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Abstract

Regime shifts are increasingly prevalent in the ecological literature. However, definitions

vary and detection methods are still developing. Here, we employ a novel statistical algo-

rithm based on the Bayesian online change-point detection framework to simultaneously

identify shifts in the mean and (or) variance of time series data. We detected multiple regime

shifts in long-term (59–154 years) patterns of coastal Norwegian Atlantic cod (>70% decline)

and putative drivers of cod productivity: North Atlantic Oscillation (NAO); sea-surface tem-

perature; zooplankton abundance; fishing mortality (F). The consequences of an environ-

mental or climate-related regime shift on cod productivity are accentuated when regime

shifts coincide, fishing mortality is high, and populations are small. The analyses suggest

that increasing F increasingly sensitized cod in the mid 1970s and late 1990s to regime

shifts in NAO, zooplankton abundance, and water temperature. Our work underscores the

necessity of accounting for human-induced mortality in regime shift analyses of marine

ecosystems.

Introduction

The productivity of commercially valuable marine species is a consequence of the direct and

interactive effects of human-induced mortality (exploitation, habitat destruction), natural

environmental shifts, and climate change [1]. Fundamental to our understanding of these syn-

ergistic processes is the concept of regime shifts [2]. A common approach is to describe,

through one means or another, an abrupt temporal change in a measure of biological produc-

tivity as a regime shift and to then explore other data to identify causal drivers of the shift.

Temporally abrupt changes in biological productivity are clearly of importance from basic eco-

logical and management perspectives, as they can affect population dynamics, species viability,

ecosystem structure and function, and fisheries sustainability [3, 4].

However, what constitutes a regime shift is not always clear. Many definitions explicitly

refer to ecosystems and incorporate the necessity that a shift from one regime to another must

be difficult to reverse, asserting that regimes represent stable alternative states in community

structure [5] or ecosystem configuration [6].
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A second issue is methodological in nature. Some analyses are based on empirical but ulti-

mately subjective impressions resulting from visual observation, such as an over-grazed kelp

bed [7] or coral bleaching [8]. When evidence of a regime shift is visually striking and arguably

self-evident, there is perhaps less need for the methodological objectivity that long-term, con-

tinuously variable information usually demands. Under such circumstances, sequential t-tests

are not uncommon [9–12], although the selection of years applied is frequently based on the

researcher’s perception of the magnitude of the effect of the purported regime shift.

We offer an alternative, operationally objective means of identifying regime shifts in time-

series data that involves application of a Bayesian online change point detection (BOCPD)

algorithm [13]. Perälä and Kuparinen introduced this approach to detect regime shifts in the

fisheries ecology literature [14]. Their method utilized normal-gamma conjugate priors for the

normal observation model, resulting in an analytically tractable procedure that is able to simul-

taneously detect shifts in the mean and(or) variance parameter of the data-generating process.

Using sequential Monte Carlo (SMC) methods, Perälä et al. expanded the methodology so that

it can be used to detect shifts in any parameter of the underlying predictive model with arbi-

trary prior distributions [15]. They applied the method to Beverton-Holt and Ricker fisheries

stock-recruitment models and detected shifts, for example, in maximum per capita reproduc-

tive output parameters.

The BOCPD algorithm continually and sequentially updates (i) the posterior probability

distribution since the latest regime shift together with (ii) the posterior probability distribu-

tions of the parameters of the data-generating process. A high probability of a change point

(regime shift) results from poor compatibility of the model prediction with an observed data

point, as determined by the posterior predictive density function evaluated at the new observa-

tion. Here, we use the SMC implementation of the algorithm for a normal observation model

with uniform priors for the mean and variance parameters of the model.

Our overarching objective is to use the BOCPD algorithm to detect regime shifts in a mea-

sure of biological productivity (a nearly century-long time series of juvenile Atlantic cod,

Gadus morhua, abundance) and hypothesized drivers of cod productivity [3, 16–19]: North

Atlantic Oscillation (NAO); zooplankton abundance; and water temperature. The NAO

reflects changes in environmental factors that have direct effects on productivity, such as wind

strength, currents speeds, temperature, and turbulence [20]. We use the BOCPD algorithm to

identify regime shifts in all time series. The degree to which these time series overlap with one

another will be used to infer potential causal drivers of regime shifts in cod productivity. In

addition to these metrics of climate, food supply, and temperature, we applied the BOCPD

algorithm to temporal estimates of fishing mortality to explore its role as a driver [21] and as a

factor that might conditionally affect the strength of other suspected drivers.

Materials and methods

The BOCPD algorithm [13] is based on sequential Bayesian posterior estimation of the length

of the current regime (run length) and the regime-specific parameters of the underlying pre-

dictive model (mean and variance). The recursion for calculating the posterior distribution of

the run length rt at time t given the observations y1:t = (y1,. . .,yt) is

p rtjy1:tð Þ ¼
Xt� 1

rt� 1¼0

pðrtjrt� 1Þpðytjy
ðrt� 1Þ

t� 1 Þpðrt� 1jy1:t� 1Þ

pðytjy1:t� 1Þ
; ð1Þ

where p(rt|rt−1) is the change point prior distribution containing our prior beliefs about the

probability of a regime shift. We assume constant prior probability for a shift defined by the
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hazard rate parameter λ,

p rtjrt� 1ð Þ ¼

1

l
; if rt ¼ 0

1 �
1

l
; if rt ¼ rt� 1 þ 1

0; otherwise

:

8
>>>>><

>>>>>:

ð2Þ

The underlying predictive model (UPM), pðytjy
ðrt� 1Þ

t� 1 Þ, is the predictive density conditional

on the run length and thus on the latest rt−1 observations, i.e., yðrt� 1Þ

t� 1 ¼ yðt� rt� 1Þ:ðt� 1Þ. The UPM is

used to give more weight to those run lengths that better predict the new observation, and it is

defined by the observation model,

p ytjm; sð Þ ¼
1
ffiffiffiffiffiffi
2p
p

s
e�

1

2s2
ðyt � mÞ

2

: ð3Þ

If none of the existing runs explains the new observation well enough, the prior predictive

density, pðytjy
ð0Þ

t� 1Þ, will dominate, resulting in a high posterior probability for a regime shift.

As we are mostly interested in retrospective analysis of regime shifts, we use the smoothed

run length probabilities to find the most likely segmentation of the data or the most likely set

of regimes by maximizing the product of run length probabilities over the whole time series

[15]. We can find the maximum among all possible combinations of regimes or we can focus

on some subset of regimes by setting certain constraints for the regimes. We have decided to

set a constraint for the minimum length of the regimes (M). This constraint is not used for the

first and the last regimes, though, since their start and end points can be outside the time

frame of our data. We use uniform priors for the mean and variance parameters in each of the

time series analyzed. The lower and upper limits for the uniform priors were assigned so that

all plausible parameter values were contained in the intervals. The posterior inference of the

observation model parameters is carried out by a sequential Monte Carlo algorithm [15], using

100,000 particles.

Model parameters

There are two key parameters in the regime shift detection method. The first is the minimum

length of each regime, M (M = 10 would imply a minimum regime length of 10 year). For

some data sets, M can be informed by prior knowledge. The suggestion has been made, for

example, that the NAO data exhibit decadal variability (e.g., [22]). This might provide a defen-

sible ‘default’ value of M = 10.

In general, we can see a cogent argument for maintaining M at 10 years for all data sets pri-

marily to ensure that we are not biasing analyses against the detection of significant, but com-

paratively brief, regimes. In addition to conforming with general patterns in the NAO [22], ten

years approximates one generation for northeast Atlantic cod (in the absence of fishing), and

should be sufficiently long to detect persistent shifts in copepod abundance and water

temperature.

The second parameter of import is the hazard rate in the change point prior, λ. Lambda can

be thought of as the probability or expectation of the frequency of a regime shift, e.g., roughly

every 10 years (λ = 10) or every 25 years (λ = 25). This parameter is more challenging to base

on empirical expectation. Nonetheless, some caution in setting its value can be exercised. Rela-

tively small values of λ (e.g., ‘10’) might lead one to falsely interpret short-term periods of

seemingly extreme, potentially spurious values as regimes. On the other hand, relatively large
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values such as λ = 50 (regime shifts occurring twice in each century) might be considered

unduly ‘conservative’, biasing against the detection of biologically meaningful regime shifts

because of the use of a prior that constrains regime shifts to be comparatively infrequent.

For our analyses, we set M = 10 for all data sets. For the hazard rate, we compare model out-

puts for λ = 10, 20, 25, and 50. Outputs for all variables at alternative values of λ are presented

in the S1–S6 Datas.

Data

Our measure of biological productivity reflects the abundance of juvenile Atlantic cod (ages 0

to 2 yr) in Skagerrak, a strait running between the southeast coast of Norway, the west coast of

Sweden, and the Jutland peninsula of Denmark. Standardized beach-seine surveys have been

conducted along coastal Norwegian Skagerrak annually since 1919 [23]. The time series of

data available for our analyses extended from 1919 to 2014.

In addition to cod abundance, we examined time-series data for hypothesized drivers of cod

productivity. Winter NAO data (December through March) were obtained for the years 1864

through 2018 [24]. As a measure of juvenile cod food supply, we tested for the presence of regime

shifts in the abundance of the energy-rich calanoid copepod Calanus finmarchicus, estimated by

the Continuous Plankton Recorder (CPR) survey for the survey area closest to, and overlapping

with, the Norwegian Skagerrak (area C1) (https://www.cprsurvey.org/data/data-charts/) [25]. We

pooled the CPR data for the months March through August, the period during which zooplank-

ton are available to, and consumed by, cod larvae and juveniles in the North Sea [26]. Sea-surface

water temperatures in Skagerrak are available from the Flødevigen Research Station, Institute of

Marine Research (http://www.imr.no/forskning/forskningsdata/temperatur_flodevigen/draw.

map?boey=1). Temperatures recorded at Flødevigen are positively correlated with temperatures

elsewhere in Skagerrak (e.g., [16]). These data were analysed on a monthly basis for the years 1925

to 2017. Estimates of fishing mortality (F) and spawning stock biomass (SSB) are available for

North Sea cod, the management unit of which Skagerrak cod is a part [27].

Results

North Atlantic Oscillation

The BOCPD algorithm (at λ = 10 and M = 10) produces a pseudo-decadal pattern in the winter

NAO index, indicating that the model is capturing the temporal dynamics previously ascribed

to this index [22] (Fig 1A). Over the 140-year time series, ten regimes are identified. Some,

such as those between 1916 and 1960, are comparatively brief, raising questions as to whether

these patterns in the mean and(or) variance in the data are consistent with some stipulations

that regime shifts represent stable states that are difficult to change [5, 6].

Taken together, these observations suggest that λ = 10 might represent an unduly liberal fre-

quency of break-point changes in the data, resulting in a tendency to ‘over-identify’ regime shifts.

To guard against this possibility, we steadily increased λ to as high as 50 years. The model output

was identical irrespective of whether λ was set at 20 or 25 years (Fig 1B and 1C). Four regimes

were detected: 1864–1960 (97 yr); a negative shift from 1961 to 1971 (11 yr); and a positive shift

from 1972 to 1995 (24 yr), followed by a negative shift from 1996 to 2018 (23 yr). No regime shifts

were detected at λ = 50 (Fig 1D), suggesting that this hazard rate is unduly conservative.

Juvenile Atlantic cod

At a hazard rate of λ = 10, seven regimes of cod catch rate were detected from 1919 to 2014

(Fig 2A). Despite some differences in the timing of the shifts, they, as do all outputs from λ =
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10 to 50, illustrate patterns of substantive decline. However, there is reason to believe that a

value of 10 for the hazard rate yields regime shifts early in the data series that should be inter-

preted with caution. The first thirty years are characterized by highly variable catch rates. Data

from the late 1930s to the mid-1940s seem particularly suspect, given that catch rates between

successive years would normally be expected to be positively (not negatively) autocorrelated

(the juvenile cod group includes primarily ages 0 and 1 yr). The 1939–1945 period coincided

with WWII during which fisheries research was greatly curtailed. We note that other research-

ers (e.g., [16]) excluded this time period from their analyses of the same beach-seine survey

data because sampling stations were few in number. Although we do not wish to exclude data,

we are disinclined to accept these unusual patterns of data variability from the 1920s to the

mid 1940s as reflecting valid regime shifts (recall that the BOCPD algorithm recognizes

changes in variability, independent of the mean, as a basis for a regime shift).

As with the NAO index (Fig 1B and 1C), λ values of 20 and 25 detected identical regimes

(Fig 2B and 2C) for the time-series of cod catch rate. Four can be identified. The first two

(1919–1952 and 1953–1974) differ only in their variability, the former being more variable

than the latter. Average catch rates for both regimes were ~18.5 cod per seine haul. However,

catch rates during the third (1975–1998) and fourth regimes (1999–2014) averaged ~10 and

~5 cod per haul, respectively. Comparing catch rates in the most recent regime with those in

Fig 1. Posterior predictive distributions of time series data on the winter North Atlantic Oscillation (NAO) index. The units are based on the difference of

normalized sea level pressure between Lisbon, Portugal and Stykkisholmur/Reykjavı́k, Iceland. Differently shaded series of data represent different regimes. The shaded

area represents the 68% central probability interval (CPI) of the posterior predictive distribution; thus, it includes uncertainty about the mean and the variance.

Horizontal lines in each shaded region represents the mean. M is the minimum regime length (in years) and λ is the ‘hazard’ rate in the change point prior, i.e., the

expectation of the frequency of a regime shift (a λ value of 20 would imply an expectation that regime shifts occur every 20 years).

https://doi.org/10.1371/journal.pone.0237414.g001
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the first two regimes, juvenile cod are estimated to have declined more than 70% since the

early 20th Century.

Zooplankton: Calanus finmarchicus
Unlike the data on the NAO and cod, regime shifts in the abundance of C. finmarchicus
changed little with changes in λ (Fig 3). At hazard rates of 10 through 50, four regimes were

distinguished. Focusing on those at λ = 25, the earliest regime supported the highest average

yearly abundance of C. finmarchicus in the time series, declining by ~75% in the second regime

(1982–1996). The yearly abundance during the third regime (1997–2007) declined further still,

before increasing back to the level of the second regime during the fourth regime shift (2008 to

2017).

Water temperature

Data on water temperatures are presented as monthly averages (Fig 4 and S1–S3 Figs). At λ
values of 20 and 25, the model outputs for the first half of the year were remarkably similar,

particularly at the higher hazard rate (λ = 25). Two regimes were generally identified with a

shift detectable in 1988 for all months from January through June (Fig 4). The mean tempera-

ture increase between regimes ranged between 10 and 2˚C. As with the first half of the year,

two regimes were generally distinguished from July through December, again involving

Fig 2. Posterior predictive distribution of juvenile Atlantic cod catch rate (number of juvenile cod per beach-seine haul). See the caption for Fig 1 for explanations

of the shaded regions of the data.

https://doi.org/10.1371/journal.pone.0237414.g002
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temperature increases of between 10 and 2˚C (Fig 4). Interestingly the regime shifts (λ = 25)

during the latter half of the year tended to occur progressively later than those from January

through June: July (1997), August (1994), September (1996), October (1999), November

(2005), December (2014). The greatest increase occurred in August, with mean temperatures

between the first and second regimes increasing from 16.70 to 18.7˚C.

Fishing mortality and spawning stock biomass

Regime shifts in juvenile cod abundance in Norwegian Skagerrak did not occur in an environ-

ment in which cod mortality was affected solely by natural causes. It is well established that

fishing can dominate other sources of change in the mean and variance of population size

[28]. In the present context, between 1963 and 2017, the mean instantaneous rate of fishing

mortality (F) on North Sea cod aged 2–4 yr, of which Skagerrak cod are a part, was 0.82 [27].

By contrast, the average annual natural mortality of cod comprising >90% of the catch ranged

between 0.2 (cod older than 3 yr) and 0.74 (2-yr-old cod). Thus, since at least the early 1960s,

fishing mortality experienced by North Sea cod has always exceeded natural mortality.

Changes in fishing mortality (F) and the reproductive component of North Sea cod (the

spawning stock biomass, or SSB) can be expressed relative to their limit reference points.

When SSB falls below its limit reference point (Blim), the population is considered to have

increased risk of impaired reproductive capacity [29]. F should not exceed Flim because such a

Fig 3. Posterior predictive distributions of data on the abundance of Calanus finmarchicus as estimated from the Continuous Plankton Recorder Survey (area

C1). Data have been pooled for the months of March through August. Keeping M constant at 10 yr, model output is shown for λ values of (a) 10, (b) 20, (c) 25, and (d)

50 years. See the caption for Fig 1 for explanations of the shaded regions of the data.

https://doi.org/10.1371/journal.pone.0237414.g003
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level of prolonged overfishing is thought to be associated with population dynamics that lead

to stock collapse. For North Sea cod, Flim = 0.54. By comparison, the fishing mortality corre-

sponding to the maximum sustainable yield (FMSY) is 0.31 [27].

The BOCPD algorithm was applied to the fishing mortality data for North Sea cod. Multiple

regime shifts were detected, and these were remarkably similar at different hazard rates (Fig

5). Stock assessment modelling output indicates that fishing mortality on North Sea cod has

rarely been less than Flim (Fig 6), steadily rising from the early 1960s through the late 1990s

from 0.9 Flim in 1963 to a maximum of 2.0 Flim in 1999 (the year that initiated the second Skag-

errak cod regime shift). While F steadily increased, stock biomass experienced a decline from a

peak SSB of 2.00 Blim in 1971. By 1999, SSB was less than its limit reference point (0.80 Blim),

part of a continuing decline that did not halt until 2006 when it had declined to 0.41 Blim.

Fig 4. Posterior predictive distributions of data on sea surface water temperatures measured at Flødevigen Research Station for the months of January through

December at a hazard rate (λ) of 25 years (M = 10 years). See the caption for Fig 1 for explanations of the shaded regions of the data.

https://doi.org/10.1371/journal.pone.0237414.g004
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Temporal overlap between regime shifts in cod productivity and putative

drivers

Regime shifts were detected in multiple hypothesized drivers of cod productivity. However,

not all of these had obvious, or at least immediate, consequences for cod. That is, regime shifts

in NAO, zooplankton abundance, and water temperature were not always followed within 5

years by regime shifts in cod productivity (Fig 6A).

The 1961 NAO regime shift (a decline from 0.1 to −2.0) had no discernable impact,

although the cod regime shift that began in 1974 was preceded by regime-shift increases in

both NAO (−2.0 to 1.5) and fishing mortality (1.10 to 1.52 Flim). The initial ~75% reduction in

copepod abundance in 1981 followed, rather than preceded, the 1974 shift in cod by 6–7 years

(Fig 6A). Although the further reduction (~90% decline) in C. finmarchicus in 1997 preceded

the 1999 regime-shift decline of cod (Fig 6B), cod did not respond when zooplankton

increased in 2008 back to its level in the 1981–1996 period. The nearly 50% reduction in aver-

age cod abundance that began in 1974 was not preceded by a regime shift in water temperature

in any month (Fig 6A). However, the 1999 cod regime shift either coincided with (October) or

was preceded 2–5 years earlier (July-September) by regime-shift increases in water tempera-

ture of 10 to 2˚C (Fig 6B), reaching a maximum monthly mean of almost 190 C in August.

Discussion

The present study identifies regime shifts in a long-term metric of biological productivity in

relation to regime shifts in potential causal drivers, using a Bayesian online change point

Fig 5. Posterior predictive distributions of estimates of instantaneous rate of fishing mortality (F) for cod aged 2–4 yr in the North Sea. Hazard rate (λ) is 10, 20,

25, and 50 years; M is held constant at 6 years. See the caption for Fig 1 for explanations of the shaded regions of the data.

https://doi.org/10.1371/journal.pone.0237414.g005
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detection (BOCPD) algorithm. Juvenile Atlantic cod in Norwegian coastal Skagerrak experi-

enced two stepwise reductions in mean abundance, beginning in 1975 and 1999, ultimately

attaining a level ~30% of what it was in the first half of the 20th Century. Regime shifts in indi-

ces for the NAO and zooplankton abundance since 1960 were directionally the same, the

opposite, or independent of directional shifts in cod catch rates. The degree of temporal over-

lap between regimes shifts in cod abundance and water temperature depended on season.

Fig 6. The timing of regime shifts in cod catch rate, NAO, water temperature, and abundance of Calanus finmarchicus. Each arrow

identifies the beginning of a regime. The direction of the arrow indicates the change in the mean value of the data following each regime

shift. The timing of regime shifts is shown in relation to changes in fishing mortality and spawning stock biomass of North Sea cod (each of

which is expressed relative to its respective limit reference point; the limit fishing mortality is 0.54, the limit spawning stock biomass is

107,000 tonnes). (a) This panel identifies regime shifts in climate and environmental indices that do not appear to have influenced regime

shifts in cod catch rate (i.e., were not followed within 5 years by a cod regime shift). The water temperature regime in 1988 is for January

through June; the regime shift in 2005 is for November temperatures. (b) This panel identifies regime shifts in climate and environmental

indices that do appear to have influenced regime shifts in cod catch rate (i.e., were followed within 5 years by a cod regime shift). The water

temperature regime shifts are for the months of August (1994), September (1996), July (1997), and October (1999).

https://doi.org/10.1371/journal.pone.0237414.g006
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Single regime shifts of increased mean temperature (by 1 to 2˚C) during the winter and spring

months either preceded the 1999 cod regime shift by more than a decade or occurred several

years thereafter. However, summer-autumn temperature regime shifts (1 to 2˚C increase)

were either concomitant with, or occurred slightly in advance of, the cod regime shift

(decrease) in 1999. The earlier cod regime shift (1975) was not associated with a regime shift in

water temperature for any month of the year.

The relative importance of hypothesized drivers can be ascertained by the temporal prox-

imity of their regime shifts with regime shifts in cod. It is clear that shifts in some factors, such

as the NAO index and abundance of C. finmarchicus, do not always have obvious biological

consequences for Atlantic cod (see also [30]). Against the background of temporal changes in

fishing mortality and spawning stock biomass of North Sea cod, the earliest regime shifts in

NAO (1961; a decline from 0.2 to -2.0) and C. finmarchicus (1982; a ~75% decline) were not

linked with regime shifts in cod (Fig 3A). The same was true of the 1−20 C regime-shift

increase in water temperature during the winter-spring months in 1988.

One interpretation of this lack of influence is that drivers of cod productivity are less likely to

manifest biological change when (i) they act singly, (ii) human-induced mortality is relatively low,

and (iii) cod population size is relatively high. When the NAO shifted in 1961, fishing mortality

on North Sea cod was less than Flim and SSB was 1.36 Blim; when zooplankton abundance shifted

downwards in 1982, fishing mortality was increasing but population biomass remained high (1.53

Blim). Regarding the winter-spring increase during the regime shift in water temperature that

began in 1988, it is notable that, despite these increases, temperatures remained well within the

range thought to be optimal for cod eggs and larvae [31, 32]. Indeed, these January-June regime

shifts might have had a beneficial influence on cod productivity, mitigating to some extent any

steadily increasing effects of persistently high fishing mortality and declining SSB.

Our analyses reveal two occasions when regime shifts in potential drivers of cod productiv-

ity preceded regime shifts in cod catch rate by a time period sufficiently brief (� 5 yr) that they

could plausibly have influenced the subsequent abundance of cod aged 0 to 2 years (Fig 6).

Even though a decline in NAO in 1961 had no discernable effect on cod, the increase in 1972

might well have, insofar as the first cod regime shift followed two years later. This supposition

is supported by studies (e.g., [19]) that have concluded that an increased NAO index has a neg-

ative influence on cod productivity in the northeast Atlantic, although this association may be

weakening [20]. One possible reason for why the NAO apparently affected cod (beginning in

1974) is that the magnitude of the NAO regime shift (−2.0 to 1.5) was the greatest of the three

shifts that occurred between 1864 and 2018. It is also notable, however, that the 1974 cod

regime shift occurred during a period of steadily increasing and unsustainably high fishing

mortality (1.5 Flim), potentially affecting the ability of cod to resist environmental changes

caused by the NAO, changes to which an unfished population might have been resilient. This

underscores the challenge in disentangling the effects of fishing and climate-related indices on

biological productivity [33].

The cod regime shift that began in 1999 was preceded by a ‘perfect storm’ of multiple con-

comitant changes in the environment. Summer-autumn temperatures jumped 1−20 C; the

NAO index declined from 1.5 to 0.5; C. finmarchicus had plunged to its lowest level in the time

series; fishing mortality was at its highest level since 1963 (2.0 Flim); and spawning stock bio-

mass was at its lowest level in the time series (0.8 Blim) en route to a minimum of 0.41 Blim in

2006. The effects of the NAO, C. finmarchicus, and temperature on cod productivity were

undoubtedly accentuated by the directionality of their regime shifts in 1999. As the NAO

index declines, so does primary and secondary productivity in Skagerrak [34], and increased

water temperatures are associated with increasingly unfavourable conditions for C. finmarchi-
cus [16].
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Among the putative drivers of cod productivity, the 1996 regime shift in NAO may have

been the most benign, given that (i) a reduction in the index did not have its anticipated posi-

tive effect on cod and that (ii) the index had returned to levels characteristic of the 1868 to

1960 period. The very considerable reduction in C. finmarchicus (beginning in 1997; Fig 3)

was likely a much more prominent factor, given the exceedingly low levels to which this key

prey species of juvenile cod had declined.

There is, however, reason to believe that the summer-autumn increase in water temperature

was of considerably greater importance than either the NAO or zooplankton abundance. Suc-

cessive regime shifts from 1994 to 1999 during July through October raised temperatures to

their highest recorded levels in coastal Skagerrak since 1925, when the time series began. In

some years, mean August temperatures exceeded 20˚C, approaching the critical thermal maxi-

mum for Atlantic cod [32, 35].

We hypothesize that cod did not respond positively to the presumed increase in food supply

in 2008 because of the physiological stress associated with increased summer-autumn water

temperatures. Based on tagging studies at sea of almost 400 cod from 8 northeast Atlantic cod

stocks, Righton et al. [33] found that although the total thermal niche of adult cod ranged

between −1.5 and 19.00 C, the temperature range was considerably narrower during the

spawning period when larval and juvenile cod are developing (1 to 80 C). Nissling [31]

reported that survival of larval cod in the laboratory declined considerably when water temper-

atures exceeded 100 C.

One fundamentally important element to consider when evaluating the consequences of cli-

mate-related and environmental regime shifts on population productivity is the size of the

population relative to a metric of long-term sustainability, such as carrying capacity or popula-

tion size in an unfished state. This is because small populations are more vulnerable to envi-

ronmental stochasticity than comparatively large populations [36]. This link between

population size and susceptibility to environmental change has been repeatedly considered

when assessing the recovery capacity of depleted cod populations [37, 38]. But it has also been

made with respect to potential drivers of cod regime shifts. Based on an analysis of cod popula-

tions on the European Shelf south of 62oN, including North Sea cod, Brander [39] concluded

that environmental variability, as represented by the NAO index, only affects cod when the

spawning stock biomass is low. Brander’s [39] argument is both theoretically compelling and

empirically supported by the present study.

There are several attributes to the methodology we have applied here. Firstly, the same algo-

rithm is used to identify regime shifts in a metric of biological productivity and putative causal

drivers of that metric. Secondly, our approach explicitly states its assumptions and prior beliefs

about the occurrence of the change points and the data-generating model and its parameters.

A third strength is that the BOCPD algorithm accounts for changes in the variance in the data,

not simply the mean.

One limitation in our interpretation of the relative importance of fishing and the environ-

ment on regime shifts in cod productivity is our use of estimates of fishing mortality and

spawning stock biomass for North Sea cod as metrics of fishing pressure and population size

for Skagerrak cod. But if we were to account for fishing mortality in our analyses, we needed to

avail ourselves of the best available data in this regard, and these data were available for North

Sea cod. There are empirically defensible reasons for our application of North Sea cod esti-

mates of F and SSB to Skagerrak cod. Firstly, North Sea cod genotypes exist along the Norwe-

gian Skagerrak coast [40]. Secondly, Skagerrak has long been considered part of the North Sea

cod stock unit [27]. Thirdly, limited estimates of fishing mortality available for Skagerrak cod

confirm that fishing mortality can be exceedingly high. Kleiven et al. [41] reported that recrea-

tional and commercial fisheries for cod in Skagerrak fjords resulted in a mortality rate of
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55.6% for the years 2005 to 2013, equivalent to F = 0.81. For comparison, the average F for

North Sea cod over the same time period was 0.61 [27], suggesting that the fishing mortality

experienced by North Sea cod may be comparable to, and possibly less than, that experienced

by Norwegian Skagerrak coastal cod in some years.

The concept of regime shifts permeates the marine ecological and fisheries literature. Defi-

nitions vary considerably. The ecological literature tends to interpret regime shifts as commu-

nity-level changes between alternative stable states with the implication that such shifts are

difficult to reverse [5, 7]. In contrast, regime-shift analyses of meteorological factors tend not

to focus on alternative stable states, being much more accepting of regime-shift ‘reversibility’

(e.g., [12, 20]). The fisheries literature is perhaps intermediate with respect to the question of

regime-shift reversibility. Some work draws attention to long-term, slow-to-reverse disconti-

nuities in ecosystem properties [4], whereas neither reversibility nor regime-shift time period

have been integral to a lack of temporal stationarity in fish-stock productivity (e.g., [11, 14]).

Our analyses emphasize the utility in examining multiple regime shifts when trying to

understand the causal mechanisms responsible for regime shifts in metrics of biological pro-

ductivity. Doing so allows one to formulate hypotheses and to draw conclusions concerning

the conditional probabilities that an environmentally related regime shift will affect biological

productivity. One hypothesis that emerges here is that the strength of the effect of an environ-

mental or climate-related regime shift is accentuated when it coincides with other regime

shifts. A second hypothesis, underscoring the findings of previous work [38, 39], is that cli-

mate-related regime shifts are more likely to affect populations when they are relatively small.

The present study affirms the dominant role that fishing has on the probability that popula-

tions will respond to regime shifts in environmental variables, underscoring the fundamental

necessity of accounting for fishing mortality in any analysis of regime shifts in commercially

exploited marine fishes [4, 18, 33].

For our case study of Norwegian Skagerrak cod, our work suggests that steadily increasing

fishing mortality from commercial and recreational fisheries has increasingly sensitized the

cod to regime shifts in NAO, zooplankton abundance, and water temperature. Fishing mortal-

ity remains unsustainably high in the region [41]. This, coupled with small population size and

increased summer and autumn water temperatures that broach the thermal limit for the spe-

cies, are likely major factors limiting the recovery capacity for cod in southern coastal Norway.

Supporting information

S1 Fig. Posterior predictive distributions of data on sea surface water temperatures mea-

sured at Flødevigen Research Station for the months of January through December at a

hazard rate (λ) of 10 years (M = 10 years). The shaded area represents the 68% central proba-

bility interval (CPI) of the posterior predictive distribution; thus, it includes uncertainty about

the mean and the variance. Horizontal lines in each shaded region represents the mean.

(PNG)

S2 Fig. Posterior predictive distributions of data on sea surface water temperatures mea-

sured at Flødevigen Research Station for the months of January through December at a

hazard rate (λ) of 20 years (M = 10 years). See the caption for Fig 1 or S1 Fig for explanations

of the shaded regions of the data.

(PNG)

S3 Fig. Posterior predictive distributions of data on sea surface water temperatures mea-

sured at Flødevigen Research Station for the months of January through December at a

hazard rate (λ) of 50 years (M = 10 years). See the caption for Fig 1 or S1 Fig for explanations
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S1 Data. North Atlantic Oscillation time series.
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S2 Data. Cod catch rate time series.
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S3 Data. Calanus finmarchicus abundance time series.
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S4 Data. Sea surface temperature time series.
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S5 Data. Fishing mortality time series.
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S6 Data. Cod spawning stock biomass time series.
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