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Potential sources of bias in the climate sensitivities of fish
otolith biochronologies
Szymon Smoliński, John Morrongiello, Peter van der Sleen, Bryan A. Black, and Steven E. Campana

Abstract: Analysis of growth increments in the hard parts of animals (e.g., fish otoliths) can be used to assess how organisms
respond to variability in environmental conditions. In this study, mixed-effects models were applied to otolith data simulated for
two hypothetical fish populations with assumed biological parameters and known growth response to environmental variabil-
ity. Our objective was to assess the sensitivity of environment–growth relationships derived from otolith biochronologies when
challenged with a range of realistic ageing errors and sampling regimes. We found that the development of a robust biochronol-
ogy and the precision of environmental effect estimates can be seriously hampered by insufficient sample size. Moreover, the
introduction of even moderate ageing error into the data can cause substantial underestimation of environmental sources of
growth variation. This underestimation diminished our capacity to correctly quantify the known environment–growth relation-
ship and more generally will lead to overly conservative conclusions concerning the growth response to environmental change.
Careful study design, reduction of ageing errors, and large sample sizes are critical prerequisites if robust inferences are to be
made from biochronological data.

Résumé : L’analyse des incréments de croissance préservés dans les parties dures d’animaux (comme les otolites de poissons)
peut être utilisée pour évaluer les réactions des organismes aux variations des conditions ambiantes. Des modèles à effets mixtes
ont été appliqués à des données d’otolites simulées pour deux populations de poissons hypothétiques en intégrant des
paramètres biologiques présumés et une réaction connue de la croissance à la variabilité des conditions ambiantes. L’objectif
consistait à évaluer la sensibilité des relations entre le milieu et la croissance obtenues de biochronologies reposant sur les
otolites étant donnée une fourchette d’erreurs réalistes de détermination de l’âge et de régimes d’échantillonnage. Nous
constatons qu’un échantillon trop petit peut sérieusement entraver l’élaboration d’une biochronologie robuste et limiter la
précision des estimations des effets du milieu ambiant. L’introduction dans les données d’erreurs ne serait-ce que modérées de
détermination de l’âge peut en outre entraîner une sous-estimation considérable des sources ambiantes de variation de la
croissance. Cette sous-estimation réduit notre capacité de quantifier correctement la relation milieu-croissance connue et, plus
généralement, se traduira par des conclusions trop modérées concernant la réaction de la croissance à des changements des
conditions ambiantes. Une méthodologie judicieuse, la réduction des erreurs de détermination de l’âge et des échantillons de
grande taille sont des conditions préalables essentielles à l’établissement d’inférences robustes à partir de données bio-
chronologiques. [Traduit par la Rédaction]

Introduction
Otoliths are calcified structures located in the inner ear of fish

that commonly show growth bands corresponding to daily, sea-
sonal, or annual growth patterns (Campana and Thorrold 2001).
For many fish species, otolith size is highly correlated with fish
size (e.g., Harvey et al. 2000); therefore, the width of an increment
can be used as a proxy of somatic growth and reflect individual
responses to environmental variability (Morrongiello et al. 2011).
The somatic growth changes estimated with such a biochrono-
logical approach integrate the direct and indirect impacts of en-
vironmental conditions on individual fish over time (Rountrey
et al. 2014). Somatic growth rate is an important driver of popula-
tion dynamics (Smoliński 2019), as it affects an individual’s size
and age at maturity (Heino et al. 2002; Uusi-Heikkilä et al. 2015), its
reproductive output (Barneche et al. 2018), and size-dependent

processes such as recruitment, predation, resource acquisition,
and competition (Bergenius et al. 2002; Post 2003). Understanding
the drivers of growth variability can therefore inform the sustain-
able management of harvested stocks (Whitten et al. 2013; Stawitz
and Essington 2019).

More than 800 000 otoliths are collected worldwide annually
(Campana and Thorrold 2001), many of which are subsequently
stored in the archives of fishery institutes. These archives thus
present an enormous source of material for sclerochronological
studies on fish growth across a wide range of spatial and temporal
scales (Morrongiello et al. 2012). Traditionally, most studies in
fishery science focused on the back-calculation of body size made
possible by measurements of increment widths in fish otoliths
(Campana 1990; Francis 1990). More recently, advances in analyt-
ical techniques (Black et al. 2005; Morrongiello and Thresher 2015)
have yielded an increasing number of studies focusing on the
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environmental drivers of year-to-year variability in fish growth.
These studies generally aim to extract population-wide estimates
of temporal growth variability from the available otolith collec-
tion and subsequently relate this to variability in the environment
(e.g., Black et al. 2013; Morrongiello et al. 2019; Smoliński and
Mirny 2017; van der Sleen et al. 2018).

Generating accurate predictions of how fish respond to differ-
ent scenarios of environmental change (e.g., climate change and
fishing pressures) can enhance our ability to manage marine re-
sources (Hoegh-Guldberg and Bruno 2010). Despite the wide avail-
ability of biological materials, the predictive potential of otolith
biochronologies remains largely untapped (Morrongiello et al.
2012; Barrow et al. 2018). Since most of the studies in the field of
otolith biochronology are based on archived materials, decisions
regarding sample size and individual otolith selection affect the
general robustness of the analysis. Moreover, it has been sug-
gested that some commonly used sampling strategies (e.g., selec-
tion of oldest individuals) may bias ecological inferences that are
based on the otolith increment analyses (Morrongiello et al. 2012).
Ageing accuracy and precision are also a challenge in otolith-
based studies and can affect ecological inferences (Campana 2001).
Errors caused by falsely added or missed increments can propa-
gate back through time and eliminate high-frequency variability
in a time series. This reduced variability can prevent the identifi-
cation of environmental effects on organisms’ growth (Black et al.
2016), which ultimately can lead to incorrect conclusions concern-
ing a species’ vulnerability to environmental change (Rowland
et al. 2011). Simulation studies offer great potential to evaluate the
effects of sample size, sampling strategy, and underlying mea-
surement errors, as well as their interactions, on the statistical
power of biochronological inferences.

Here, we applied a mixed-effects modeling framework (Weisberg
et al. 2010; Morrongiello and Thresher 2015) to analyze simulated
otolith-based growth data from two hypothetical species with as-
sumed underlying biological parameters (i.e., overall mean an-
nual growth, coefficients of age and environmental effects, and
intra-individual covariance structures). We assessed the sensitiv-
ity of these models to a series of scenarios where we imposed
ageing error and alternate sampling regimes. We hypothesized
that our ability to robustly detect the true growth response to
environmental variability would be most sensitive to ageing er-
rors, but that large sample size could partly ameliorate the im-
pacts of these errors, at least at lower-frequency time scales. We
conclude with recommendations for the analysis of otolith
growth chronologies in future studies.

Materials and methods

Simulation of otolith growth data
A simplified mixed-effects model with a random slope and in-

tercept for age was assumed for each fish and used to model
growth from otolith data:

(1)

yij � �0 � �i
F � �Axij � bAi

F xij � �Exij � �ij

��i
F

bAi
F � � N(0, �i), �ij � N(0, �2)

where yij is the annual otolith growth y for fish i at age j; �0 is the
overall mean annual growth intercept; �i

F is a random intrinsic
effect for fish i; �A is a coefficient for the fixed effect age; bAi

F is a
random slope for age for fish i, correlated with �i

F; �E is a coeffi-
cient for the fixed environmental effect, � is the covariance ma-
trix between random intercept and random slope, and � is

assumed to be independent errors with mean zero and common
variance �2 (Morrongiello and Thresher 2015).

We used the mean annual sea surface temperature for south-
western Icelandic waters (60°N–65°N, 27°W–17°W) from the Had-
ISST model (Rayner et al. 2003) as the environmental variable
influencing fish growth. This allowed us to explore growth re-
sponses to a time series with typical climatic variance and auto-
correlation structures (Fig. 1a). The age distribution for the species
considered relatively short-lived (Fig. 1b) reflected catch numbers-
at-age of Icelandic cod (Gadus morhua) for the period 1955–2017
(ICES 2018). Age of the second hypothetical species was assumed
to be uniformly distributed between 91 and 100 years (Fig. 1e). The
latter was intended to simulate sampling focused on the collec-
tion of old individuals from a population of a relatively long-lived
species (e.g., from the family Trachichthyidae; Thresher et al.
2007, 2014). We assumed stationary (remaining the same across
years) age distributions for both species.

Parameter values for the fixed and random effects in the simu-
lation were obtained from the mixed-effects model (eq. 1) fitted to
real otolith growth data from the Icelandic cod stock (S. Smoliński, un-
published data; Table 1). The same parameters were used for both
species to make simulation results more comparable. A negative
effect of age on annual growth was simulated, which is typical for
most fish species and often dominates the otolith growth patterns
(Figs. 1c, 1f). The magnitude of the environmental effect was set to
be �13% of the age effect (Figs. 1d, 1g), consistent with the value
observed in an informal review of scientific studies in which
mixed-effects modeling of otolith growth data was applied (see
online Supplementary materials for the list of publications1). The
simulated data set included 500 individuals caught per year
for the period 1901–2000 for the short-lived species (Fig. 1h) and
200 individuals caught per year for the period 1981–2000 for the
long-lived species (Fig. 1i). The data for the long-lived species in-
cluded more observations per individual (annual growth incre-
ments), and therefore the number of individuals was limited due
to computational costs.

Simulation of otolith ageing errors and different sampling
designs

Five scenarios of ageing error were introduced to each species’
growth data to reflect different degrees of accuracy and precision
in the ageing methods. The age of all fish used in the “perfectly
aged” scenario was correct, and therefore all increments were
correctly dated. Age error matrices for the remaining four scenar-
ios were simulated following McBride (2015). In the “no bias” sce-
nario, random error (without systematic bias) was introduced by
adding to the true age a normally distributed error with mean = 0
and standard deviation = 0.1 of the true age; values were rounded
to the integer. This resulted in an average coefficient of variation
(CV) between the interpreted and the true age of 4.26% for the
short-lived and 5.71% for the long-lived species. The “bias (–1)”
scenario reflected consistent underestimation of age by an average of
1 year. In this case, a normally distributed error with mean = –1
and standard deviation = 0.1 of the true age was added (CV =
24.58% for short-lived and CV = 5.86% for long-lived species). The
estimated age in the “bias (–10%)” scenario was 10% less than the
true age, and a normally distributed error was added with mean =
0 and standard deviation = 0.1 of the true age (CV = 7.72% for
short-lived and CV = 9.47% for long-lived species). Two types of
biases were combined for the “bias (+1, –10%)” scenario by adding
normally distributed error (mean = 1 and standard deviation = 0.1
of the true age) and subtracting 10% of the true age (CV = 11.19% for
short-lived and CV = 8.86% for long-lived species; Fig. 2). For the
incorrectly aged individuals under different ageing error scenar-
ios, the overestimation of age in the individual time series of

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2019-0450.
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Fig. 1. Visualization of the data used in the study: (a) time series of mean annual sea surface temperature for the area 60°N–65°N, 27°W–17°W
from the HadISST model, (b, e) assumed static fish population age structures, where AAC is age at capture, (c, f) simulated annual increment
measurements, (d, g) interaction plot of simulated mean annual growth in relation to age and the environmental variable, (h, i) temporal
range of simulated annual increment time series for short-lived (b, c, d, h) and long-lived (e, f, g, i) species.

1554 Can. J. Fish. Aquat. Sci. Vol. 77, 2020

Published by NRC Research Press

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

FI
SK

E
R

ID
IR

E
K

T
O

R
A

T
E

T
 o

n 
03

/2
5/

21
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 



otolith growth was simulated by the addition of false rings that
split a randomly chosen annual increment into two. Underestima-
tion of age was simulated by combining two randomly chosen
neighboring annual increments into one. Therefore, all incre-
ments prior to the introduced error were incorrectly dated.

A series of sampling regimes were applied to the simulated data
sets. First, we subsampled 1, 5, 10, 20, or 50 individuals per collec-
tion year. The ageing error introduction and subsampling were
repeated 1000 times for each combination of our five ageing error
schemes and five sampling regimes. In total, this simulation re-
sulted in 25 000 data sets per species.

Many otolith collections are composed of sporadically collected
samples. Hence, it is appealing to select older individuals for fur-
ther analysis, as their longevity helps to maximize the length of
the biochronology and enlarge the number of observations (incre-
ment measurements). In the absence of cross-dating, such sam-
pling may, however, be associated with a greater age reading error
(see Fig. 2a). We explored the impact of this possibility only for the
short-lived species by sampling 10 individuals from different age
groups, ranging from 3 to 10 years (Fig. 3). This simulation was
repeated 1000 times for five ageing error schemes and all possible
ranges of age groups (36 combinations), resulting in 180 000 data
sets in total. We omitted similar tests for the long-lived species
due to the expected low differences in the ageing errors within
the simulated age ranges (91–100 years) and the high computa-
tional and data storage cost.

Evaluation of model performance
Two separate linear mixed-effects models were fitted to each data

set. The first model (M1) followed eq. 1. Distributions of 1000 parameter
estimates from independent simulation runs of M1 were visual-
ized, and the variance of these estimates and root mean squared
error (RMSE, with “true” parameter as reference) were calculated
to assess accuracy and precision.

The fixed effect of the environmental factor was excluded from
the second model (M2) and replaced by an additional year random
effect. The following formula was used for M2:

(2)

yijk � �0 � �i
F � �k

Y � �Axij � bAi
F xij � �ij

��i
F

bAi
F � � N(0, �i), �k

Y � N�0, �Y
2�, �ij � N(0, �2)

where yijk is annual growth y for fish i at age j from year k, and �k
Y

is a random extrinsic environmental effect for year k (intercept).
Other terms are consistent with those presented in eq. 1.

When the fixed environmental effect coefficient is excluded
from the model (as in M2), random effects of year reflect interan-
nual changes in the mean fish growth associated with pooled
extrinsic sources of variation, after accounting for intrinsic fac-

tors (Weisberg et al. 2010; Morrongiello and Thresher 2015). These
estimates of random effects of year are treated as a biochronology,
which is often of primary interest to ecologists. Best linear unbi-
ased predictors (BLUPs) for effects of year were extracted from M2
to obtain temporally resolved model estimates of pooled environ-
mental effects on fish growth. This allowed us to investigate co-
variance between biochronological and environmental signals
with cross-wavelet analysis. Wavelet transforms are often used for
analyzing a time series characterized by different power at differ-
ent frequencies. Cross-wavelet coherence analyses are used for
detecting covarying patterns between two time series both across
time and frequencies. The cross-wavelet plots depict coherence,
which is a measure of the intensity of covariance, and the phase
between two time series. The statistical significance of coherence
shown on plots is estimated against a red noise background. We
used cross-wavelet coherence analysis with the Morlet wavelet
function and 1000 Monte Carlo simulations to obtain the signifi-
cance level (see Grinsted et al. 2004 for details on wavelet coher-
ence analysis).

All combinations of the error matrices and sampling designs
were tested with 1000 random permutations of the independent
ageing error introduction, sampling, and model fitting (Fig. 2). To
make results comparable, we used the same sets of randomly
chosen individuals in parallel runs under different ageing errors.
All analyses were conducted with the R scientific computing lan-
guage (R Core Team 2018). Data were simulated and linear mixed-
effects models were fitted with lme4 using restricted maximum
likelihood (Bates et al. 2019). Wavelet coherence analysis was per-
formed with biwavelet package (Gouhier et al. 2018).

Results

Precision and accuracy of environmental parameter
estimates

Our results show a gradual increase in the precision (decrease in
the variance) of environmental parameter estimates, with in-
creasing sample size (n per year) for both short-lived and long-
lived species (Figs. 4 and 5). Increasing precision was also observed
with reduction of ageing error in the simulated data sets (Figs. 4
and 5). The short-lived species had lower parameter estimate pre-
cision for a given age scenario and sample size than the long-lived
species (Figs. 4 and 5). Environmental effects were underesti-
mated by between 56.8% and 58.3% in inaccurately aged long-lived
data sets (“no bias”, “bias (–1)”, “bias (–10%)”, “bias (+1, –10%)”;
Fig. S11; Table S11). In the “bias (+1, –10%)” ageing error scenario,
environmental effects for the short-lived fish were underesti-
mated on average by 27.3% (lowest row of Fig. 4, Fig. S11), while in
the remaining ageing error scenarios estimates were biased on
average from –8.4% to +8.2% (Fig. S11; Table S11).

Additional tests with different age group sampling regimes
showed that in three of five age error scenarios (“perfectly aged”,
“bias (–1)”, “bias (–10%)”), sampling towards the oldest individuals
(>7 years) increased parameter estimate accuracy for short-lived
species (Fig. S21). In the “no bias” and “bias (+1, –10%)” ageing error
scenarios, the highest accuracy of estimates was achieved for the
age groups 4–5 years (Fig. S21).

Ability of the model to reconstruct environmental time
series

The correlation between time series of the year random effect
(BLUP) extracted from the biochronological models and time se-
ries of the environmental variable used for the simulation of data
increased with increasing sample size, with the greatest increase
occurring from n = 1 to n = 10 fish per year (Fig. 6). Correlation
decreased with the addition of an ageing error. The lowest mean
correlation for the short-lived species was observed under the
scenario “bias (–1)” and under the scenario “bias (–10%)” for the
long-lived species (Fig. 6).

Table 1. Parameter values used to simu-
late fish otolith growth with the mixed-
effects model.

Parameter Value

Fixed effects
�0 5.320
�Axij –0.600
�Exij 0.080

Random effects
var��i

F� 0.013

var�bAi
F xij� 0.020

var(�ij) 0.055

corr��i
F, bAi

F xij� 0.350

Note: Terms are defined in eq. 1; var =
variance, corr = correlation.
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Fig. 2. Visualization of ageing errors introduced to the simulated growth data of the short-lived (a) and long-lived (b) species. Points indicate
mean difference ±2 SD between simulated interpretation and the true age. Notice different x-axis ranges for the short-lived (a) and long-lived
(b) species. CV — coefficient of variation between true and simulated age interpretation. Headings of the panels correspond to the different
age error scenarios (see Materials and methods section for the detailed description).
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Fig. 3. General conceptual scheme of the simulation tests of fish otolith growth mixed-effects models. BLUP — best linear unbiased predictor.

Fig. 4. Estimates of the environmental effect parameter obtained by the 1000 simulated otolith growth models (M1) under different ageing
error scenarios (rows) and assumed sampling schemes (n per year, columns). Dashed vertical lines indicate the “true” parameter value; colour
indicates different species. Notice different x-axis scales for the columns. [Colour online.]
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Wavelet analysis showed poor coherence between growth bio-
chronologies (BLUP of year random effect) and environmental
time series when one fish per year was sampled (Fig. 7). The model
fitted for the long-lived species under this sampling regime (n = 1
per year), and the scenario “perfectly aged” was able to recreate
only low-frequency variations of the environmental time series. A
gradual increase in the coherence was observed for both species
with increasing sample size (Figs. S31 and S41). The addition of the
ageing error significantly reduced the coherency of the high-
frequency signals. The increase of sample size to ≥20 individuals
per year resulted in partial coherence of the low-frequency signals
(wavelet period > 16 years) between developed biochronologies
and environmental time series (Figs. 7, S31, and S41).

Sampling 10 correctly aged individuals of short-lived species per
year resulted in a correlation between developed biochronologies
and environmental time series of between R = 0.15 and R = 0.89,
depending on the age group ranges tested (Fig. S51). Under all the
ageing error scenarios, sampling of the oldest individuals contrib-
uted to the highest correlation between biochronological and en-
vironmental time series used in the test. For example, with the
error scenario “bias (–1)”, similar sampling of 10 individuals from

the age group 3 only or age groups within the range 8–10 resulted
in the mean correlation R = 0.15 and R = 0.36, respectively.

Discussion
Accurate prediction of the impacts of future environmental

change on fish populations is largely dependent on our ability to
quantify their climate sensitivity (Edwards et al. 2010). A growing
number of studies have utilized the biological information natu-
rally archived in otoliths to identify past environmental drivers of
fish somatic growth (Mazloumi et al. 2017; Martino et al. 2019;
Tanner et al. 2019). While many sclerochronological studies have
successfully related interannual changes in fish growth to envi-
ronmental factors based on otolith increment measurements
(Morrongiello et al. 2012), there is a limited number of critical
assessments of the robustness of inferences drawn from bio-
chronological data (but see Black et al. 2016). Simulation-based
studies can give useful insight into the possible shortcomings and
strengths of analytical approaches (Bolker 2008; Kain et al. 2015;
Allegue et al. 2017). Even though our simulations are specifically
oriented to the analysis of fish otoliths, the results obtained can be

Fig. 5. Root mean squared error (solid lines, main y axis on the left) and variance (dashed lines, second y axis on the right) of the
environmental effect parameter estimates obtained by the 1000 simulated otolith growth models (M1) under different ageing error scenarios
and assumed sampling schemes. [Colour online.]

Fig. 6. Mean coefficient of correlation (R) between time series of the environmental variable used in the simulation and biochronology
(estimates of random effects of year) obtained from 1000 otolith growth models (M2) fitted on data gathered under different sampling
schemes and ageing error scenarios for the short-lived (a) and long-lived (b) species. Shaded areas represent one standard deviation of the
mean. [Colour online.]
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Fig. 7. The wavelet coherency (colour gradient) and phase between biochronology obtained for short-lived (a) and long-lived (b) species and
simulated environmental time series under selected ageing error scenarios and sampling schemes. Complete results are presented in the
online Supplementary materials (Figs. S31 and S41). Time and wavelet periods (in years) are indicated on the x and y axes, respectively. The 5%
significance level of coherence is shown with the thick black contour. When R2 ≥ 0.7, the relative phase relationships are indicated with
arrows (in-phase pointing right; the anti-phase pointing left; and lead of biochronology by 90°, pointing straight down). [Colour online.]
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of general importance for sclerochronological studies based on
growth data collected from the hard parts of organisms.

Our simulations clearly identified that the development of a
robust biochronology can be seriously hampered by insufficient
sample size. Even in the case of perfectly aged individuals, the
collection of one to five otoliths per year was not enough to obtain
reliable estimates of environmental effects. The consequences of
using fewer than ten individuals per year in the analyses were
especially noticeable for the short-lived fish because of the small
number of increments per individual relative to long-lived indi-
viduals. Moreover, a low number of otoliths limits the ability to
properly recreate the variability of the environmental time series.
The cross-wavelets analysis showed that the coherence of high-
frequency signals in biochronology and environmental time se-
ries was significantly diminished when the number of otoliths
was fewer than six per year. Thus, some minimum number of
increment measurements per calendar year is necessary to dis-
criminate population-wide growth pattern from individual-level
variability. In dendrochronology, the minimum number of incre-
ments per calendar year is estimated through the expressed pop-
ulation signal, which is a measure of how well the sample set
represents the theoretical, infinite population from which it was
drawn (Wigley et al. 1984). Also, the related subsample signal
strength indicates the extent to which a decreasing sample size
back through time represents the full data set, assuming that the
number of contributing samples diminishes back through time
(Wigley et al. 1984). Both metrics are a function of the degree of
correlation among samples (their synchrony or covariance) as
well as sample size. Data sets with stronger synchrony among
samples, as may be the case if environment is strongly limiting
and growth-increment boundaries are clearly defined, require
fewer samples to retain population-wide signals. Such criteria for
defining minimum sample sizes must also be considered for bio-
chronologies to ensure that environmental signals are fully re-
tained along the length of the time series.

The introduction of even moderate ageing error (CV 5%–10%)
into the biochronological data caused substantial underestima-
tion of the environmental parameter in the mixed-effects models
and thus decreases the probability of detecting an environmental
signal when one is present. Falsely added or missed increments
caused the frameshift of individual time series. Misaligned
growth patterns between individuals can result in growth “peaks”
cancelling out “troughs” and reduced synchrony among individ-
ual growth histories (Boehlert et al. 1989). Frameshifts also elimi-
nate high-frequency growth variability in the biochronology,
leaving only low-frequency variability, which can become offset
in time if the degree of ageing error is sufficiently large (Black
et al. 2016). The loss of high-frequency signals is likely to increase
with the longevity of the species (Boehlert et al. 1989; Black et al.
2016) because a single mistake can induce a frameshift that ex-
tends much farther back in time (Black et al. 2019). However, the
ageing error of the “bias (+1, –10%)” scenario also caused notice-
able systematic underestimation of the environmental parame-
ters in the short-lived species.

Ageing errors can have different origins and appear in bio-
chronological data by counting additional false increments (e.g.,
formed during major biological events and stresses) or by omis-
sion of true growth increments (e.g., due to their limited visibility)
during visual investigation of the otolith structure (Panfili et al.
2002). While we did not investigate the specific nature of the
ageing error, our results highlighted that even moderate ageing
errors (CV 5%–10%) introduced in the random part of the individ-
ual growth time series can hamper the development of a robust
biochronology, regardless of species longevity. The ageing errors
introduced in the simulation are considered to be realistic, since a
previous review of the literature across all ageing structures (oto-
liths, scales, rays, spines, and vertebrae, at both annual and daily

scales) showed a median CV of age estimation of 7.6%, while the
modal CV was 5% (Campana 2001).

Mixed-effects models overcome many of the shortcomings of
other modeling techniques, such as fixed-effects linear models or
detrending each measurement time series separately, by allowing
for the proper partition of growth variation (Weisberg et al. 2010;
Morrongiello and Thresher 2015). However, an important limita-
tion of mixed models and other frequentist approaches is that
they are not able to accommodate ageing errors in parameter
estimation. Indeed, the majority of sclerochronological studies do
not even quantify and report ageing error. Although Bayesian
hierarchical models can incorporate ageing error (Shelton et al.
2013), statistical corrections cannot substitute for accurate and
precise ageing procedures (Campana 2001). Careful preparation of
correctly aged and dated growth measurements is the primary
requirement prior to the sclerochronological analysis of organis-
mal responses to environmental variability (Black et al. 2005).

One solution to eliminating or greatly reducing ageing error is
use of cross-dating, which is a standard practice in tree-ring re-
search and for which there is no substitute. If environmental
variability influences growth, it will induce a synchronous, time-
specific pattern among all individuals of a given species and loca-
tion. Cross-dating is the process of matching these patterns
among individuals, beginning with the known year of capture and
working back through time. If an increment has been skipped or
falsely added, the synchronous growth pattern will be offset in
that individual, indicating that an error has occurred (Black et al.
2016). The ability to apply cross-dating declines with decreasing
species lifespan, given that the synchronous growth “bar code”
has too few degrees of freedom to confidently date in short-lived
(<10 years) individuals. However, cross-dating can still be useful,
especially in helping to accurately date the increment at the oto-
lith edge (Matta et al. 2010). A notable caveat to this approach is
that the power of cross-dating to detect errors diminishes as the
innermost otolith increments are approached. Thus, some ageing
error may persist in the early years of life. Moreover, cross-dating
is not possible across fish that experience different environmen-
tal regimes, as may be the case for migratory species (Black et al.
2016). Yet wherever it can be applied, cross-dating is a crucial step
in the development of highly accurate biochronologies that fully
capture environmental signals (Black et al. 2016).

Precision and accuracy of estimated environmental effects was
maximized by sampling younger fish under “no bias” and “bias
(+1, –10%)” ageing error scenarios. However, our simulations
also revealed that the mean correlation between developed bio-
chronologies and the environmental time series was consistently
maximized by sampling the oldest individuals. These findings
emphasize that the precise and accurate quantification of average
population-level responses to environmental variability, and the
reconstruction of past environmental conditions, constitute two
separate goals that can be accomplished with differently opti-
mized sampling (Fritts 1976; Morrongiello et al. 2012; Klesse et al.
2018). To maximize ecological and evolutionary information
within the biochronological data set and establish unbiased
climate–growth relationships for the population, we should apply
random selection of individuals (Fritts 1976; Klesse et al. 2018). In
contrast, for the development of environmental reconstructions
to hindcast climate prior to the start of the instrumental record,
sampling of the individuals most likely to have sensitivity to the
environmental variable in question would be more appropriate
(Fritts 1976; Black et al. 2009; Butler et al. 2013; Reynolds et al.
2016). By intent, such sampling methods minimize ecological,
physiological, and genetic sources of variation to maximize a
common interannual environmental signal (Morrongiello and
Thresher 2015).

“Regional curve standardization” is a technique used in dendro-
chronology (often for very long-lived individuals) in which all
measured increments across all sampled individuals are aligned
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with respect to the age of formation and detrended with a single
function (Briffa et al. 1992; Butler et al. 2010; van der Sleen et al.
2016), which is the equivalent of linear model with one fixed age
slope for all fish (Weisberg 1993). In dendrochronological re-
search, time series of growth can be also individually detrended
using a mathematical function (e.g., negative exponential curves)
to remove age-related and other long-term trends and then aver-
aged to form a master chronology (Black et al. 2005). Such individ-
ual detrending corresponds to the mixed-effects model with
random age intercept and slope for each fish (Weisberg et al.
2010). Year random effects BLUPs of these models are often used in
sclerochronological studies to represent combined extrinsic envi-
ronmental effects on fish growth. It has been shown that these
year random effect BLUPs are equivalent to the biochronology
developed in dendrochronological research (Helser et al. 2012;
Matta et al. 2016). We used BLUPs to assess, in a simple and intui-
tive way, the association between the time series of our bio-
chronology and environmental variables used to drive fish growth
variation in the data simulations. However, it should be noted
that BLUPs in the frequentist approach are point estimates, which
can be drawn towards an overall average when a given year’s
increment sample size is low (see Hadfield et al. 2010 for further
discussion). BLUPs are predicted with error, and their use in sec-
ondary analyses can be nonconservative because the error inher-
ent in their prediction is excluded from these further tests
(Houslay and Wilson 2017).

We assumed age of the long-lived fish to be uniformly distrib-
uted. We applied stationary (remaining the same across years) age
distributions and the same parameters of growth model for both
species. These simplifications made results more comparable and
helped to isolate effects of ageing errors and sampling regimes
on the sensitivity of environment–growth relationships derived
from simulated otolith biochronologies. In reality, the age struc-
ture of the population can change through time under environ-
mental or human-induced pressures (Ottersen 2008). Irregular
exploitation due to differences in management regimes or market
preferences, alterations in the fishing gear selectivity, or scientific
program objectives could result in time-biased estimates of
growth rates, which has implications for our ability to detect
growth–environment relationships (Ricker 1969; Morrongiello
et al. 2012). Since growth model coefficients (e.g., age parameter)
characterize growth trajectories, they may also affect the reliabil-
ity of the biochronological information. For example, strongly
asymptotic growth (rapid growth during early life and very slow
growth in the older ages) may limit the biochronological value of
the older increments due to reduced width and elevated measure-
ment errors. Since these effects were not investigated in our work,
we encourage further simulation studies to test the potential con-
sequences of varying age structures and growth model parame-
ters on the accuracy and precision of the otolith biochronologies.

Here, we explored a simplified ecological system with one ex-
trinsic variable affecting fish growth. Real-world ecological data
sets often include many confounding and correlated variables
(Legendre et al. 2002) and nonlinear relationships and complex
interactions (Guisan and Zimmermann 2000). Moreover, contrast-
ing environmental drivers of adult and juvenile growth (Ong et al.
2015), altered growth sensitivity to environmental conditions
through time (Morrongiello et al. 2019), regime shifts in the
growth of organisms (van der Sleen et al. 2016; Smoliński and
Mirny 2017), and regime-specific relationships (Lin and Petersen
2013) can substantially complicate the proper inference. It is
therefore likely that our capacity to detect the environment–
growth relationships by the application of the sclerochronologi-
cal approaches in the real ecological systems can be even more
diminished than in this simulation.

In conclusion, we show that realistic ageing error and com-
monly employed sample designs can cause a strong underestima-
tion of environmental effects on fish growth in biochronological

models and substantially reduce the coherence between a bio-
chronology and associated environmental time series. These prob-
lems call for strict quality control of age data and usage of ageing
validation techniques (Campana 2001), including cross-dating pro-
cedures whenever possible (Black et al. 2005, 2016). The use of
short-lived species’ otoliths, which are less biased by ageing er-
rors, are beneficial when these errors are difficult or impossible to
reduce. We also show that increasing sample sizes, up to at least
ten individuals per year, can improve the precision of environ-
mental parameter estimates (consistency of results from repeated
estimations). Collection of more than ten individuals in a given
year did not, however, result in substantially improved accuracy
(proximity to the true value) of these estimates, which means that
under ageing error, even a large sample size does not prevent
biases. Age reading errors are naturally present in many bio-
chronological data sets, and they may cause consistently biased
estimates and diminish our ability to recognize true environmen-
tal effects. Such biases can affect more general conclusions on
biological responses to environmental changes (e.g., in the meta-
analytical studies; Parmesan 2007; Poloczanska et al. 2013). For
these reasons, reduction of ageing errors and high sample size in
sclerochronological research are considered critical to reach ro-
bust conclusions on biological responses to environmental vari-
ability and generate accurate prediction of effects of global
change.
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