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A B S T R A C T   

We describe a method to allow acoustic sampling at depths not reachable by the higher frequencies of ship hull- 
mounted echosounders and observe the abundance and behaviour of individual organisms in front of trawls. A 
self-contained scientific echosounder with a 120 kHz transducer was mounted forward-facing on the headline of 
a macrozooplankton trawl that was obliquely towed from 0 to 1000 m depth, to investigate the mesopelagic 
fauna. With the use of a forward-facing echosounder, we were able to estimate organism densities in front of the 
trawl, the vertical profiles of organism target strength and the movement of organisms in front of the trawl. We 
demonstrate that a forward-facing trawl-mounted echosounder is a simple and useful method to investigate the 
distribution of mesopelagic fauna at depth.   

1. Introduction 

The mesopelagic zone is broadly defined as the part of the ocean 
located between 200 and 1000 m depth (Sutton, 2013), although 
recently it has been suggested that light intensity (ranging from 10− 9 to 
10− 1 μmol quanta m− 2s− 1) could be a better definition (Kaartvedt et al., 
2019). Many of the macroplankton and micronekton (~2–20 cm length 
fish, shrimps and squids) found at these depths during daytime actively 
migrate to the epipelagic layer (0–200 m depth) at night, thereby 
contributing to the “biological pump” (Drazen et al., 2011; Davison 
et al., 2013; Sutton, 2013). Over the course of these diel vertical mi
grations, many mesopelagic organisms feed near the surface, and sub
sequently may release carbon in the form of defecation, respiration, and 
mortality below the depth zone in which most remineralisation occurs 
(Robinson et al., 2010; Davison et al., 2013). 

The global mesopelagic fish biomass (primarily using net catch data) 
was estimated to be around 109 t wet mass (Gjøsæter and Kawaguchi, 
1980; Lam and Pauly, 2005). Net sampling has the advantage of 
allowing a precise taxonomic identification and also allows for length 
measurements of the individuals caught (Béhagle et al., 2016). How
ever, all nets have selectivity issues due in part to avoidance and 
extrusion through meshes (Sutton, 2013). Recent acoustic-based esti
mates indicate a much higher abundance of mesopelagic fish, possibly 
up to 7–10 higher (Koslow et al., 1997; Kaartvedt et al., 2012), and if so, 

mesopelagic fishes probably dominate the global fish biomass (Irigoien 
et al., 2014). Acoustic methods are useful for estimating mesopelagic 
organism biomass but require refinements to produce reliable and ac
curate results (Kloser et al., 2009). For example, reflected acoustic en
ergy is not necessarily directly proportional to biomass (a basic 
assumption of many acoustic biomass surveys). Some organisms reflect 
very strongly due to frequency-dependent acoustic backscattering (e.g., 
resonance scattering), while other non-fish organisms such as siphono
phores can contribute to the acoustic backscatter (Barham, 1963; 
Stanton et al., 1998). Knowledge of the composition and acoustic 
properties of the mesopelagic community is most likely necessary to 
accurately estimate mesopelagic fish biomass (Davison et al., 2015). 

Ground-truthing of hull-mounted acoustic data by net sampling is a 
common method used for estimating biomass. This method has been 
widely applied for many species since the 1980’s (Simmonds and 
MacLennan, 2005; ICES, 2015a; ICES, 2015b). However, methodolog
ical limitations occur when sampling small and weakly scattering spe
cies, especially at depth (Kloser, 1996; Kloser et al., 2009). For example, 
only low frequency (<100 kHz) hull-mounted echosounders have the 
measurement range necessary to reach mesopelagic depths which limits 
the use of multifrequency techniques (Simmonds and MacLennan, 
2005), and sufficient data quality requires low sea states (Kloser, 1996). 
Echosounders mounted on towed vehicles have been used to reduce the 
range to the targets (e.g., Kloser, 1996; Moline et al., 2015; Knutsen 
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et al., 2013). Although towed vehicles are beneficial, they increase 
survey time due to deployment and retrieval operations and often 
require a slower vessel speed than would be used for hull-mounted 
echosounders (e.g., 2.5 ms− 1 compared to 5 ms− 1). 

A method that can obtain higher frequency acoustic data at depth 
without consuming extra time is to attach echosounders to the trawls 
during the routine trawl hauls that are part of existing trawl-acoustic 
surveys. Such attachments with downward-looking echosounders have 
been used to improve the estimates of deep-water species (Ryan et al., 
2009; Kloser et al., 2011). However, a downward-looking echosounder 
only detects individuals that are entering or are below the trawl, and 
hence only images organisms that have potentially reacted to the pres
ence of the trawl. Changing the echosounder to forward-facing instead 
of downward-looking could measure individual organism behaviours in 
front of the trawl and provide estimates of density prior to any avoid
ance of the trawl. 

Here, we describe a novel method to observe the reaction of meso
pelagic species in front of a trawl, and to study the vertical and spatial 
distribution of these organisms. We discuss the potential uses of a 
forward-facing trawl-mounted echosounder and suggest improvements 
for future use. 

2. Material and methods 

A forward-facing trawl-mounted echosounder was attached to the 
headline of a macrozooplankton trawl (Fig. 1) deployed from R.V. “G.O. 
SARS” when operating to the east of the Reykanes Ridge in June 2018. 
The trawl was lined from the 5 m × 8 m opening to the codend with 8- 
mm mesh (stretched mesh, knot to knot, 3 × 3 mm square opening). A 
self-contained scientific echosounder system (SIMRAD Wide-Band 
Autonomous Transceiver (WBAT); SIMRAD Kongsberg Maritime AS, 
Horten, Norway) contained within a protective plastic cylinder was 
attached to the headline of the trawl (Fig. 1). This equipment was 
deployed on three hauls. The trawl was obliquely towed from the surface 
to 1000 m depth at an average trawling speed through water of 1 ms− 1. 
The echosounder was manually programmed to start recording soon 
after the trawl was deployed, to stop recording after 90 min, and to 
record data out to a range of 100 m. This arrangement provided data for 
most of the downward cast but typically only part of the upward cast due 
to the 90 min cut-off. Therefore, analysis was limited to the downward 
cast. A split-beam 120 kHz transducer with nominal 7◦ opening angle 
(ES120-7CD, SIMRAD Kongsberg Maritime AS, Horten, Norway) was 
used and operated in continuous wave (CW) mode with a ping interval 

of about 2 Hz, pulse duration of 0.256 ms and transducer power of 400 
W. 

The echosounder was calibrated using the standard sphere method 
(Demer et al., 2015) in Bjørnafjorden, Hordaland, Norway at the end of 
the G.O. Sars cruise (Fig. 2). The echosounder was calibrated using a 
tungsten carbide (with 6% cobalt binder) sphere of diameter 38.1 mm. 
The sphere was suspended approximately 6 m below the transducer 
(which itself was about 2 m below the surface) and moved throughout 
the beam while recording data. Subsequent to the data collection, the 
recorded files were processed using the calibration utility in the Simrad 
EK80 v1.12.2 program. The WBAT operated with a 100 W transmit 
power level and a pulse duration of 0.256 ms− 1. Measurements of 
seawater temperature and salinity were taken and used to derive a 
calibration-specific sound speed value. No correction was made for 
changes in calibration with depth, but this is expected to be less than 1 
dB (Haris et al., 2017). 

The hull-mounted Simrad EK80 echosounders were calibrated on 
April 30, 2018 in Sandvikflaket using the procedures set out in Demer 
et al. (2015). Trawl-mounted internally-logging pressure sensors (RBR 
Solo3, RBR Ltd, Ottawa, Canada) recorded the depth of the trawl during 
the oblique hauls. Two cameras (GoPro HERO6, GoPro Inc, San Mateo, 
USA) in pressure rated housings (Benthic 3; Group B Distribution Inc, 
Florida, USA) were mounted on the footrope and headrope of the trawl 
to observe the echosounder and other sensors on the trawl. 

2.1. Data analysis 

Data from one representative station were processed and analysed 
(station 419 on June 15, 2018 at 59◦ 21′ N, 22◦ 41’ W, Fig. 2). This 
station had the best coverage of all sensors on the trawl throughout the 
haul. 

2.1.1. Estimation of densities from single echo detections and comparisons 
with sv data 

The Large Scale Survey System software (LSSS; Korneliussen et al., 
2006; Korneliussen et al., 2016) was used to detect single echoes from 
mesopelagic organisms using a single echo detection algorithm (Ona, 
1999; with settings of: minimum target strength = − 90 dB re 1 m− 2, 
pulse length determination level = 6 dB, minimum echo length ratio =
0.6, maximum echo length ratio = 1.4, maximum beam compensation =
3 dB and maximum phase deviation = 10) and to calculate the volume 
backscattering coefficient (sv; m− 1) in 20 m range bins. 

We used single echo detections within the 3 dB beamwidth (i.e. with 
a 1-way beam compensation of less than 3 dB) to estimate organism 
densities per ping (ρ): 

ρ= nsed

nping × Vobs
(1)  

where nsed is the number of detected single echoes. nping is the number of 
transmitted sound pulses and Vobs is the sampled volume, which was 
estimated as the volume of a cone, based on the nominal transducer 3 dB 
beamwidth, extending from the minimum to maximum sampling range 
(4–15 m). Densities were binned by 30 pings and then averaged per 20 m 
depth bin. 

The volume backscattering coefficient (sv; m− 1) for the hull-mounted 
38 and 120 kHz data was calculated after using the noise removal 
module in LSSS (Korneliussen, 2000). The average sv per 20 m depth bin 
(between 14:23–14:57) was used to create a vertical profile. The vertical 
profile was compared with the direct density estimates from the echo 
counts and the sv from the trawl-mounted 120 kHz data (per 20 m depth 
bin). The sv for the hull-mounted 120 kHz was calculated to 300 m depth 
due to the range limitations of the frequency (see lower echogram in 
Fig. 3). 

Headline

Trawl net

Echosounder

Bridles

120kHz 
transducer

Echosounder

Fig. 1. The location of the trawl-mounted echosounder on the trawl headline 
(upper) and matching image from a trawl-mounted camera (lower). The shaded 
region (upper) shows the 3dB beamwidth of the transducer beam (7◦ beam). 
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2.1.2. Tracking individuals in front of the trawl 
Tracks of individual organisms were extracted using the aggregation 

tracking module in LSSS (see Handegard (2007) for detailed description) 

using settings of: minimum target strength = − 90 dB, maximum gain 
compensation = 6 dB, track association settings of αG = 1.5◦, βG = 1.5◦, 
rG = 1.2 m, IG = 20 dB, and target initialisation settings of α0 = 1.5◦, β0 

Fig. 2. Map of the trawl-mounted echosounder deployment and calibration locations. The blue diamond indicates the location of the deployment. The red circle 
shows the calibration location. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Trawl-mounted (red solid and dashed lines) and hull-mounted (black dotted and solid lines) acoustically-derived vertical profiles of organism density. The 
background images are the echograms (upper 38 kHz and lower 120 kHz) used to produce the black dotted and solid curves, respectively. Total density (echoes m− 3) 
from the trawl-mounted 120 kHz acoustics is illustrated by the red dashed line, while the red solid line indicates the volume backscattering coefficient sv (m− 1). The 
black dashed line indicates the trawl path. The colourbar on the right indicates the backscatter magnitude (Sv, dB re m2 m− 3) for the echogram. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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= 1.5◦, r0 = 1.2 m, I0 = 20 dB. The α and β are the maximum alongship 
and athwartship angles within the beam accepted for subsequent target 
detection in a track (αG, βG) or initiating a new track (α0, β0). rG is the 
maximum change in range between subsequent target detection in a 
track, while r0 is the maximum difference in range when initiating a new 
track. IG is the maximum difference in sample energy between subse
quent target detection in a track and I0 is the maximum difference in 
sample energy when initiating a new track. The maximum number of 
successive missing pings within a track was set to 1 and tracks were 
manually scrutinized afterwards to verify appropriate tracking. Track 
length was limited to eight pings or greater to enable an individual to be 
tracked for an extended time (minimum track length = 8). Range from 
the echosounder was limited to 30 m. The swimming speed of the in
dividual was corrected for trawl speed by subtracting the instantaneous 
mean movement of small targets (target strength of − 65 dB or less, 
averaged per second) from the individual track speeds. Only the range 
from the trawl-mounted echosounder was included in the calculations of 
individual speed (vertical and horizontal movement were excluded). 
Individual speeds were also standardised to the beam area (total 
count/beam area for each 1-m range). 

3. Results 

3.1. Estimation of densities from single echo detections and comparisons 
with sv data 

Two distinct layers (at 50 and 400 m depth) were observed during 
daylight with the trawl-mounted echosounder (Fig. 3). The densities 
inside the layers reached a maximum of about 0.44 echoes m− 3, whereas 
densities outside the scattering layers were on average 0.02 echoes m− 3. 
In addition, the target strength distributions differed between the two 
layers, with more weak targets (Fig. 4) at shallower depths (from 40 to 
200 m). Most of the targets counted (95%) in the shallow layer were 
weak targets (lower than − 65 dB), compared to 23% in the scattering 
layer around 400–440 m and 21% from 600 to 750 m (i.e., 77–79% of 
targets in the deep layers were stronger than − 65 dB). 

The vertical profiles from the trawl-mounted echosounder (density 
estimates and sv) were markedly different to the vertical profile from the 
38 kHz hull-mounted echosounder (upper echogram in Fig. 3). We as
sume that the peaks (higher values) are comparable and indicate a 
detected layer even though different frequencies and measures of den
sity were used. The highest densities measured by the 120 kHz trawl- 
mounted echosounder occurred in the shallower layer (around 50 m), 
while the strongest scattering at 38 kHz came from the deeper layer at 
700 m (Fig. 3). The position of the layers also differed between the two 
methods, for the shallower and deeper scattering layers (Fig. 3). Two 
distinct layers (around 50 m and 400 m) were observed in the 120 kHz 
trawl-mounted data, with some increase in density at 650–700 m, while 

three distinct layers (150–200, 300–500 and 600–800 m), appeared on 
the 38 kHz channel. However, the vertical profiles from the trawl- 
mounted echosounder were similar to the vertical profile from the 
120 kHz hull-mounted echosounder to 300 m depth (lower echogram in 
Fig. 3). Both methods showed peaks around 50 m. In addition, some 
stronger scattering was seen over the noise on the 120 kHz hull-mounted 
echogram when the trawl moved through the 400 m depth mark. 
Though the scattering at 400 m was unable to be quantified, the stronger 
scatterings corresponded with the distinct layer observed in the 120 kHz 
trawl-mounted data. 

3.2. Tracking individuals in front of the trawl 

A total of 1007 individuals were tracked in front of the trawl. Indi
vidual tracks were first detected at distances of up to 30 m and then 
appeared at shorter ranges as the trawl moved through the water (down 
to a range of 5 m from the trawl; Fig. 5). Organisms were observed for up 
to 25 s (ranged from 3.8 to 25.0 s, mean = 10.9 s, standard deviation 
(SD) = 4.3 s) within the acoustic beam and were rarely observed closer 
than 4 m. Track lengths ranged from 3.1 to 24.4 m (mean = 10.9 m, SD 
= 4.7 m). The average speed of an individual (speed for the whole track 
minus the trawl speed) ranged between moving towards the trawl at 0.6 
ms− 1 and moving away from the trawl at 0.5 ms− 1 (mean = 0.0 m, SD 
0.1 m). When each track was separated into pings (N = 9932), the ping- 
to-ping speeds had a higher range (− 0.9 – 0.9 ms− 1). 

The ping-to-ping speeds (standardised to the beam area) were similar 
to the total track speeds (highest counts around 0 ms− 1; Fig. 6). The 
ping-to-ping speeds for the whole cast did not appear to change as the 
distance between the individual and the trawl became shorter (Fig. 6). 
Some tracks were observed inside the layers; however, it was difficult to 
follow single tracks due to the high organism densities. The few tracks 
(30 in the first layer and 38 in the second) indicated that there could be a 
difference in the ping-to-ping speeds of organisms between the layers 
(Fig. 6). The first layer contained targets of lower target strengths 
(Fig. 4), had lower ping-to-ping speeds and the speeds were less variable 
as distance to the trawl decreased. On the other hand, organisms 
observed in the second layer (higher target strengths; Fig. 4) recorded 
higher ping-to-ping speeds and appeared to move away from the trawl 
(− 0.3 ms− 1; Fig. 6). 

3.3. Catch data 

The catch consisted mainly of mesopelagic fish and crustaceans 
(Table 1). Cyclothone spp. dominated the mesopelagic fish by number of 
individuals with Benthosema glaciale and Maurolicus muelleri also present 
in numbers. Two groups of jellyfish were also present in the catch (Atolla 
sp. and Periphylla periphylla) and though they were not high in numbers, 
contributed to most of the catch weight. 

4. Discussion 

This paper describes a method to allow acoustic sampling at depths 
that are not accessible to the higher frequencies of hull-mounted 
echosounders, and hence to observe the behaviour of individuals in 
front of the trawl. We were able to estimate the densities inside and 
outside the mesopelagic layers in front of the trawl, the vertical profiles 
of target strengths and the movement of organisms with a forward- 
facing trawl-mounted echosounder. This method was easy to imple
ment, can be used in conjunction with traditional acoustic-trawl sur
veys, and does not adversely affect the time required to carry out trawls. 

4.1. Potential uses and limitations 

Our results demonstrate that a trawl-mounted echosounder is a 
useful tool to investigate the vertical and spatial distribution of meso
pelagic organisms. The trawl catches showed that the organisms ahead 
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Fig. 4. The downward vertical profile of organism density derived from the 
trawl-mounted echosounder. 

M.J. Underwood et al.                                                                                                                                                                                                                         



Deep-Sea Research Part II 180 (2020) 104873

5

of the trawl were a mixture of crustacean as well as teleost macro
plankton and micronekton, thus giving a good indication that the 
method works in a typical mixed mesopelagic setting. Unlike methods 
based on data from hull-mounted echosounders, our method gives direct 
estimates of densities of organisms inside and outside mesopelagic 
scattering layers, and the measured acoustic scattering strengths may 
provide information on scatterer taxonomy. Since the density estimates 
are based on counts of individual scatterers rather than integrated 
acoustic energy, these density estimates are not affected by resonance 
effects. The main strength of the method, however, lies in the ability to 
assess if the trawl catches are affected by pre-trawl avoidance, which can 
bias size and weight composition of the trawl. Mesopelagic scattering 
layers are comprised of mixed aggregations of diverse taxa such as 
myctophid and stomiiform fish, shrimps, squids and gelatinous 
zooplankton (Pakhomov and Froneman, 2000; Lehodey et al., 2010). 
Thus, results from hull-mounted, low-frequency echosounders can be 
expected to give a biased view of in situ organism densities, in the sense 
that it mainly shows organisms that generate strong echoes. The results 
can therefore be of limited use towards an overall understanding of the 
patterns of distribution of mesopelagic macroplankton and micro
nekton. We note, however, that the method is very effective for mapping 
distribution of organisms with strong echoes, such as many species of 
mesopelagic fish. Broadband or multi-frequency measurements are 
more appropriate for separating mixed targets in mesopelagic layers. 

Mesopelagic biomass estimates are challenging due to uncertainty in 
the conversion of acoustic backscatter into biomass (Koslow et al., 1997; 
Kaartvedt et al., 2012). Not enough is known about the population 
characteristics (such as species morphology, length distribution and 
acoustic properties), or the relative influence of resonance and sipho
nophores at 38 kHz to make a more precise estimate (Godø et al., 2009; 
Proud et al., 2019). Lower frequencies (such as 38 kHz) are desirable for 
the detection of gas-bearing animals (such as siphonophores and many 
mesopelagic fishes) since the scattering of fluid-like organisms (for 
example krill, squid, and jellyfish) are often negligible at 38 kHz 
(Warren et al., 2001; Proud et al., 2019). Our results showed differences 
in the position and intensity of the layers detected from the 
trawl-mounted and hull-mounted echosounders. This can be explained 
by the different frequencies employed in each method (120 and 38 kHz 
respectively). The 400 m layer apparent in the trawl-mounted 
echosounder data is clearly composed of organisms with low targets 
strengths at 38 kHz, since the high densities found here did not result in 
high backscattering levels at 38 kHz but was visible in the 120 kHz 
hull-mounted echogram (Fig. 3). The 700 m layer visible in the 38 kHz 
suggests strong scattering strengths for these organisms, since very low 

counts were obtained from the 120 kHz echosounder on the trawl 
(Fig. 3). By combining the moderate target strengths found in this layer 
at 120 kHz with the strong backscatter seen at 38 kHz, our data strongly 
suggests that these organisms are close to their resonant frequency at 38 
kHz (Fig. 3). The high frequency trawl-mounted echosounder provides 
information that is complementary to the hull-mounted data and has 
proven to be useful for investigations of vertical and fine-scale spatial 
distribution of mesopelagic organisms, including mesopelagic micro
zooplankton that are not detectable using hull-mounted echosounders. 

Observing behavioural responses of fish in front of the trawl net has 
previously been challenging. Video observations at the mouth of the 
trawl are generally only useful at short ranges (within meters; Graham 
et al., 2004) and require the use of artificial light at mesopelagic depths. 
A forward-facing trawl-mounted echosounder can provide in situ 
behavioural observations of organisms in front of the trawl, at a greater 
distance than video cameras and has the potential to show the behav
ioural sequence before an individual reacts to the trawl net. Here, we 
observed mesopelagic organisms up to 30 m in front of the trawl net but 
the trawl-mounted echosounder has the potential to record tracks 
further away from the trawl when densities are low. Generally, organ
isms throughout the cast did not avoid the trawl (an overall speed of 0 
ms− 1) but larger organisms in the second layer showed some avoidance 
as the trawl got closer. However, the number of larger organisms 
recorded in the second layer was low and more observations are needed 
to be confident of this. Several previous studies have inferred that 
pre-trawl avoidance is an important factor (e.g., Gjøsæter and Kawa
guchi, 1980; Kaartvedt et al., 2012; Davison et al., 2015). Since the 
avoidance in this paper was recorded close to the trawl, this suggests 
that net extrusion could be an important factor for larger, graded trawls. 
Although avoidance may occur in front of the trawl, the little to no 
observed reactions within 30 m indicates that this method (echosounder 
attached to a non-graded trawl) has potential to be used for density 
estimates. 

A forward-facing echosounder is expected to generally record lower 
average target strengths than a downward-looking echosounder 
(Miyashita et al., 1996; Pedersen et al., 2009) which could lead to 
misidentification of individuals or an assumption that smaller organisms 
are present. When the transducer is closer to the head (or tail) of 
asymmetrical targets (e.g., fish with long and thin swim bladders or 
krill), the transmitting energy reflected decreases (Simmonds and 
MacLennan, 2005). Therefore, for organisms that primarily swim hori
zontally with the dorsal side up, target strength distributions are ex
pected to be more varied than what would be measured with a vertically 
aligned transducer. More information on side-aspect target strengths 

Fig. 5. Individual tracks from the organisms 
detected by the trawl-mounted echosounder 
at 120 kHz over a 2-min period. Example 
tracks are illustrated on the left with the 
dashed line indicating the track of a non- 
motile particle and the dotted line illus
trates a track of an individual moving away 
from the trawl. Observed tracks are repre
sented by solid lines (colour indicates 
different tracks). Each track includes the 
movement of the organism as well as the 
movement of the trawl. (For interpretation 
of the references to colour in this figure 
legend, the reader is referred to the Web 
version of this article.)   
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will be needed to fully utilize TS data from forward-looking 
echosounders. Optics can be used to verify target strengths and species 
identification (Ryan et al., 2009). Though, we did not have optics near 
the echosounder at the front of the trawl, a camera system was attached 
to the aft of the trawl (Deep Vision; Rosen and Holst, 2013), which could 
identify when (and at what depth) species entered the codend. 

4.2. Application of this method to the study of mesopelagic organisms and 
implication in fisheries management 

Traditional sampling methods such as acoustic-trawl surveys have 
limitations when sampling small, deep-water species (Kloser, 1996; 
Kloser et al., 2009). A trawl-mounted echosounder can improve the 
sampling of mesopelagic species by providing acoustic density estimates 
and distribution of species. In addition, it provides insight on the 
behaviour of mesopelagic individuals to help identify improvements to 
the effectiveness of sampling gear. Using the method described in this 
work, we can observe the behaviour of species in front of the trawl and 

estimate their densities and depth distribution without increasing the 
survey sampling time. As interest in establishing a commercial industry 
for mesopelagic species evolves, it is crucial to obtain sufficient infor
mation to allow for the potential establishment of a sustainable and 
economical fishery, such as unbiased and accurate abundance estimates. 
The use of forward-looking trawl-mounted echosounders can help to 
estimate densities of organisms and detect the target strengths of sepa
rate organisms in a layer. Refining the acoustic density estimates is a first 
step of calculating accurate abundance estimates and reliable mesope
lagic fish biomass values, which will assist fishery managers to deter
mine the sustainability of a potential mesopelagic fishery. To date, there 
have been few commercial and trial mesopelagic fisheries (for example 
Shilat and Valinassab, 1998; Valinassab et al., 2007; Remesan et al., 
2016). However, these have either been subsequently closed or stopped 
due to, in the main, low catches and processing and operating diffi
culties. Kaartvedt et al. (2012) noted that avoidance of the sampling 
gear may in fact underestimate the abundance of mesopelagic species 
and therefore sampling gears that are tailored more towards mesope
lagic species are needed. Identifying areas of high escapement or po
tential improvements to the herding efficiency and species selection of 
commercial gears could help increase the catch rates to provide an 
economical mesopelagic fishery. 
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Fig. 6. Individual speed (individual speed – mean echo movement per second) 
of organisms as a function of distance from the trawl-mounted echosounder for 
all depths (top panel, N = 9932 pings), the upper (middle panel, N = 458 pings) 
and lower layers (bottom panel, N = 570 pings). A positive speed represents 
movement towards the trawl, while a negative speed represents movement 
away from the trawl. The colour scale indicates the number of organisms 
(normalised by beam area at range). The dotted line is 0 ms− 1. (For interpre
tation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 

Table 1 
Trawl catch composition for station 419.  

Species/Group Total 
count 

Total weight 
(kg) 

Average Length 
(mm) 

Fish 2705 2.223  

Argyropelecus hemigymnus 5 0.002 23 
Bathylagus euryops 46 0.746 102 
Benthosema glaciale 844 0.346 30 
Borostomias antarcticus 1 0.029 169 
Caristius sp. 1 0.010 61 
Chauliodus danae 6 0.055 12 
Chiasmodon bolangeri 1 0.018 141 
Coryphaenoides sp. 1 0.001 21 
Cyclothone braueri 130 0.021 31 
Cyclothone microdon 1365 0.377 37 
Holtbyrnia anomala 1 0.001 47 
Lampanyctus macdonaldi 10 0.027 63 
Leucobrotula adipata 1 0.001 47 
Macrouridae unknown 1 0.001 20 
Maurolicus muelleri 205 0.132 37 
Melanolagus bericoides 9 0.025 55 
Normichthys operosus 3 0.043 105 
Parabrotula 

plagiophthalmus 
1 0.000 34 

Poromitra megalops 6 0.016 51 
Protomyctophum arcticum 23 0.015 32 
Scopelogadus beanii 32 0.325 73 
Searsia koefoedi 1 0.000 31 
Serrivomer beanii 6 0.022 298 
Stomias boa 4 0.007 107 
Xenodermichthys copei 2 0.003 58  

Crustaceans 2243 0.931   

Cephalopods 21 0.019  

Gonatus sp. 21 0.019   

Chaetognatha  0.489   

Jellyfish 182 9.531  

Atolla sp. 99 4.217  
Periphylla periphylla 83 5.314   

Other  1.958   
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