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Abstract

Several new viruses have emerged during farming of salmonids in the North Atlantic causing large losses to the industry.
Still the blood feeding copepod parasite, Lepeophtheirus salmonis, remains the major challenge for the industry. Histological
examinations of this parasite have revealed the presence of several virus-like particles including some with morphologies
similar to rhabdoviruses. This study is the first description of the genome and target tissues of two new species of
rhabdoviruses associated with pathology in the salmon louse. Salmon lice were collected at different Atlantic salmon (Salmo
salar) farming sites on the west coast of Norway and prepared for histology, transmission electron microscopy and Illumina
sequencing of the complete RNA extracted from these lice. The nearly complete genomes, around 11 600 nucleotides
encoding the five typical rhabdovirus genes N, P, M, G and L, of two new species were obtained. The genome sequences,
the putative protein sequences, and predicted transcription strategies for the two viruses are presented. Phylogenetic
analyses of the putative N and L proteins indicated closest similarity to the Sigmavirus/Dimarhabdoviruses cluster, however,
the genomes of both new viruses are significantly diverged with no close affinity to any of the existing rhabdovirus genera.
In situ hybridization, targeting the N protein genes, showed that the viruses were present in the same glandular tissues as
the observed rhabdovirus-like particles. Both viruses were present in all developmental stages of the salmon louse, and
associated with necrosis of glandular tissues in adult lice. As the two viruses were present in eggs and free-living planktonic
stages of the salmon louse vertical, transmission of the viruses are suggested. The tissues of the lice host, Atlantic salmon,
with the exception of skin at the attachment site for the salmon louse chalimi stages, were negative for these two viruses.
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Introduction

The salmon louse, Lepeophtheirus salmonis, feeding on mucus,

skin and blood of the host, is a serious problem during farming of

the Atlantic salmon, Salmo salar, in Norway [1,2]. The life cycle of

the salmon louse includes an egg/embryonic stage, two free-living

stages, one free-living parasitic stage, and five parasitic stages on

the surface of the salmonid host. The salmon louse is attached to

the host via a frontal filament during the first two parasitic stages

(chalimi stages), while moving freely on the surface of the host

during the two preadult and the adult stage [3]. The reproduction

of L. salmonis in salmon farms and its subsequent release of larvae

into the surrounding sea are also recognized as a problem for wild

salmonids, S. salar and S. trutta, along the Norwegian coast [4].

Several control strategies are being used including neurotoxins,

hydrogen peroxide, and the use of cleanerfish. The latter method

has a limited effect and represents an additional danger of

introducing other fish pathogens (ex. Paramoeba perurans) into the

salmon cages [5]. The development in the industry is moving

towards a critical situation, where the requirements (from the

Norwegian Food Authorities, NFA) of a low number of lice on

each farmed salmon has led to an increased use of neurotoxins,

resulting in the emergence of multiple resistance against these

chemicals in the lice populations [6]. Unless new groups of anti-

parasitica are developed in the coming years, the aquaculture

industry could be facing a critical situation where they are not able

to meet the requirements from the NFA and environmental

organizations that to a certain degree represent the public opinion

on salmon farming.

This development, combined with new advances in biotechnology,

may lead to a future use of lice pathogens in the control of this

salmonid ectoparasite. One possibility is the use of lice viruses, or their

constitutive parts, into novel lice control agents or strategies. There

are no published studies of viruses in L. salmonis, but several studies
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have focused on viruses in other crustaceans with a main focus on

viruses in commercially important decapods [7,8,9,10,

11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]. These

studies have shown the presence of members of several different

virus families among the crustaceans, including both DNA and RNA

viruses.

Studies using transmission electron microscopy on tissues from

L. salmonis collected from farmed Atlantic salmon in western

Norway have shown the presence of different morphs of virus-like

particles (A. Nylund, pers. obs.). These viruses, based on the virion

morphology and site of assembly, include both DNA and RNA

viruses, and the associated histopathology suggests that they may

have a significant negative effect on the salmon louse. These

viruses, or some of them, could possibly be developed as a tool for

future lice control in salmonid aquaculture, but before that can be

a reality there are some major problems that have to be resolved.

Prior experiences with insect viruses have shown that improve-

ments in the virus efficacy, large scale production and perceived

safety will be needed if the lice viruses are to play a major role in

the control of this parasite. Knowledge about the genome of these

viruses is needed to develop specific and sensitive methods for

detection and identification. Fast and safe methods for detection

and identification are a necessity for the work towards developing

lice viruses as a strategy for control of L. salmonis. This study

describes the genome of two new species of rhabdoviruses present

in salmon louse, the target tissues and the possible virion

morphology.

Materials and methods

Material
Lice (Lepeophtheirus salmonis) showing signs of internal changes

were collected at five different farming sites on the west coast of

Norway in the summer-autumn periods in 2008 – 2013, and

transported live to the Fish Disease Research Laboratory at the

University of Bergen. A selection of the individuals were sampled

both for histology/transmission electron microscopy (TEM) and

RNA/DNA extraction, while a large bulk of lice, all the different

developmental stages and egg strings, were collected for RNA

extraction only. Small subsamples of lice tissues, showing signs of

morphological changes, were stored at 280uC for later culture of

possible viruses present.

Tissues (gills, skin, heart and kidney) from Atlantic salmon

(Salmo salar) infected with different stages of L. salmonis were

collected from a farm in western Norway. The skin tissues were

taken from the surface areas where chalimi stages of the lice were

attached and from skin areas on the head and behind the dorsal

fins, i.e. areas with frequent presence of preadult and adult lice

stages. These tissues and different developmental stages of the

salmon louse were used for RNA extraction and real time RT

PCR.

Figure 1. Adult female salmon lice, Lepeophtheirus salmonis (arrow), feeding on Atlantic salmon (A). An area of reduced transparency
(ring) in the cephalothorax in the vicinity of the second antenna (sa) adult lice (B). Mouth tubule (mt).
doi:10.1371/journal.pone.0112517.g001
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Histology and TEM
Tissues from lice or one half of the lice cut along the

longitudinal axis were fixed in a modified Karnovsky fixative.

The fixed tissues were used for histological studies and transmis-

sion electron microscopy (TEM). The tissues were processed and

sectioned as described in Steigen et al. [30].

RNA extraction
Salmon lice (L. salmonis), showing areas of reduced transpar-

ency in the cephalothorax in the vicinity of the second antenna

(Figure 1), were collected for RNA extraction. The occluded areas,

the area from behind the mouth tubule to the anterior of the lice,

including the tissues with low light transparency, were used for the

RNA extraction. RNA was extracted from individual samples as

described by Steigen et al. [30].

The RNA was used for Illumina sequencing, RT PCR and real

time RT PCR. The latter method was used for the detection of

two rhabdovirus genomes detected in salmon louse after Illumina

sequencing.

RNA was also extracted from the collected Atlantic salmon

tissues and from the different developmental stages of the salmon

louse. The RNA was used for real time RT PCR, PCR and Sanger

sequencing.

Illumina sequencing
Total RNA was isolated from the anterior part of the

cephalothorax, including the mouth tubule, from five salmon lice

collected from five different farms in western Norway. The RNA

was pooled and sent to BaseClear (BaseClear Group, Netherlands)

for Illumina (Illumina Casava pipeline version 1.8.3) sequencing.

At BaseClear a library was created using Illumina TruSeq RNA

library preparation kit (Illumina). No polyA capture was used.

cDNA synthesis was then performed on fragmented dsRNA, and

DNA adapters were ligated to both ends of the DNA fragments

before being subjected to PCR-amplification. Prior to sequencing

the library was checked on a Bioanalyzer (Agilent) and quantified.

The library was sequenced on a full Illumina HiSeq 2500 genome

analyzer using a paired-end protocol. The resultant reads were

quality checked and low quality reads were removed using the

Illumina Chastity filtering. An in-house filtering protocol was used

to remove reads containing adapters and/or PhiX control signal.

The reads were assembled using the ‘‘De novo assembly’’ option of

the CLC Genomics Workbench version 7.0 (CLCbio). This

resulted in 10 463 sequences with an average sequence size of

544 bp and a total sum of 5 698 290 bp. Selected sequences were

translated using ExPASy’s online translation tool (http://web.

expasy.org/translate/) and the BLASTP algorithm of the BLAST

suite was used to identify the sequences.

Two sequences were identified as possible members of

Rhabdoviridae. These two sequences, No9 (Accession no:

KJ958535) and No127 (Accession no: KJ958536), were used as

template for production of primers used to confirm these virus

sequences through Sanger sequencing.

Real time RT PCR
Two real time RT PCR assays (Taqman probes) were

developed based on the putative nucleoprotein gene sequences

of No9 and No127 (Table 1). The assays were optimized for

relative quantification. An assay targeting the elongation factor

from salmon louse was used as internal control [31]. During real

time RT PCR on salmon tissues an assay targeting the elongation

factor alpha from Atlantic salmon was used as internal control

[32].

Determination of 59 end terminal sequences of the N
protein genes of the two Rhabdovirus from L. salmonis

The RNA used in the RNA ligase-mediated amplification of 59

cDNA ends (GeneRacer Kit version L, Invitrogen) of the two lice

rhabdoviruses, No9 and No127, N protein genes were obtained

from the anterior part of lice with glandular pathology. The

protocol given by the manufacturer was followed using the primers

(GeneRacer 59primer) included in the kit and virus genome

specific primers for 59end race (No9-59endGSP; CGT TGT TGG

GAC CTT CAC GGA CAC A, and No127-5èndGSP; GGC

TGG TGT TAC GAG TAT TGA TTT). The final PCR

products were cloned into pCR4-TOPO vector (Invitrogen) and

sequenced. Sequences were assembled and analysed using the

VectorNTI 9.0 software.

Culture system for lice viruses
The only known culture system for these two viruses is the host

itself, L. salmonis. There are no established cell cultures available

from salmon louse or other caligids. Since a range of rhabdovi-

ruses can be cultured in BF2 cells it was decided to test four

different cell cultures from fish to see if any of these were

susceptible for the two identified rhabdoviruses. In theory, it is

possible that these viruses could use the salmon host as a vector for

transmission between individual lice, which means that there was a

slight possibility that existing cell cultures from salmonids could be

susceptible.

The following cell cultures were tested as possible culture

systems for these two putative rhabdoviruses; BF-2 (ATCC

CCL91), ASK cells [33], CHSE-214 [34], and RT-Gill-W1 cells

[35]. The cells were cultured in 25 cm2 tissue culture flasks at

20uC in Eagle’s minimum essential medium (EMEM) supple-

mented with foetal bovine serum (10%), L-glutamine (4 mM),

Non-Essential amino acids and gentamicin (50 mg ml21). The

cells were sub-cultured weekly and formed monolayers within 4–7

days.

For virus propagation, cell culture medium was removed from

cell monolayers, and sterile-filtered homogenates from positive

salmon lice, diluted 1:10 in serum depleted medium (2% FBS,

4 mM L-glutamine, non-essential amino acids, gentamicin), was

added. The cells were incubated at 15uC for 4–5 weeks, or until

cytopathic effect (CPE) was observed. The supernatant from the

first passage was passed to new cultures, and the cell layers from

the first and second inoculation were tested for presence of the two

viruses by real time RT PCR.

In situ hybridization
In situ hybridization was performed according to Dalvin et al.

[36], with some modifications as described in Tröße et al. [37].

The digoxigenin labelled (DIG-labelled) sense and antisense RNA

probes were made with primers listed in Table 2.

Phylogeny
The sequence data were preliminarily identified by GenBank

searches done with BLAST (2.0) and the Vector NTI Suite

software package was used to obtain multiple alignments of

sequences. To perform pairwise comparisons of the two rhabdo-

virus sequences from the salmon louse, the multiple sequence

alignment editor GeneDoc (available at: www.psc.edu/biomed/

genedoc) was used for manual adjustment of the sequence

alignments. Selected sequences from other members of the family

Rhabdoviridae, already available on the EMBL nucleotide

database, were included in the alignments. Members of the

genera Cytorhabdovirus, Novirhabdovirus and Nucleorhabdovirus
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were excluded because of their large amino acid difference from

the two louse viruses. Ambiguously aligned regions were removed

using Gblocks [38]. This resulted in sequence alignments of 256

and 1630 amino acids for the N and L proteins, respectively.

Phylogenetic relationships were determined using the maximum-

likelihood (ML) method available in TREE_PUZZLE 5.2

(available at: http://www.tree-puzzle.de), employing the VT

[39] model of amino acid substitution. Quartet puzzling was used

to choose from the possible tree topologies and to simultaneously

infer support values for internal branches. Quartet trees are based

on approximate maximum likelihood values using the selected

model of substitution and rate heterogeneity. The robustness of

each node was determined using 20 000 puzzling steps.

Phylogenetic trees were drawn using TreeView [40].

Protein analysis
The Compute pI/Mw tool in ExPASy was used to calculate the

theoretical pI (isoelectric point) and Mw (molecular mass) of the

putative proteins coded by the ORFs in the genome of the two

rhabdoviruses present in L. salmonis. The Phobius server were

used to predict N-terminal signal peptide, ectodomain, transmem-

brane region, and C-terminal cytoplasmic tail in the topology

analyses of the glycoprotein genes of the two rhabdoviruses. The

ExPASy Bioinformatics Resource Portal (http://www.expasy.org/

proteomics) was used for identification of putative glycosylation

and phosphorylation sites. Motifscan (http://myhits.isb-sib.ch/

cgi-bin/motif_scan) were used on the L protein from the two

viruses to predict catalytic domains.

Results

Virus morphology
Salmon lice (L. salmonis), showing areas of reduced transpar-

ency in the cephalothorax in the vicinity of the second antenna

(anterior part of the cephalothorax), were collected from farmed

Atlantic salmon (Figure 1). Sectioning of these occluded areas

showed that they consisted of glandular tissues (Figure 2). In some

lice the tissues were necrotic or completely disintegrated. One set

of glands seems to open in the vicinity of the mouth tubule of the

lice. Transmission electron microscopy (TEM) of the glandular

tissues showed that they are most likely syncytia or tissue consisting

of large multinucleated cells. Large amounts of virus-like particles

were seen budding from cellular membranes, surface membranes

or membranes of the Golgi/endoplasmatic reticulum system

(Figure 3). Modified areas, possibly viroplasm, were observed in

the cytoplasm of the glandular cells (Figure 3C). The virus

particles were enveloped and rod-shaped or bacilliform with a

diameter of 55 nm and a maximum length of 425 nm (Figure 4).

The nucleocapsid seemed to exhibit a helical symmetry since in

longitudinal tangential sections of the virions they appear as being

cross-striated (spacing about 8.5–9.0 nm) (Figure 4B).

Genome
Illumina sequencing of the RNA from lice with glandular

pathology and presence of virus-like particles, generated two

nearly complete rhabdovirus genomes, Lepeophtheirus salmonis
rhabdovirus No9 (LSRV-No9) and L. salmonis rhabdovirus

No127 (LSRV-No127), with lengths of 11 681 and 11 519

nucleotides, respectively. These two sequences were used as

template for construction of primers that were used for RT PCR

and Sanger sequencing of the two virus genomes. No errors in the

two genomes generated by Illumina sequencing were detected.

Both viruses (Accession numbers: KJ958535, KJ958536) contain

five open reading frames in the negative sense genome in the order

‘3-N-P-M-G-L-5’ also found in other rhabdoviruses.

The 3-leader and 5-trailer regions
The Illumina sequencing generated a leader region of LSRV-

No9 and LSRV-No127 consisting of the first 61 and 70

nucleotides, respectively, with trailer regions composed of 122

and 58 nucleotides, respectively. The non-translated 39-end and

Table 1. Primers and probes for Taqman real time RT PCR assays targeting the N protein gene of the two salmon louse
rhabdoviruses, LSRV-No9 and LSRV-No127.

Code Sequence Position

No9-NF 59-TCC AAC AGA TCT CCT TAC TCA GTC A -39 922–946

No9-Nprobe 59- CGC CAA TCC CTT ATT -39 948–962

No9-NR 39- TCC AAT GAT ATG GAC CCA CAT G – 59 987–966

No127-NF 5- CTA TGG AGC CAT CGG AGG TTA T -39 873–894

No127-Nprobe 59- ACC TGG GTG ACT CTT -39 896–910

No127-NR 59- CAA GAT CTC AGT CGA GAC GGA AT -39 934–912

The position of the primer and probes are related to the ORF of the N protein gene of the two viruses.
doi:10.1371/journal.pone.0112517.t001

Table 2. The digoxigenin labelled (DIG-labelled) sense and antisense RNA probes were made with primers listed.

Name Sequence

RhabNt F1(LSRV-No127Npro) GGAGCCATCGGAGGTTATGACC

RhabNt R1(LSRV-No127Npro) AAGGGGCCGTGTCAATCCTA

RhabNs F1(LSRV-No9-Norf) TTCTCCCGAACCGACATGGA

RhabNs R1(LSRV-No9-Norf) AGGGGATTGGCGGTGACTGA

doi:10.1371/journal.pone.0112517.t002
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59-end regions of the two viruses may not be complete but still

exhibit inverse complementarity. The first 27 nt of the leader of

LSRV-No9 show 63.0% identity to the last 22 nucleotides of the

trailer, while the first 19 nucleotides in the leader of LSRV-No127

show 89.5% identity to the last nucleotides in the trailer (Figure 5).

The identities of the leader and trailer region from LSRV-No9

compared to the same regions in LSRV-No127 are 42.6% (61 nt

compared) and 47.6% (63 nt compared), respectively. The leader,

first 24 nucleotides, of LSRV-No9 and LSRV-No127 show 50.0%

and 91.7% identity to Vesicular stomatitis New Jersey virus

(NJ89GAS, Accession no: JX121110), respectively.

Gene junctions
The distances between translation stop and start codons in the

gene junctions of the two viruses range from 47 (G-L) to 136 (N-P)

nucleotides and from 41 (G-L) to 271 (N-P) nucleotides in the

genomes of LSRV-No-9 and LSRV-No127, respectively. The

untranscribed intergenic regions, the gene junctions between the

polyadenylation sequence and the transcription initiation se-

quence, of the two lice rhabdoviruses vary in length (0 to 6 nt).

The nucleotide sequences of the intergenic regions are not

conserved between the two viruses and are also different from

that of other related rhabdovirus genera (Table 3).

The putative transcription termination and polyadenylation

signal, based on its homology to other rhabdoviruses, is conserved

in the genomes of the two salmon louse viruses and comprises the

motif TATG(A)7 with the exception of the transcription stop/

polyadenylation signal of the G protein gene of LSRV-No127

which is TAAG(A)7 (Table 3).

The potential start sequence in the genome of LSRV-No9 is not

conserved and the same sequence, AACAA, can only be found in

the start of the P, M and G protein genes (Table 3). The start

sequence of the N and L protein genes is AACAG. The start of the

N protein gene was determined by 5-end RACE. The junction

between the P/M genes in LSRV-No9 differs from the other

junctions in these two viruses in that the transcriptional start signal

of the M gene seems to start with the last two nucleotides of the

transcriptional stop signal of the P gene, or, as an alternative, it

precedes the transcriptional stop signal of the P gene resulting in a

possible overlap of 27 nt.

The transcription initiation site sequences, expected to occur

shortly after the previous transcription termination signal, seem to

be TAAGAA in the genome of LSRV-No127 with the exception

of the transcription initiation of the L protein gene, which seems to

be CAAGAA (Table 3). The start of the N protein gene was

determined by 5-end RACE.

Protein genes
To annotate the coding sequences it has been assumed that each

open reading frame (ORF) starts at the first AUG occurring after

the previous transcription termination sequence, and that it

continues to the first stop codon. The G protein gene is in reading

frame one, the N, P and L protein genes are in reading frame two

and the M protein gene is in reading frame three in the genome of

Figure 2. Sections of virus infected glands (gl) situated between the second antenna and the mouth tubule. Accumulation of virions
(arrows) and viroplasm-like structures (arrow heads) (A). Virus-infected gland opening in the mouth tubule of the lice (B). Accumulation of virions
(arrow).
doi:10.1371/journal.pone.0112517.g002
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LSRV-No9, while the N, P, M and G genes are in reading frame

three and the L gene in reading frame one in the genome of

LSRV-No127.

N gene. The 59 ends of the N protein gene of the two salmon

louse viruses were obtained using the GeneRacer Kit (Invitrogen)

for full-length RNA ligase-mediated amplification of 59 cDNA

ends. The N gene in LSRV-No9 is 1691 nt long from the putative

transcriptional start signal (AACAG) to the transcription termina-

tion signal (TATG(A)7), and contains a single ORF of 1491 nt

encoding a putative protein of 497 amino acids (Table 4). The

calculated molecular mass (Mw) of the protein is 56.8 kDa with an

isoelectric point (pI) of 5.8. The N gene of LSRV-No9 also

contains a 199-nt 39-UTR of unknown function between the stop

codon and the polyadenylation signal. Amino acid sequence

comparisons with other rhabdoviruses using BLAST search show

that LSRV-No9 shares the highest identity (28.0–33.0%) and

similarity with members of viruses belonging to the Dimarhabdo-

virus and Sigma virus groups. However, the N protein of LSRV-

No9 shows 89.9% nucleotide identity (97.2% amino acid

similarity) to a possible rhabdovirus nucleoprotein (Accession no:

BT077702) obtained from salmon lice (L. salmonis) in the Pacific

Ocean (Canada).

The N gene of LSRV-No127 is 1680 nt long from the putative

transcription initiation site (TAAGAA) to the polyadenylation

signal (TATG(A)7) containing a single ORF consisting of 1398 nt

encoding a putative protein of 466 aa (Table 4). The calculated

Mw of the protein is 52.8 kDa with a pI of 5.9. The identity of the

nucleotide and putative amino acid sequences of the N protein of

LSRV-No9 compared to LSRV-No127 are 48.7% and 25.6%,

respectively.

The N proteins of LSRV-No9 and LSRV-No127 contain 26

and 31 potential phosphorylation sites, and the sequences,

306GISNRSPYSV315 and 288GISAKSPYSV297, respectively.

These sequences are relatively conserved with the RNA binding

Figure 3 Multinucleated (nu) gland cells with channels containing virus-like particles (arrows) and amorphic material (A and B). C)
This figure shows viroplasm (vp) in the vicinity of a channel containing virus-like particles (arrow). Note the accumulation of electron dense material
(arrow head) on the inside of the cell membrane. Nucleus (nu).
doi:10.1371/journal.pone.0112517.g003
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motif (G(L/I)SXKSPYSS) present in vesiculoviruses, ephemer-

oviruses and lyssaviruses.

P gene. The putative LSRV-No9 P gene is 994 nt long and

contains a single ORF of 888 nt encoding a putative protein of

296 aa, while the LSRV-No127 P gene is 926 nt long with a single

ORF of 789 nt encoding a putative protein of 263 amino acids

(Table 4). The calculated Mw of these two proteins are 32.6 kDa

and 30.3 kDa with pI of 5.0 and 5.3, respectively. The P proteins

of LSRV-No9 and LSRV-No127 contain 19 and 15 potential

phosphorylation sites, respectively. Based on the predicted

phosphorylation pattern it appears that both LSRV-No9 and

LSRV-No127 P proteins contain a non-phosphorylated stretch in

the centre, from amino acids 49–161 and 95–142, respectively.

The two putative P protein sequences share no clear homology

with the P proteins from other rhabdoviruses, while the amino acid

similarity between the two viruses is 33.4%.

M gene. The M gene in LSRV-No9 is 763 nt long and

contains a single ORF of 675 nt encoding a putative protein of

225 aa with calculated Mw of 25.1 kDa and a pI of 7.8. Amino

acid sequence comparison with other rhabdoviruses, BLAST

search, shows that it shares 25% identity with Scophthalmus
maximus rhabdovirus, SMRV (ADU05404), and no significant

match with other rhabdoviruses.

The M gene in LSRV-No127 is 736 nt long and with a single

ORF of 657 nt encoding a putative protein of 219 amino acids

with a calculated Mw of 24.0 kDa and a pI of 8.7. The identity

and similarity of the putative amino acid sequences of LSRV-No9

compared to LSRV-No127 are 27.6% and 46.2%, respectively,

while a BLAST search using the LSRV-No127 putative M protein

gives identities in the range 21–23% with the M protein from

Flanders virus (AGV98721), Anguillid rhabdovirus (AFJ94645),

Perch rhabdovirus (YP007641365).

Figure 4. Section through a channel (lu) in a gland cell containing large amounts of virus-like particles (V). Note the accumulation of
electron dense material (arrows) on the inside of the cell membrane (A). The virus particles (arrow) are enveloped, rod-shaped or bacilliform, and
appear as being cross-striated in tangential longitudinal sections (B). Transverse section through virus particles showing surrounding unit membrane
and an electron dense core (C).
doi:10.1371/journal.pone.0112517.g004

Two New Species in Rhabdoviridae Infecting Salmon Louse, L. salmonis

PLOS ONE | www.plosone.org 7 November 2014 | Volume 9 | Issue 11 | e112517



Both the predicted M proteins from LSRV-No9 and LSRV-

No127 contain several phosphorylation sites, 14 and 18, respec-

tively.

G gene. The G gene in LSRV-No9 is 1659 nt long and

contains a single ORF of 1596 nt encoding a putative protein of

532 amino acids with a calculated Mw of 59.7 kDa and a pI of 6.7

(Table 4). Topology analyses using the Phobius server predict a

transmembrane region spanning from amino acid 478–503 and a

C-terminal cytoplasmic tail from aa 501–532. The protein is

predicted to contain four putative N-glycosylation sites, 33NGTT,

249NQSC, 350NSTL, and 445NASI, respectively. Amino acid

sequence comparisons with other rhabdoviruses, BLAST search,

show that this virus ORF shares the highest identity (22.0–23.0%)

and similarity with that of Spring viraemia of carp virus (Genus

Sprivivirus).
The G gene of LSRV-No27 is 1657 nt long containing a single

ORF consisting of 1626 nt encoding a putative protein of 542 aa

with a calculated Mw of 62.2 kDa and a pI of 7.3. Topology

analyses using the Phobius server predict an N-terminal signal

peptide (aa 1–24, N-region aa 1–3, H-region aa 4–15, C-region aa

16–24), an ectodomain from aa 25–486, a transmembrane region

spanning from amino acid 487–511, and a C-terminal cytoplasmic

tail from aa 512–542. The protein is predicted to contain two

putative N-glycosylation sites, 16NLSI and 410NSSD, respectively.

The identity of the nucleotide sequence and the similarity of the

putative amino acid sequences of LSRV-No9 compared to LSRV-

No127 are 31.3% and 46.4%, respectively. BLAST searches show

that LSRV-No127 shares the highest identity (24.0%) with a virus

isolated from tick or bat, Kolente virus (Accession no: AHB08864,

unclassified Rhabdovirus) which possibly belongs to the Dimar-

habdovirus group. However, the G protein of LSRV-No127 shows

50.9% nucleotide identity (39.8% amino acid similarity) to a

possible rhabdovirus glycoprotein (Accession no: BTO75815)

obtained from Caligus rogercresseyi in the Pacific Ocean (Chile).

L gene. The last gene in the genome of the two salmon louse

rhabdoviruses, the L protein gene, shows a clear affinity to other

members of Rhabdoviridae, with the closest affinity (.35.0%

identity) to the Dimarhabdoviruses and members of the genus

Sigmavirus. The full length L proteins from LSRV-No9 and

LSRV-No127 are closest to each other (40.4% identity) and to the

L protein from turbot rhabdovirus, SMRV (.38.9%), and VSV

(.38,8%) (Table 5). The Sigmavirus (.35.9%) and BEFV (.

35.4%) are slightly more distant.

The L gene from LSRV-No9 is 6380 nt long and contains a

single ORF of 6351 nt encoding a putative protein of 2117 aa,

while the L gene from LSRV-No127 is 6376 nt long with a single

ORF of 6288 nt encoding a putative protein of 2096 amino acids

(Table 4). The calculated Mw of these two proteins are 241.8 kDa

and 240.7 kDa with pI of 8.5 and 8.7, respectively.

The L gene is the most conserved in the family Rhabdoviridae
and is structured into six conserved blocks that contain motifs for

the structure and function of the L protein [41]. Pairwise

alignments of the LSRV-No9 and LSRV-No127 L proteins with

L proteins of selected members of Dimarhabdovirus and

Figure 5. The non-translated 39-end and 59-end regions of the
two viruses may not be complete but still exhibit inverse
complementarity. The first nucleotides of the leader of LSRV-No9
aligned with the inverse complementary last nucleotides of the trailer
(A). The first nucleotides of the leader of LSRV-No127 aligned with the
inverse complementary last nucleotides of the trailer (B).
doi:10.1371/journal.pone.0112517.g005

Table 3. Leader and trailer regions for isolates Ls9 and Ls127.

Isolate Gene Leader Trailer Intergenic sequence

Ls9 N AACAG TATGAAAAAAA

Ls9 P AACAA TATGAAAAAAA N-P CAGT

Ls9 M AACAA TATGAAAAAAA P - M -

Ls9 G AACAA TATGAAAAAAA M - L CGGTTT

Ls9 L AACAG TATGAAAAAAA G - L TCT

Ls127 N TAAGAA TATGAAAAAAA -

Ls127 P TAAGAA TATGAAAAAAA N - P CT

Ls127 M TAAGAA TATGAAAAAAA P - M CCTC

Ls127 G TAAGAA TAAGAAAAAAA M - G CTAT

Ls127 L CAAGAA TATGAAAAAAA G - L T

Conserved transcription initiation (TI) and transcription termination/polyadenylation (TTP) sequences flank each gene to direct transcription of capped and
polyadenylated mRNAs.
doi:10.1371/journal.pone.0112517.t003
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Sigmavirus show a pattern that conforms to the given conserved

blocks. Block II is the most conserved of the major domains and

block I is the least conserved showing identities at the same level as

seen for the entire L protein (Table 5).

The first conserved amino acid motif, DYxLNSP, in the L

proteins of the rhabdoviruses compared is found in position 46–52

and 39–45 of LSRV-No9 and LSRV-No127, respectively. Three

amino acid motifs, LMxKD (LSRV-No9 residue 237–241, LSRV-

No127 residues 231–235), SFRHxGHP (LSRV-No9 res. 359–366,

LSRV-No127 res. 353–360), and LASDLA (LSRV-No9 res. 395–

400, LSRV-No127 res. 389–394), are highly conserved among the

rhabdoviruses included in the alignment of block I.

Block II is highly conserved among the rhabdoviruses compared

and the KERELK motif present in Vesiculovirus is found as

535KEREVK540 and 529KEREMK534 in LSRV-No9 and LSRV-

No127, respectively. This motif has been shown to be involved in

the positioning and binding of RNA template and the KEREMK

motif is also present in other rhabdoviruses like Tibrogargan virus,

Wongabel virus, and Flanders virus. LSRV-No9 share this motif,

535KEREVK540, with Ngaingan virus.

Within block III the subdomain III-A is the most conserved,

while subdomain III-D shows lower amino acid identity than the

overall identity for the complete L protein. The GGLEGLR motif

and the sequence LAQGDNQVI (with the invariant peptide

QGDNQ), the latter in position 715–723 in LSRV-No9 and 709–

717 in LSRV-No127, could correspond to motifs B and C, in

block III which is important for the polymerase function. Using

motifscan (http://myhits.isb-sib.ch/cgi-bin/motif_scan) on the L

protein from LSRV-No9 and LSRV-No127 a predicted catalytic

domain between amino acids 603–791 and 587–785, respectively,

is detected.

The conserved domains, the RNA polymerase domain, mRNA

capping-region (block V), and a methyltransferase region, are also

present in both the salmon louse viruses. The conserved motif

GSxT-(60–70 aa)-HR in block V, which is essential for mRNA

capping activity could correspond to the sequences 1162GSKT-

69aa-HR1236 and 1153GSKT-69aa-HR1227 in the L protein of

LSRV-No9 and LSRV-No127, respectively. The conserved motif,

IKRA (present in Vesiculovirus) was also present in both the louse

viruses as LKRA (position LSRV-No9: 1181–1184, LSRV-

No127: 1175–1178).

Block VI showed the GxGxG motif as GDGSG in both LSRV-

No9 (res. 1673–1677) and LSRV-No127 (res. 1666–1670) which

could play a role of polyadenylation or protein kinase activity.

Phylogeny
To reveal the relationships of the two louse viruses, LSRV-No9

and LSRV-No127, to other members of the family Rhabdovir-

idae, phylogenetic trees based on the L and N proteins were

generated. Members of the genera Cytorhabdovirus, Novirhabdo-
virus, and Nucleorhabdovirus were excluded due to their large

divergence which reduced the phylogenetic resolution, and the

lyssaviruses were also removed from the alignment of the N

protein due to high divergence. The ambiguously aligned regions

in the alignments were removed using Gblocks resulting in

sequence alignments of the L and N protein of 1630 and 256

amino acids, respectively.

In the phylogeny based on the L protein the two viruses from

salmon louse, LSRV-No9 and LSRV-No127, group in a distinct

clade with uncertain affinity to the other rhabdovirus genera

included in the study and distant from the lyssaviruses (Figure 6).

The phylogeny based on the N protein shows even less affinity

between the two salmon louse viruses and no clear affinity to any

of the assigned genera included in the study (Figure 7). However,

LSRV-No9 groups closely with a rhabdovirus N protein sequence

(Accession no: ACO12126) obtained from salmon louse (L.
salmonis) in the Pacific Ocean (Canada).

Screening
Selected tissues from Atlantic salmon (N = 70) infected with L.

salmonis and different developmental stages of the salmon louse

(N = 165), including egg strings, were tested for presence of both

rhabdoviruses, LSRV-No9 and LSRV-No127, using real time RT

PCR.

All life stages of the salmon louse tested positive for both

rhabdoviruses, but the largest amounts of virus RNA were

detected in adult lice (Ct values as low as 12 were obtained for

both viruses). Virus RNA were also present in the eggs and

embryos. All tissues (skin, gills, heart, kidney) from the Atlantic

salmon were negative or only slightly positive (CT values .30)

with the exception of skin tissues surrounding the attachment site

for the chalimi stages. The Ct values at the attachment site were in

Table 4. Predicted genes and putative proteins of LSRV-No9 and LSRV-No127.

Protein Gene length (nt) ORF (nt) 59-UTR (nt) 39-UTR (nt) Protein (aa)

No9

N 1691 1491 93 106 497

P 994 888 28 78 296

M 763 675 18 72 225

G 1659 1596 28 35 532

L 6380 6351 12 17 2117

No127

N 1680 1398 69 213 466

P 926 789 57 80 263

M 736 657 23 56 219

G 1657 1626 20 11 542

L 6376 6288 30 58 2096

doi:10.1371/journal.pone.0112517.t004
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Figure 6. Phylogenetic position of two Rhabdoviridae, LSRV-No9 (Accession no: KJ958535) and LSRV-No127 (Accession no:
KJ958536), obtained from salmon louse (L. salmonis) in relation to other rhabdoviruses based on analysis of the L protein
sequences after removal of ambiguously aligned regions using Gblocks [38]. The evolutionary relationship is presented as maximum
likelihood trees based on 1630 aa from the complete alignment of the L protein amino acid sequences. Branch lengths represent relative
phylogenetic distances according to maximum likelihood estimates based on the VT matrix [39]. The scale bar shows the number of amino acid
substitutions as a proportion of the branch lengths.
doi:10.1371/journal.pone.0112517.g006
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Figure 7. Phylogenetic position of two Rhabdoviridae, LSRV-No9 (Accession no: KJ958535) and LSRV-No127 (Accession no:
KJ958536), obtained from salmon louse (L. salmonis) in relation to other rhabdoviruses based on analysis of the N protein
sequences after removal of ambiguously aligned regions using Gblocks [38]. The evolutionary relationship is presented as maximum
likelihood trees based on 256 aa from the complete alignment of the N protein amino acid sequences. Branch lengths represent relative phylogenetic
distances according to maximum likelihood estimates based on the VT matrix [39]. The scale bar shows the number of amino acid substitutions as a
proportion of the branch lengths.
doi:10.1371/journal.pone.0112517.g007
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the range between 22 and 30 indicating presence of substantial

amounts of virus RNA.

In situ hybridization
The two viruses had similar tissue tropism (Figure 8). Staining

was observed in glands, subcuticular tissue and, in some instances

in peripheral cytoplasm of skeletal muscle fibers, both when sense

and antisense probes were employed. In ovaries and eggs, staining

was only seen in sections with the antisense probe, detecting viral

mRNA. All lice stained positive for at least one of the two viruses

(results not shown).

Cell culture
All the tested cell cultures, BF-2, CHSE-214, ASK and RT-Gill-

W1, appeared to be refractory to the two rhabdoviruses from

salmon louse.

Discussion

Rhabdoviruses infect a variety of hosts such as mammals, fish,

birds, reptiles, insects, crustaceans and plants [42,43,44,45,46,

47,48,49,50,51,52,53,54]. They have evolved different modes of

transmission including transmission by arthropods, through direct

contact, through gametes and through water. Eleven genera of

Figure 8. In situ hybridization for localization of LSRV genomes and mRNAs encoding the putative N protein. In situ hybridization with
an antisense probe targeting mRNA encoding the N protein of LSRV-No9 results in patches of staining (arrow) within an exocrine gland (gl), where
the arrowhead is pointed at the gland capsule. These patches may represent viroplasm (A). A sense probe targeted at the LSRV-No127 genome
induces coloring in or around gland (gl) secretory ducts, which are indicated by arrows. This may reflect viral budding through the cytoplasmic
membrane and the presence of mature virions within the lumen of the duct, as shown by TEM (Figure 3 and 4). Patches of staining (arrowheads) in
the cytoplasm may reflect viroplasm (B). Utilization of an antisense probe aimed at LSRV-No127 mRNA encoding the N protein, results in staining
(arrow) of cytoplasm at the periphery of oocytes (oc), and within the ovary (figures C and D). TEM picture of putative virions budding (arrow) into the
lumen of ER (E). It is not known if these spherical virus-like particles (arrow head) are connected to any of the two rhabdoviruses. Nucleus of the ovary
cell (nu).
doi:10.1371/journal.pone.0112517.g008
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rhabdoviruses are recognized where viruses associated with

arthropods and a wide range of vertebrates, including fish, are

found within the genera Vesiculovirus, Ephemerovirus, Sprivi-

virus, Sigmavirus, Tibrovirus, Tupavirus and some unassigned

rhabdoviruses (dimarhabdovirus super group [55]). This is the first

study where the nearly complete genomic sequences of new

rhabdoviruses obtained from a parasitic copepod, Lepeophtheirus
salmonis, are presented. Phylogenetic analysis of the two salmon

louse viruses, LSRV-No9 and LSRV-No127, based on the L and

N protein clearly places them as distinct virus species among these

members of Rhabdoviridae. The significant divergence of the two

lice viruses compared to the closest members of Rhabdoviridae
suggests that they probably deserve to be recognized as a new

genus within this family.

The gene organization, 39-N-P-M-G-L-59, is the same as for

members of Vesiculovirus [47]. There are no additional genes

interposed between the five structural genes, as found in some

genera of the Rhabdoviridae [56,57,58,59,60]. The RNA binding

motif (G(L/I)SXKSPYSS) sequences that are relatively conserved

among N proteins from vesiculoviruses, ephemeroviruses and

lyssaviruses [61,62,63] are also present in a conserved area in the

central region of both louse viruses N protein. The P and M

proteins of the two salmon louse viruses show little or no similarity

to other described rhabdoviruses, while the G protein of the two

salmon louse viruses, like that of other rhabdoviruses is predicted

to be a class I transmembrane glycoprotein with an N-terminal

signal peptide, glycosylated ectodomain, a transmembrane domain

and a short C-terminal cytoplasmic domain [47]. The L protein of

the two louse viruses have identifiable sequence homology to other

rhabdoviruses, containing all six conserved regions, and associated

motifs; RNA template binding, RNA-dependent RNA polymer-

ase, mRNA capping, polyribonucleotidyltransferase activity,

methyl transferase activity, and polyadenylation/protein kinase

activity [41]. The amino acid sequences of the L protein show

close to 40% identity to Vesiculovirus. Hence the gene organiza-

tion and the most conserved genes and motifs support that the two

louse viruses belong in the family Rhabdoviridae. The non-coding

gene junctions of the two salmon louse viruses also contained the

conserved transcription termination/polyadenylation motif

TATG(A)7 and the relatively conserved transcription initiation

motif AAGAA/G found among other related rhabdoviruses

[43,45,46,49,50,51,53,57,60,64].

Although arthropods are frequently involved as hosts of

rhabdoviruses, only a few have been associated with crustaceans

and none characterized from parasitic copepods [7,10,14,16,

44,49,50,51,52,53,56,58]. The salmon louse (L. salmonis), para-

sitizing salmonids in the northern Atlantic and Pacific oceans, is

one of several blood feeding fish parasites found among crustacean

copepods. Screening of L. salmonis collected in Norwegian salmon

farms for presence of the two louse viruses, show that all stages

including the egg strings of this parasite are positive for both

viruses, and in situ hybridization and transmission electron

microscopy show that the two viruses are present in glandular

tissues of adult lice. The ovaries are also positive in the in situ
hybridization test, but rhabdovirus virions were not observed using

TEM on this organ. The host (S. salar) for the salmon louse seems

to be negative for presence of these two viruses and it has not been

possible to culture these viruses in cell cultures obtained from

salmonids. The weak positives (Ct values .30) found during

screening of skin and gills could possibly be a result of

contamination from salmon lice present on the fish. Still, relatively

low Ct values were obtained when skin tissues from the Atlantic

salmon at the attachment sites for the chalimi stages of the salmon

louse were tested. This could suggest that the louse injects the virus

into the host skin during the attachment process which would

explain the presence of virions in the mandibular glands of the

parasite. It is also tempting to speculate that this could be part of a

strategy used by the louse to prevent the rejection of the frontal

filament that the louse injects into the host skin during early

establishment on the host. It has been shown that bites from

arthropods can modulate vertebrate host functions by several

mechanisms including modulation of the immune response and

vasodilation [65]. If this is the case then this group of viruses could

be present in most members of the Caligidae (a large group of fish

parasites). Sequence comparisons, using the N protein from

LSRV-No9 and the G protein from LSRV-No127, indicate that

similar viruses are most likely also present in parasitic copepods in

the Pacific Ocean. The nucleotide sequence from the N protein

ORF of LSRV-No9 shows 89.9% identity to a N protein ORF

obtained from subspecies L. salmonis onchorhynci [66] in

Canadian waters, while the G protein ORF from LSRV-No127

shows 50.9% identity two a sequence obtained from C.
rogercresseyi (Accession no: BT075815) in Chilean salmon culture.

Rhabdoviruses and rhabdovirus-like particles have also been

detected in glandular tissues of other arthropods and crustaceans

[10,11], however, nothing is known about the genome of viruses

from these other crustaceans.

The two rhabdoviruses characterized in this study are the first

members of this family that infect copepods, however, there are

reports suggesting that spring viraemia of carp virus (SVCV) could

be transmitted by a fresh water crustacean, the fish parasite

Argulus foliaceus [67]. SVCV has also been isolated from

crustaceans, Penaeus stylirostris and P. vannamei, causing

mortalities in both fish and penaeid hosts [16]. It has been shown

that the salmon louse (L. salmonis) may function as a mechanical

vector for infectious salmon anaemia virus (ISAV) and infectious

haematopoietic necrosis virus (IHNV) [68,69,70], and recently, it

was shown that another Caligidae, Caligus rogercresseyi, may

function as a mechanical vector for ISA virus in the culture of

Atlantic salmon in Chile [71]. However none of these viruses have

been demonstrated to replicate in these parasitic copepods.

Rhabdoviruses have been isolated and detected in several fish

species including salmonids like Salmo trutta and S. salar
[64,72,73,74], but these viruses are genetically distant from the

two salmon louse rhabdoviruses which are not associated with any

disease in Atlantic salmon.

Conclusions

The present study characterize the genome of two new

rhabdoviruses obtained from the parasitic copepod Lepeophtheirus
salmonis, identify their target tissues by in situ hybridization, and

their putative virion morphology by TEM. Comparison of the

genomes show that the two viruses cluster among the Dimarhab-

dovirus/Sigmavirus groups as two distinct new species that might

be classified as distinct from the 11 currently recognized

Rhabdoviridae genera. The gene organization, 59-N-P-M-G-L-

39, of the two viruses is the same as that described from

Vesiculovirus.
Detection of substantial amounts of RNA from both lice viruses

at the attachment site for the parasite at the salmonid host suggest

that the louse injects the viruses into the skin during early

establishment on the host. If the salmon louse uses these viruses for

modulation of the immune response in the salmonid hosts one can

expect that the other fish parasite species in the copepod family

Caligidae could be using related viruses for the same purpose. This

hypothesis is supported by the presence of a G protein gene,

showing high similarity to the G protein from the two salmon louse
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viruses in the parasitic copepod Caligus rogercresseyi collected in

the South Pacific Ocean. The existing large diversity of the

Rhabdoviridae is underscored by the uniqueness of these two

viruses from the salmon louse and suggests that more studies are

needed to map the complexity of this virus family.
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37. Tröße C, Nilsen F, Dalvin S (2014) RNA interference mediated knockdown of

the KDEL receptor and COPB2 inhibits digestion and reproduction in the

parasitic copepod Lepeophtheirus salmonis. Comparative biochemistry and

physiology. Part B, Biochemistry & molecular biology. doi: 10.1016/

j.cbpb.2013.12.006

38. Talavera G, Castresana J (2007) Improvement of phylogenies after removing

divergent and ambiguously aligned blocks from protein sequence alignments.

Systematic Biology 56: 564–577.

39. Muller T, Vingron M (2000) Modeling amino acid replacement. J Computa-

tional Biol 7(6): 761–776.

40. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on

personal computers. Comput Appl Biosci 12: 357–358.

41. Poch O, Blumberg BM, Bougueleret L, Tordo N (1990) Sequence comparison of

five polymerases (L proteins) of unsegmented negative-strand RNA viruses:

theoretical assignment of functional domains. J Gen Virol 71: 1153–1162.

42. Hoffman B, Schutze H, Mettenleiter TC (2002) Determination of the complete

genomic sequence and analysis of the gene products of the virus of Spring

viremia of carp, a fish rhabdovirus. Virus Res 84: 89–100.

43. Chen HL, Lui H, Liu ZX, He JQ, Gao LY, et al. (2009) Characterization of the

complete genome sequence of pike fry rhabdovirus. Arch Virol 154: 1489–1494.

44. Quan PL, Junglen S, Tashmukhamedova A, Conlan S, Hutchison SK, et al.

(2010) Moussa virus: A new member of the Rhabdoviridae family isolated from

Culex decens mosquitoes in Cote d’Ìvoire. Virus Res 147: 17–24.
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