.5–2.0)

Sum HCH (UB) 0.5 1.0 F 1.2
(0.4–0.6) (0.8–1.2) (1.1–4.6)

Sum HCH (LB) 4.1 0.6
(3.0–4.7) (0.4–0.8)

The highest processing factors for POPs in the production of mesopelagic oils were
seen for PCDD/Fs+DL-PCBs, PCB-6, PBDE, HCB, HCH and sum aldrin dieldrin (~4 to 5),
while chlordane had lower processing factors (~1) (Table 5). The processing factors for POPs
in mesopelagic meal are lower compared to oil varying from ~0.7 (PCB-6) to ~0.2 (PBDE-7
and PCDD/Fs). For trace elements, the processing factors for producing mesopelagic meal
varied from ~1 to 2 (Table 5). Fluoride was also the trace element with the highest variation
in processing factors (min.–max. 1–5), which strongly depends on the F level in the raw
biomass and, hence, the number of crustaceans in the marine mesopelagic mixed biomass
catch. The processing factors for F can be used to predict the F levels in mesopelagic meals
when the catch contains a relative high portion of krill. Arsenic was the only trace element
that was transferred from mesopelagic biomass to oil. The processing factor of ~0.6 reflects
the relatively high presence of arsenolipids in the mesopelagic biomass, which is similar for
what is reported for pelagic fish [61], thus highlighting the need for analytical identification
and toxicological assessment of these marine As forms [62–64].
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3.5. Predicting Levels of PCDD/F+DL-PCBs in Farmed Seafood Raised on Mesopelagic Oils

Recently, a new risk assessment has been performed for animal and human health
related to the presence of PCDD/Fs and DL-PCBs in feed and food [27]. Based on new
risk assessment on the fertility of young men following pre- and postnatal PCDD/Fs and
DL-PCBs exposure, the tolerable weekly intake (TWI) has been lowered from to 14 to 2 pg
TEQ/kg bw/week [27]. With occurrence and consumption data from European countries,
the estimated mean and high PCDD/Fs and DL-PCBs intake considerably exceeded the
newly established TWI. Fatty fish is one of the main contributors, in addition to dairy
products, to the total dietary intake of PCDD/Fs and DL-PCBs among the European
consumers [27]. Following these new intake recommendations, action has also been
initiated to re-evaluate the ML for PCDD/Fs+DL-PCBs in oils and meal used in animal
feeds, in order to lower the PCDD/Fs+DL-PCBs levels in farmed seafood. The lower POP
loads in mesopelagic oils compared to pelagic oil are likely to give farmed seafood with
lower levels of POPs in the fillets. Validated toxicokinetic feed-to-fillet transfer models
have been developed for the aquaculture of seafood such as Atlantic salmon, enabling the
prediction of fillet PCDD/F and DL-PCBs concentrations from known feed concentrations
based on the congener specific uptake and elimination rates [27,28]. In addition, these
models include variations in aquacultural factors such as growth and feed intake, which are
important additional factors in determining the final PCDD/F+DL-PCBs levels in farmed
seafood [27,28]. Using these earlier published transfer models, fillet PCDD/Fs+DL-PCBs
levels predictions were made when mesopelagic oils are being used instead of pelagic fish
oils. Input data included a realistic commercial feed intake and growth rates [28] and levels
of PCDD/Fs+DL-PCBs in mesopelagic or pelagic oils (Table 3). For pelagic or mesopelagic
oils, an aquafeed formulation level of 10% was used as is currently used in Norwegian
salmon feed [37]. Model predicted fillet levels for salmon reared on aquafeeds based on
commercial pelagic oil levels (Table 3) was 0.54 WHO-TEQ pg g−1, which is similar to
the levels currently reported in the fillets of commercially produced Atlantic salmon in
Norway (0.52 WHO-TEQ pg g−1 ww). When replacing pelagic oils with mesopelagic oils in
a similar feed formulation, the predicted farmed Atlantic salmon fillet levels were reduced
to 0.39 WHO-TEQ pg g−1 ww. Although the PCDD/Fs+DL-PCBs levels in mesopelagic oils
were nearly half (~50%) of the levels in pelagic oils, the use of mesopelagic oil in salmon
farming only reduced the fillet levels by ~30%, because other feed ingredients such as plant
oils and fish meal also contribute to the PCDD/Fs+DL-PCBs load in the aquafeeds [28].

4. Conclusions

The present study provides a whole-chain feed and food safety assessment of mesopelagic
biomasses processed into feed materials and used in the farming of seafood. The study
showed that mesopelagic oil processed from different commercial mixed mesopelagic
catches had levels of POPs which were in general lower than those observed in commercial
pelagic fish oils currently used in fish feeds in Norway. All reported levels were under the
set EU MLs for these undesirables in aquafeed oils. For the trace elements, Cd had a relative
high level compared to pelagic fish meals but not exceeding the set MLs in fish meals.
Arsenic levels were similarly high in mesopelagic biomass and in the produced meal and
oil (as was found for pelagic fish oils and meals). The total As for meals was under the MLs
set for fish meals and oils used in fish feeds. There is a need for analytical identification
and toxicological assessment of organic As forms, including arsenolipids present in marine
oils. Fluoride was the only trace element that exceeded the general ML for feed ingredients,
but the specific ML for feed ingredients produced from crustaceans was not exceeded.
There was a large variation in the F level in the mixed biomass depending on the fraction
of marine crustaceans (i.e., krill) present in the catch. The study provides processing factors
that can be used to predict levels of POPs, metals and metalloids in oils and meals produced
from mixed mesopelagic biomass catch. The F processing factor can be used to estimate
the maximum fraction of krill that can be included to produce meal with an acceptable F
concentration. In the present study, only mesopelagic biomasses from one geographic area
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(north-east Atlantic) and one season (fall-winter) was processed. As for pelagic oils and
meals, more information is needed on regional and seasonal variations of contaminants
in mesopelagic produced feed ingredients. The use of mesopelagic oils instead of pelagic
oils is likely to lower the PCDD/Fs+DL-PCBs load in the fillets of farmed fatty seafood
such as Atlantic salmon by 30%. Despite the apparent low risk for feed or food safety of
processed mesopelagic biomasses to be used in aquaculture, more knowledge is needed
on the mesopelagic stocks and their dynamics and how they contribute to the global CO2
budget. A commercial harvesting would require proper integrated stock assessments in
order to fish at a sustainable level not harming the marine ecosystem or the global CO2
budget and not facilitate climate change [12].
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