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Abstract

As a first attempt to assess bone health in cleaner fish production, wild and cultured

ballan wrasse Labrus bergylta and lumpfish Cyclopterus lumpus were examined by radi-

ology. In C. lumpus, wild fish (57%) had more vertebra deformities (≥1 deformed ver-

tebrae) than cultured fish (2–16%). One wild C. lumpus had lordosis and another was

missing the tail fin. In L. bergylta, wild fish (11%) had fewer vertebra deformities than

cultured individuals (78–91%). Among the cultured L. bergylta, 17–53% of the fish

had severe vertebra deformities (≥6 deformed vertebrae) with two predominate sites

of location, one between vertebra 4 and 10 (S1) in the trunk, and one between

19 and 26 (S2) in the tail. Fusions dominated S1, while compressions dominated S2.

Although wild L. bergylta had a low vertebra deformity level, 83% had calluses and

14% had fractures in haemal/neural spines and/or ribs. The site-specific appearance

and pathology of fracture and callus in wild L. bergylta suggests these are induced by

chronic mechanical stress, and a possible pathogenesis for fish hyperostosis is pres-

ented based on this notion. In conclusion, good bone health was documented in cul-

tured C. lumpus, but cultured L. bergylta suffered poor bone health. How this affects

survival, growth, swimming abilities and welfare in cultured wrasse should be further

investigated.

Significance Statement: Skeletal deformities were studied in ballan wrasse and lump-

fish of both wild and cultured origin for the first time to identify potential welfare

issues when deploying them as cleaner fish in salmon sea cages. While cultured lump-

fish showed good bone health, cultured wrasse had a high occurrence of vertebra

deformities, which is expected to impact lice eating efficiency and animal welfare

negatively. These deformities are most likely induced early in development.
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1 | INTRODUCTION

Infestation by the sea lice Lepeophtheirus salmonis K. 1837 and to

lesser extent Caligus elongatus N. 1832 are major challenges in sea

cage based aquaculture of salmonids in the northern hemisphere

while species such as Caligus teres W. 1905 and C. rogercresseyi B. &

B. 2000 pester the southern hemisphere (Costello, 2009; Abolofia

et al., 2017; Brooker et al., 2018). To control sea lice levels on farmed

Salmo salar, chemical, mechanical and thermal treatments are currently

in use (Overton et al., 2018), while technological solutions to minimize

risks of infestations are emerging (Stien et al., 2018). However, as an

alternative to other delousing methods, deployment of cleaner fish

(Bjordal, 1990) in sea cages is growing in popularity as they have been

found to efficiently remove L. salmonis from S. salar (Imsland

et al., 2018a; Leclercq et al., 2014; Liu & Bjelland, 2014). The number

of cleaner fish deployed has therefore increased drastically in recent

years from fewer than 2 million fish in 2008 to more than 50 million

fish in 2017 in Norway alone (Norwegian Directorate of

Fisheries, 2018). Ballan wrasse Labrus bergylta A. 1767 (Skiftesvik

et al., 2013) and lumpfish Cyclopterus lumpus L. 1758 (Powell

et al., 2018) are the most commonly used species. Initially, only wild

wrasse species were deployed (Gonzalez & de Boer, 2017;

Treasurer, 2002), but cultured L. bergylta (Skiftesvik et al., 2013) and

C. lumpus (Imsland et al., 2014a) are now widely used.

When cleaner fish are used in Atlantic salmon sea-cage aquacul-

ture, they must cope with strong tidal currents and hunt sea lice on

the constantly swimming salmon. For this purpose, they rely on an

anatomically functional vertebral column. Deformities in this structure

may compromise swimming ability (Basaran et al., 2007; Powell

et al., 2009). Since both L. bergylta and C. lumpus are new species in

aquaculture (e.g., Powell et al., 2018), fundamental health aspects such

as skeletal development and deformities have not yet been studied.

Skeletal deformities are known to develop in both cultured and wild

fish, but the occurrence is generally higher in cultured compared to

wild fish (Boglione et al., 2001; Fjelldal et al., 2009a).

The teleost vertebral column is built up of amphicoelous (hour-

glass shaped) vertebrae that are separated by notochordal tissue,

where trunkal vertebrae are rib bearing in contrast to caudal vertebrae

that have haemal arches and spines (Ford, 1937). Both trunkal and

caudal vertebra have neural arches and spines. The most common ver-

tebra body deformities are compressions (Witten et al., 2005), fusions

and cases where two or more adjacent vertebra fuse and remodel in

to a “normal” enlarged vertebra (Witten et al., 2006). In compressed

vertebrae, the prefect hourglass-shaped biconoid amphicoelous core

is malformed, giving the vertebra an anterior–posterior compressed

phenotype (Berg et al., 2006; Witten et al., 2005). Fusion normally

occurs secondary to compression (Witten et al., 2006). In cultured

S. salar, reduced growth has been observed when more than 15% of

their vertebra bodies are deformed (Hansen et al., 2010). Growth per-

formance is a key indicator of animal welfare (EFSA, 2008), and a

deformity level that affects growth can therefore be considered

severe. In addition to the deformities of the vertebral bodies, the

whole vertebral column can curve, and lordosis, scoliosis and kyphosis

have all been reported in fish (Witten et al., 2009). Moreover, dorso-

ventral shifts or reduced intervertebral spaces may occur between

normal adjacent vertebra (Witten et al., 2009). Pathologies may also

occur in ribs, haemal and neural spines, and pterigophores. The bone

in these structures can swell to form large calcified calluses. This con-

dition has been reported in several species and is termed fish hyperos-

tosis (Smith-Vaniz et al., 1995). In addition, Fjelldal et al. (2018)

reported fractures in neural and haemal spines of Atlantic cod Gadus

morhua L. 1758.

The purpose of the present study was to assess the occurrence,

severity and types of pathologies in the vertebral column of L. bergylta

and C. lumpus, the two most commonly used cleaner fish in salmon

aquaculture. This was achieved by radiological examination. Fish from

both cultured and wild origins were analysed to allow us to define an

acceptable baseline of vertebral column deformity.

2 | MATERIAL AND METHODS

All experiments were conducted in accordance with the laws and reg-

ulations of the Norwegian Regulation on Animal Experimenta-

tion 1996.

2.1 | Fish material

The number of individuals, size and origin for the different fish groups

are summarized in Tables 1 and 2. Wild L. bergylta (Ballan Wild) and

C. lumpus (Lump Wild) were purchased from a local fisherman. The

fish were caught by standing nets at 20–50 m depth in Masfjorden,

Norway, and kept frozen until defrosting and radiology.

Cultured L. bergylta were randomly sampled from a stock pro-

duced at the Austevoll Research Station, Institute of Marine Research

(Ballan IMR). These had been raised from brood stock at the same

facility. Three different groups of cultured L. bergylta were also col-

lected from one commercial producer. These were transported to IMR

from the commercial producer MOWI Norway, cleaner fish depart-

ment, sites Rong and Sykkulven. One commercially cultured

L. bergylta group was kept in holding tanks at the IMR Matre Research

Station for 4–16 weeks before sampling (Ballan Com 1). The two

other commercially cultured L. bergylta groups were sampled at trans-

fer to sea cages at the Matre Research Station (Ballan Com 2A and

Ballan Com 3A) and after 3 months in cages (Ballan Com 2B and Bal-

lan Com 3B). Ballan Com 1, 2 and 3, and Ballan IMR were all from dif-

ferent year classes. Cultured C. lumpus were collected from the Matre

Research Station on three occasions: (i) C. lumpus sampled from

indoor tanks (Lump IMR 1), (ii) C. lumpus from another production

batch that were sampled before transfer to sea cages (Lump IMR 2A),

and (iii) the same batch as (ii), but sampled after 3 months in sea cages

(Lump IMR 2B). The IMR C. lumpus had been raised from brood stock

onwards at the IMR Austevoll Research Station before transfer to the

Matre Research Station. Cultured C. lumpus were also collected from

three different commercial sea cage sites: Lump Com 1, Lump Com
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2 and Lump Com 3. These were all from different C. lumpus produc-

tion sites. Lump IMR 1 was from a different year class than Lump IMR

2, and Lump Com 1, 2 and 3.

2.2 | Radiology

Fish were radiographed with a Direct Radiology System (Canon CXDI-

410C Wireless, CANON INC., Kawasaki, Japan) using a portable X-ray

unit (Portable X-ray Unit Hiray Plus, Model Porta 100 HF, JOB Corpo-

ration, Yokohama, Japan) at 88 cm distance with 40 kV and 10 mAs.

L. bergylta and C. lumpus were first radiographed as whole fish, then

the C. lumpus were filleted for a second round of radiography to get

better radiographs of their vertebral columns (C. lumpus skin contains

spines that are relatively radiodense and obstruct the vertebra). Each

fish was evaluated for different types of vertebra deformities (Witten

et al., 2009) and type and location were recorded. The deformities

were categorized into six main categories: compression (type 2, 3,

4, 5; Witten et al., 2009), fusion (6, 8), remodelling (type 7), vertical

shift (type 17), reduced intervertebral space (type 1) and lordosis (type

14). Additionally, the pterigophores, ribs, and neural and haemal

arches and spines were assessed for fractures and calluses (Fjelldal

et al., 2018).

2.3 | Calculations

For the percentage of deformed fish within a population, we present

data on those with ≥1 deformed vertebra in both species, and we con-

sidered those with ≥5 and ≥6 to be more severely deformed fish in

C. lumpus and L. bergylta, respectively, as previous work in S. salar dem-

onstrated that individual fish with ≥15% radiologically deformed verte-

bra show a decrease in growth (Hansen et al., 2010). In the present

material, L. bergylta had 36 or 37 vertebrae and C. lumpus 27 or 28.

3 | RESULTS

3.1 | L. bergylta

The prevalence of vertebra pathologies in wild L. bergylta was 11%

with only 1% with ≥6 deformed vertebra (Table 1). The most

TABLE 1 Prevalence (%) of different types of vertebral column deformities in wild and cultured ballan wrasse

Group N Length (mm)

≥1 def

v (%)

≥6 def

v (%)

C

v (%)

F&C

v (%)

R

v (%)

Other

(%)

≥1

callus (%)

≥1

swollen (%)

≥1

fracture (%)

≥1

deviation (%)

Ballan Wild 92 387 (230–460) 11 1 33.3 13.3 53.3 0.0 83 60 14 35

Ballan IMR 51 79 (50–102) 78 37 47.2 21.0 8.9 22.2 2 0 0 0

Ballan Com 1 45 250 (226–286) 89 53 70.4 15.0 1.5 13.1 47 27 22 0

Ballan Com 2A 22 106 (77–130) 91 41 77.6 17.8 1.9 2.8 0 0 0 0

Ballan Com 2B 173 133 (89–160) 81 34 77.2 14.2 4.1 4.5 1 0 0 1

Ballan Com 3A 12 172 (164–183) 83 17 47.1 39.2 11.8 2.0 8 0 0 0

Ballan Com 3B 68 181 (156–216) 82 38 60.6 23.7 10.6 5.0 10 4 1 0

Note. N, number of individuals examined. Length numbers in brackets are minimum and maximum lengths.def v, deformed vertebrae; C v, compressed ver-

tebrae; F&C v, fused and compressed vertebrae; R v, remodelled vertebrae. Other includes vertically shifted vertebrae and vertebrae with decreased inter-

vertebral space. The four latter categories represent the percentage of individuals with ≥1 callused, swollen or fractured neural/haemal spine and/or rib,

and with different types of deviations in the ribs. ‘≥1 def v’, ‘≥6 def v’, ‘≥1 callus’, ‘≥1 swollen’, ‘≥1 fracture’ and ‘≥1 deviation’ are percentages of individuals

with each condition. ‘C v’, ‘F&C v’ and ‘R v’ are percentages of deformed vertebrae with each condition.

TABLE 2 Prevalence (%) of different types of vertebral column deformities in wild and cultured lumpfish

Group N Length (mm) ≥1 def v (%) ≥5 def v (%) C v (%) F&C v (%) R v (%) VS v (%) RIS (%) EL v (%)

Lump Wild 30 400(290–450) 57 23 13 27 21 23 16 0

Lump IMR 1 80 199(140–244) 16 3 29 18 50 0 3 0

Lump IMR 2A 129 122 (99–139) 2 2 0 0 0 0 71 29

Lump IMR 2B 105 130 (92–164) 2 0 0 0 0 33 67 0

Lump Com 1 47 107 (68–142) 4 0 67 0 0 33 0 0

Lump Com 2 41 110 (86–138) 12 0 21 58 21 0 0 0

Lump Com 3 36 126 (97–156) 11 0 38 0 50 12 0 0

Note. N, number of individuals examined. Length numbers in brackets are minimum and maximum lengths. def v, deformed vertebrae; C v, compressed ver-

tebrae; F&C v, fused and compressed vertebrae; R v, remodelled vertebrae; VS v, vertically shifted vertebrae; RIS, reduced intervertebral space; EL, elon-

gated vertebrae. ‘≥1 def v’ and ‘≥5 def v’ are percentages of individuals with each condition. ‘C v’, ‘F&C v’, ‘R v’, ‘VS v’ and ‘RIS’ are percentages of

deformed vertebrae with each condition.
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prominent pathology was two vertebra that had fused and remodelled

into a single vertebra with a normal X shape (type 7 in Witten

et al., 2009; Table 1 and Figure 1a). In contrast, the prevalence of cal-

luses was 83% (Table 1) and located in three regions: in the neural

spines 19 to 26 (Figure 1c,g), in the haemal spines nos. 21 to 29 (Fig-

ure 1g) and along the ribs 5 to 15 (Figure 1b,g). Calluses on anal fin

pterigophores and tail fin lepidotrichs were also observed (Figure 1a).

Up to four calluses could be observed on one neural spine (Figure 1d).

Calluses had one of two phenotypes, either those with reduced radio-

density in the centre (Figure 1d or those with a consistent radio-

density throughout the entire structure (Figure 1e). Some haemal and

neural spines were entirely swollen throughout, from the base to the

tip. This “swollen” spine phenotype (Figure 1c) co-occurred in the

same regions as the calluses. We observed fractures in both the ribs

and the neural spines, although these occurred sporadically between

vertebra 2 and 22 (Figure 1b). Finally, wild L. bergylta often had ribs

that deviated from relatively straight structures to become curled

and/or show prominent wiggles towards the tip (Figure 1b). Some ribs

also lacked radiodensity within certain regions (Figure 1b). Abnormali-

ties in the tail fin were readily observed, but not quantified

(Figure 1a). Of note, wild fish often had large calciferous masses pass-

ing through the intestinal system (Figure 1f).

In cultured L. bergylta, the prevalence of fish with ≥1 deformed ver-

tebra was 7- to 8-fold higher than in wild L. bergylta, whereas the preva-

lence of severely affected fish with ≥6 deformed vertebra was 17- to

58-fold higher (Table 1). Vertebra deformities predominantly consisted

of compressed and/or fused vertebra, whereas remodelled vertebra had

a low prevalence (Table 1). The predominate regions for vertebra defor-

mities in cultured L. bergylta were between vertebrae 4 and 10, and

between 19 and 26 (Figure 2d). Fusions in which the inflicted vertebra

were not remodelled with a typical X shape (types 6 and 8 in Witten

et al., 2009) dominated the cranial deformity region (Figure 2a,b,d),

whereas vertebra with one-sided compressions, internal dorsal or ventral

shifts, or homogenous compression, or those vertebra that were verti-

cally shifted dominated the caudal deformity region (Figure 2a,c,d). Cal-

luses, swelling or fractures in the spines or ribs were generally less

prevalent than in wild fish, and only one farmed fish showed curled or

wiggly ribs (Table 1). Other notable observations include one fish with a

neural spine fused to a dorsal fin pterigophore (Figure 2e), one fish with

a split neural spine, giving the spine a “pitchfork” phenotype (Figure 2f),
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F IGURE 1 Skeletal pathologies in
wild ballan wrasse, lateral radiographs.
(a) Whole skeleton. White arrowheads
indicate a callus in neural spine 3, a
callus in an anal fin pterigophore and
a callus within a tail fin lepidotrich.
Note that not all calluses are

highlighted for clarity. Within the
dashed black outline, vertebrae 5 and
6 have fused and remodelled to form
a single vertebra (type 7 in Witten
et al., 2009). (b) White asterisks
indicate fractures and the dashed
black outline highlights “wiggly” ribs,
some are curled at the tip. White
arrowheads indicate a callus. (c) White
arrowheads indicate the numerous
calluses observed in neural spines and
pterigophores, whereas black stars
highlight “swollen” neural spines.
(d) White arrowheads indicate neural
spine calluses lacking consistent
radiodensity. (e) The white arrowhead
indicates a neural spine callus with
relatively consistent radiodensity. (f)
The dashed black outline indicates a
large calciferous mass within the
intestinal system. (g) The prevalence
of neural/haemal spines or ribs with
callus formations within the entire
population
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one fish with one vertebra that had two neural spines, but only one pair

of ribs (Figure 2g), one fish with a lower jaw deformity (Figure 2h), and

one fish with a short opercula (not shown).

3.2 | C. lumpus

The prevalence of wild C. lumpus with vertebra deformities was 57%,

with 23% having ≥6 deformed vertebrae (Table 2). The most prominent

deformity types (Table 2) were compressed and fused vertebra

(Figure 3b), vertically shifted vertebra (Figure 3c), and two/three

vertebra fused and remodelled into one (Figure 3d). One wild fish had

lordosis, but with no external phenotype (Figure 3b). Vertebra deformi-

ties were most apparent around vertebra 10–11, but there was an even

distribution of deformities along the vertebral column (Figure 3f). Other

observations include one wild fish missing its entire tail and ural part of

the vertebral column (Figure 3e), whereas another was missing half the

tail fin (not shown). In both cases, the skin had completely healed,

suggesting the fish had lived for some time with these conditions.

Farmed C. lumpus had substantially lower prevalences of deformed

fish compared to their wild counterparts, with a 4–11-fold decrease in

those with ≥1 deformed vertebra (Table 2). In general, vertebra
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F IGURE 2 Skeletal pathologies in farmed ballan wrasse, lateral radiographs. (a) Whole skeleton. The white arrowhead indicates a “swollen”
neural spine with calluses. The white asterisk represents a fracture within a neural spine. The dashed black outline indicates a fusion centre with
compressed and fused vertebra (type 8 in Witten et al., 2009). The black arrowheads indicate vertical shifts between adjacent vertebrae (type
17 in Witten et al., 2009). The black stars show vertebrae with one-sided compression (type 5 in Witten et al., 2009). (b) Fusion centre with
compressed and fused vertebrae in the cranial trunk. (c) Multiple compressed vertebrae along the tail region of the vertebral column. Note also
that vertebrae 33 and 34 have fused and remodelled into a single vertebra. (d) The prevalence of vertebra deformities along the vertebral column
in farmed wrasse. The data were pooled for all populations of farmed fish. (e) A neural spine fused with a pterigophore. (f) A neural spine that is
split towards the end, resulting in a “pitchfork” phenotype. (g) A vertebra with two neural spines, but only one pair of ribs. (h) Lower jaw deformity
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compressions without fusion were the most common deformity type,

along with vertebra that had fused and successfully remodelled (Table 2).

4 | DISCUSSION

There are several studies on behaviour (Imsland et al., 2014b, 2018b;

Leclercq et al., 2018), growth and cataract formation (Imsland

et al., 2018c), temperature effects and swimming capabilities (Hvas

et al., 2018; Yuen et al., 2019), stress physiology (Hvas et al., 2018;

Jorgensen et al., 2017; Piccinetti et al., 2017), and diseases (Alarcon

et al., 2016; Ruane et al., 2018; Treasurer, 2012) in cleaner fish, but this

is the first attempt to assess and compare the incidence of bone pathol-

ogies between wild and cultured L. bergylta and C. lumpus. Screening

different production batches of cultured fish and wild fish showed low

and high vertebra deformity rates in cultured C. lumpus and L. bergylta,

respectively, while among wild fish, C. lumpus had more deformities

compared to L. bergylta. Furthermore, to our surprise, wild L. bergylta

had a high occurrence of neural/haemal spine and rib pathologies, and

lack of tail fin and lordosis were recorded in wild C. lumpus. The present

study presents baseline data on occurrence and type of vertebral col-

umn deformities in L. bergylta and C. lumpus.

4.1 | Wild C. lumpus can survive with severe
vertebra deformities

In the presently studied wild fish, the L. bergylta had a vertebra defor-

mity rate of 12% and C. lumpus 57%. Earlier records on vertebra

deformity rate in wild fish have shown 3–43% in salmonids (Fraser

et al., 2014; Gill & Fisk, 1966; Sambraus et al., 2014) and 6–33% in

gadoids (Fjelldal et al., 2009a; Jawad et al., 2018; Wunder, 1971). Sur-

veys on deformity rate in wild marine fish in Masfjorden, Norway, the

area where the currently investigated wild L. bergylta and C. lumpus

were collected, have shown 6% in G. morhua (Fjelldal et al., 2009a)

and 33% in haddock Melanogrammus aeglefinus L. 1758 (Jawad

et al., 2018). Of the analysed wild C. lumpus, 23% were categorized as

having severe vertebra deformities. One fish had severe lordosis,

while another lacked the entire tail fin and the ural region of the ver-

tebral column, but the remaining tail was completely healed. This

shows that C. lumpus can survive in nature with severe deformities

and handicaps. This may contribute to the high deformity rate

observed in large adult wild C. lumpus. That some species can survive

in nature without a tail fin (e.g., Tyler et al., 2014) probably reflects

how much they depend on their caudal fin as a hydrofoil

(Nursall, 1958) and their reliance on the dorsal, anal and pectoral fins

for locomotion. Moreover, C. lumpus are sluggish fish that feed on

larger planktonic organisms or benthic invertebrates (Davenport,

1985) and will therefore likely still be able to find food despite com-

promised swimming capabilities. In addition, owing to their globiform

morphology, C. lumpus will have a limited number of natural predators

once they reach larger sizes, which further helps explain how they can

survive in nature with severe deformities.

4.2 | Swelling of specific bones in wild L. bergylta

Although the vertebra deformity rate in wild L. bergylta was low, 83%

of the inspected fish had fractures and calluses in their ribs and/or

neural and haemal spines. Recently, Fjelldal et al. (2018) described

fracture and fracture repair in neural and haemal spines in G. morhua,

where fractures healed normally by callus formation and remodelling

back into a normal structure. Some of the studied L. bergylta had

abundant callus formation, larger than the calluses reported by Fjelldal

et al. (2018), but similar to those reported in M. aeglefinus (Jawad

et al., 2018) and striped piggy Pomadasys stridens F. 1775

(Jawad, 2013). Why bone fracture and calluses occur in ribs and neu-

ral and haemal spines in wild fish is unclear. However, as these pathol-

ogies were site specific this could give an indication as to their cause.

For instance, in neural and haemal spines, calluses occurred in the

anterior tail region of the vertebral column. This region has high

mechanical loading imposed by the swimming musculature and flexion

of the vertebral column, which may indicate stress fractures as being

the root cause. For example, human rowers are known to develop

site-specific stress fractures in ribs due to mechanical stress

(McDonnell et al., 2011). In L. bergylta, the ribs are not expected to

suffer from mechanical loading during swimming, but may suffer from

repetitive loading due to food ingestion. We observed abundant calci-

fied masses in the stomachs of radiographed wild L. bergylta, presum-

ably due to feeding on shellfish and echinoderms. Subsequently, these

hard structures may repetitively load the ribs, inducing stress fracture.

Under conditions of repetitive stress some rib fractures may not heal

normally, and nonunions of muscular force stress-induced rib frac-

tures occur in human athletes (Proffer et al., 1991). Suh et al. (2001)

reported a hypertrophic nonunioned rib fracture with abundant callus

formation and radiological appearance similar to that later found in

haemal spine calluses in wild M. aeglefinus (Jawad et al., 2018) and in

ribs, and haemal and neural spines of the currently inspected wild

L. bergylta. Hence, in fish, the repetitive stress caused by body undula-

tion during swimming and ingestion of large hard particles may cause

site-specific chronic mechanical stress and stress fractures that

develop into nonunions caused by impaired callus formation. Indeed,

some wild L. bergylta had neural spines with fractures that were

clearly displaced. Furthermore, calluses were only observed in wild

L. bergylta and in the largest size class of cultured L. bergylta, which

suggests that the risk of fractures and calluses is associated with later

stages of development. Nevertheless, the reasons why presumed nor-

mal behaviour in a natural habitat may induce stress fractures in some

fish species is perplexing and deserves to be studied further.

4.3 | Can stress fracture induce fish hyperostosis?

Resently, both Fjelldal et al. (2018) and Jawad et al. (2018) discussed a

possible link between bone fracture and fish hyperostosis – swollen

bone (Korschelt, 1940; Smith-Vaniz et al., 1995). Fish hyperostosis

has interested scientists for decades and has been identified in at least

22 families, among them extant or fossilized marine species, and
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shows a species-specific site of occurrence (Smith-Vaniz et al., 1995;

Smith-Vaniz & Carpenter, 2007). Indeed, the current study shows that

the occurrence of haemal and neural spines that are entirely swollen

or have fractures and calluses, with and without reduced radiodensity,

is highly site specific in L. bergylta. The current study sets a path for a

plausible pathogenesis for site-specific hyperostosis development in

fish: site-specific chronic mechanical stress ! stress fracture ! failed

callus formation ! nonunions ! fish hyperostosis (Figure 4).

4.4 | Site-specific vertebra deformity in cultured
L. bergylta and low deformity rate in cultured C. lumpus

At this stage, it is unclear why cultured L. bergylta have a high vertebra

deformity rate. In fish vertebrae, the mineral content is important for

structural integrity and mechanical strength (Fjelldal et al., 2006; Ham-

ilton et al., 1981). As such, vertebrae with a low mineral content are

soft and rubbery (Baeverfjord et al., 1998) and can develop a com-

pressed phenotype (Fjelldal et al., 2007). Although all vertebrae along

the vertebral column may have a low mineral content (Fjelldal

et al., 2006), mineralization-related deformity development is often

site specific (Fjelldal et al., 2009b), and may reflect where the mechan-

ical loading imposed by the lateral musculature is largest and/or the

ontological state at which the deformity is induced (reviewed in

Fjelldal et al., 2012a). Indeed, the current vertebra deformities in cul-

tured L. bergylta were predominately located within two regions,

between vertebra 4 and 10 (S1) and between vertebra 19 and 26 (S2).

Vertebra fusion dominated S1, while compression dominated S2.
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was observed in one wild individual. This fish had multiple vertebral
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vertebra that have fused together and remodelled into a single large
vertebra. (e) A wild lumpfish of 2.2 kg that was missing the ural part of
the vertebral column and the tail fin. The surface of the wound was
completely healed. (f) The prevalence of deformed vertebrae along
the vertebral column in wild lumpfish
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Compressed vertebrae may ultimately fuse, caused by remodelling

and mineralization of the ectopic cartilage that occupies the inter-

vertebral space (Witten et al., 2006). Hence, S1 deformities were most

probably older than the S2 deformities. Similarly, vertebra deformities

in the trunk region of S. salar develop earlier in life than those in the

caudal region (Grini et al., 2011). Deformity development is a rela-

tively slow process, and there can be a substantial time gap between

the deformity induction and development (Fjelldal et al., 2012b; Grini

et al., 2011). Hence, the advanced vertebra deformities (S1 fusions)

displayed by the smaller cultured L. bergylta (~8 g) in the current study

show that induction occurred early in development. This is further

supported by the present consistent deformity prevalence in cultured

L. bergylta across all sizes or after periods in sea cages. In conclusion,

the results show that the production methods used in L. bergylta aqua-

culture do not support normal vertebra development. As a first step,

new studies should focus on early life bone development and mineral-

ization in cultured L. bergylta to further understand the causal factor(s)

for deformity development.

Considering that C. lumpus is a relative new species in aquacul-

ture, the observed low deformity rate is surprising and reflects that

the currently used production method supports normal bone develop-

ment in this species. Looking at the radiographs, the vertebrae of both

wild and cultured C. lumpus have a low radiodensity, opposite to

L. bergylta where the radiodensity of the vertebrae is very high. This

may reflect that there is a difference in vertebra bone mineral content

between the species that may explain why L. bergylta seems to be

prone to deformity development, while C. lumpus are not. However,

the mineral content and morphology of vertebrae in wild L. bergylta

and C. lumpus are unexplored. The link between nutrition and skeletal

pathology in fish is clear (Baeverfjord et al., 2019; Lall & Lewis-

McCrea, 2007; Sugiura et al., 2004), and if the species-specific dietary

mineral requirement is not met, vertebrae bone mineralization is lower

than normal, leading to deformity development (Fjelldal et al., 2009b).
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