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The availability of genome sequences, annotations, and knowledge of the biochemistry

underlying metabolic transformations has led to the generation of metabolic network

reconstructions for a wide range of organisms in bacteria, archaea, and eukaryotes.

When modeled using mathematical representations, a reconstruction can simulate

underlying genotype-phenotype relationships. Accordingly, genome-scale metabolic

models (GEMs) can be used to predict the response of organisms to genetic and

environmental variations. A bottom-up reconstruction procedure typically starts by

generating a draft model from existing annotation data on a target organism. For

model species, this part of the process can be straightforward, due to the abundant

organism-specific biochemical data. However, the process becomes complicated for

non-model less-annotated species. In this paper, we present a draft liver reconstruction,

ReCodLiver0.9, of Atlantic cod (Gadus morhua), a non-model teleost fish, as a

practicable guide for cases with comparably few resources. Although the reconstruction

is considered a draft version, we show that it already has utility in elucidating metabolic

response mechanisms to environmental toxicants by mapping gene expression data of

exposure experiments to the resulting model.

Keywords: genome-scale metabolic reconstruction, Atlantic cod, less-annotated species, model curation,

environmental toxicology

1. INTRODUCTION

Induced by the availability of next-generation DNA sequencing as well as high-throughput
genomic, proteomic, and metabolomic data, genome-scale metabolic models (GEMs) have become
fundamental tools in the systems biology of metabolism. To develop a GEM, metabolic genes
and their product enzymes are assembled into a network of metabolic reactions carried out by
an organism (Palsson, 2006). Such networks can be used as a platform to answer relevant biological
questions, by transforming biochemical knowledge into a mathematical format and computing
appropriate physiological states (Orth et al., 2010; Schellenberger et al., 2011). Using Boolean
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logic representation, gene-protein-reaction (GPR) associations
depict direct connections between genotype and metabolic
capability (Nielsen, 2017). GEMs have a wide scope of
applications, among which are the contextualization of
omics data, hypothesis-driven discovery, support for metabolic
engineering, modeling interactions among cells and organisms,
drug targeting, and prediction of enzyme functions (Oberhardt
et al., 2009; Gu et al., 2019).

A comprehensive bottom-up protocol to generate high-
quality reconstructions was presented a decade ago (Thiele and
Palsson, 2010). It consists of four main phases presented as an
exhaustive list of steps. First, a draft reconstruction is generated
based on the genome annotation of a target organism and
available information in biochemical databases, usually in an
automated manner. Noticeably, the quality of the draft model
is highly impacted by the quality of the genome annotation, in
addition to the abundance of data on the organism in public
repositories. The draft is then subject to manual refinement
that revises and curates all gene and reaction entries. Next, the
reconstruction can be converted into mathematical format which
is thereafter analyzed for gap filling and tested for stoichiometric
balance. Several computational tools were developed to cover
this process with automated functionalities (Gu et al., 2019).
They primarily vary in programming languages, linked databases,
input template models, and supported target organisms.

Marine organisms, including fish, represent important
resources for human societies, and will be essential components
of a growing blue bioeconomy. As we are entering the UN
Decade of Ocean Science for Sustainable Development (Visbeck,
2018; Ryabinin et al., 2019), understanding and predicting
the effects of environmental stressors, including xenobiotic
exposures, on marine species will be one of the main challenges.
In this context, metabolic reconstructions can prove very
useful. Notwithstanding, when it comes to teleost GEMs, only
two models are presented in the literature, MetaFishNet (Li
et al., 2010) and ZebraGEM (Bekaert, 2012; van Steijn et al.,
2019). MetaFishNet covers five fish species which makes it
challenging to analyze organism-specific data using this model.
In addition, subsystems in this GEM are not interconnected
or compartmentalized. The first version of the ZebraGEM, a
zebrafish GEM, did not contain GPR associations. A very recent
version, ZebraGEM 2.0 (van Steijn et al., 2019), now includes
those associations, with standardized component names, and
expanded reactions list.

The Atlantic cod (Gadus morhua) is a key species in the
North Atlantic marine ecosystem. Its genome was first published
in 2011 (Star et al., 2011) and has been followed up by more
extensive genome sequencing, enabling novel genomic and
transcriptomic assemblies (Torresen et al., 2017) as well as a
Trinity assembly (Zhang et al., 2020) and a very recent assembly
gadMor3.0 (GenBank assembly accession: GCA_902167405).
These resources allow extensive gene mapping and bioinformatic
analysis, such as the identification of the gene complement of the
Atlantic cod cytochrome P450 superfamily (Karlsen et al., 2012)
or the total chemical defensome (Zhang et al., 2019). Due to its
habitat near offshore installations as well as coastal industries
and communities, the Atlantic cod serves as a relevant model

species for studying the effects of and responses to anthropogenic
activities (Dale et al., 2019). In addition, the lipid-rich liver of
cod serves as a magnet for lipophilic environmental pollutants,
increasing the bioaccumulation within each fish with age and the
biomagnification of compounds through the food chain.

The Atlantic cod has lost the MHC II and related genes of
the adaptive immune system (Star et al., 2011). Furthermore,
we have recently shown that cod, together with several other
teleost fish, have lost the pregnane x receptor (pxr, nr1i2)
gene from their genomes (Eide et al., 2018). This xenosensor
is activated by a wide range of drugs and pollutants, and
regulates the transcription of genes involved in all phases of the
xenobiotic and steroid biotransformation (Kliewer et al., 2002).
PXR also mediates regulation of hepatic energy metabolism in
humans, by inducing lipogenesis and inhibiting fatty acid beta-
oxidation (Wada et al., 2009). The absence of a pxr gene thus
leads to questions regarding how the Atlantic cod responds to
environmental contaminants that bind this receptor in other
species. Results from an in vivo exposure study, where cod was
injected the legacy polychlorinated biphenyl congener PCB153,
a compound known to bind PXR in other species, showed
indications that lipid metabolism was affected (Yadetie et al.,
2017). In view of these findings, an ensuing effort was initiated to
generate a metabolic reconstruction of Atlantic cod liver, with a
focus on lipid and xenobiotic metabolism pathways. In this paper,
we present and discuss our metabolic reconstruction progress in
terms of steps, methods, choice of tools, and challenges.

2. METHODS

Selecting the Appropriate Tool
Many computational tools have been developed to help automate
steps of the GEM reconstruction process which is usually
laborious and time-consuming (Thiele and Palsson, 2010). The
choice of tool for our reconstruction work on Atlantic cod was
predominantly narrowed down by the fact that this is a non-
model and less-annotated organism. De novo reconstruction
based on metabolic databases do not apply in such cases, but
rather GEMs of related scope needs to serve as input. Another
important feature for us was the tool’s support for eukaryote
modeling. In view of these constraints, the Reconstruction,
Analysis, and Visualization of Metabolic Networks (RAVEN 2.0)
MATLAB toolbox (Wang et al., 2018) was selected. It is used
for semi-automated draft model reconstruction and provides
curation, simulation, and constraint-based capabilities that are
compatible with the COBRA toolbox. RAVEN has been used
to generate GEMs for several organisms including bacteria,
archaea, parasites, fungi, and various human tissues. We also
note that the toolbox allows de novo draft reconstruction based
on metabolic pathway databases, namely KEGG and MetaCyc,
although that it is not applicable to our case study. Most
importantly, RAVEN can generate draft models for a target
organism based on protein homology, using existing high-quality
GEMs of organisms at an appropriate evolutionary distance.
Two main functions are applied in this process. getBlast or
getBlastFromExcel construct a structure including homology
measurements between the target organism and the template
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organisms. Then, getModelFromHomology uses this structure
along with existing template GEMs to create a draft model
containing reactions associated with orthologous genes. The
subsequent draft is then subject to curation and refinement. The
RAVEN toolbox includes several functions that are implemented
to support subsequent steps.

We also highlight a few approaches. CarveME (Machado et al.,
2018) uses a top-down approach, based on Python command-
line, to convert curated reactions from the BiGG database
into organism-specific GEMs. AutoKEGGRec (Karlsen et al.,
2018) is a novel tool which is based on the KEGG pathways
database (Aoki and Kanehisa, 2005) and is fully integrated with
the COBRA toolbox (Schellenberger et al., 2011). AuReMe (Aite
et al., 2018) presents a customized platform and pipelines to
generate GEMs while preserving metadata and ensuring model
traceability. It is also linked to the BiGG knowledgebase (Duarte
et al., 2007) and the MetaCyc database (Caspi et al., 2013). For
a thorough review of GEM reconstruction tools, we refer to the
recent paper by Mendoza et al. (2019). The tools available for
non-model species reconstructions (Henry et al., 2010; Boele
et al., 2012; Hanemaaijer et al., 2017; Machado et al., 2018; Wang
et al., 2018) are listed in Supplementary Table S1.

Choosing the Reconstruction Template
With the Atlantic cod liver as our reconstruction scope, we
surveyed the literature for a relevant GEM that could be used
as an input template to the RAVEN 2.0 toolbox. In the absence
of tissue-specific models for fish species and the availability of
a human liver GEM that greatly focuses on lipid metabolism, a
primary trade-off was between using a generic template from a
phylogenetically closer species, i.e., zebrafish, or using a liver-
specific template from human that falls within our reconstruction
scope. The iHepatocytes2322 (Mardinoglu et al., 2014) consensus
GEM was our template of choice. The reactions and associated
proteins included in iHepatocytes2322 were assigned into eight
compartments. More details can be found in the original
publication (Mardinoglu et al., 2014).

Of the two available fish GEMs, the MetaFishNet (Li
et al., 2010) involves five fish species: zebrafish (Danio
rerio), medaka (Oryzias latipes), Takifugu (Takifugu rubripes),
Tetraodon (Tetraodon nigroviridis), and stickleback (Gasterosteus
aculeatus). Here, cDNA sequences from those species were
analyzed and the corresponding list of metabolic genes was
formed based on gene ontology. This list was then used to
identify enzymes based on their orthology to human genes.
Metabolic reactions were integrated from EHMN, the human

metabolic network at UCSD (BiGG) (Duarte et al., 2007), and
the D. rerio metabolic network from KEGG (Aoki and Kanehisa,

2005). The other fish model is ZebraGEM (Bekaert, 2012). It
is a comprehensive GEM based on the literature and D. rerio
biochemical data collected from various resources. This model

is manually curated with gaps extensively checked and filled.

An updated version, ZebraGEM 2.0, now includes the GPR

associations and essential reactions, which were not previously

covered in the first version. Both versions simplify the description

of lipid metabolism processes by mainly discarding reactions
specific to fatty acids. Therefore, essential pathways in our

reconstruction scope were excluded from ZebraGEM, which
makes it unfit to our case study.

Initially, the global reconstruction of the human metabolic
network, Recon 1, was published in 2007 (Duarte et al., 2007).
Several network and supporting information updates have
followed. A recent Recon 3D version includes a thorough
cataloge of GPR associations in addition to structural
information on metabolites and enzymes (Brunk et al., 2018).
This version also comprises a three-dimensional metabolite
and protein structure data which allow integrated analyses
of metabolic functions in humans. The Edinburgh Human
Metabolic Network (EHMN) was presented concurrently to
Recon 1 (Ma et al., 2007). The Human Metabolic Reaction
(HMR) database (Agren et al., 2012) was later generated by
integrating Recon 1 and EHMNwith biochemical reactions from
KEGG (Aoki and Kanehisa, 2005) and MetaCyc (Caspi et al.,
2013) databases. An updated version (HMR 2.0) with emphasis
on lipid metabolism was later introduced (Mardinoglu et al.,
2014). Several subsequent tissue- and context-specific GEMs
were released. They include iAdipocyte1809, iMyocytes2419,
and CardioNet (Mardinoglu et al., 2013; Geng and Nielsen,
2017). We emphasize the consensus GEM for hepatocytes,
iHepatocytes2322, which was assembled from proteomics
data and previously published liver models. It is a consensus
hepatocyte GEM that is mainly generated from proteomics data
of several existing liver models, namely HepatoNet1 (Gille et al.,
2010), iLJ1046 (Jerby et al., 2010), iAB676 (Bordbar et al., 2011),
and iHepatocyte1154 (Agren et al., 2012). It is well-annotated
as it includes all the protein-coding genes and reactions in
those liver models. Notably, and in alignment with our GEM
context, iHepatocytes2322 extensively covers lipid metabolism
functions, such as the uptake of remnants of lipoproteins, the
formation and degradation of lipid droplets, and secretion of
synthesized lipoproteins, as well as xenobiotic biotransformation.
It consists of 2,322 genes, 5,686 metabolites, and 7,930 reactions,
separated into eight different compartments based on the HMR
2.0 database. Although the template is not fish-specific, the
important subcellular functions and mechanisms within the
compartments are conserved through evolution, particularly
among fish and humans (Schlegel and Stainier, 2007; Li et al.,
2010). Indeed, Zebrafish is widely used model to study human
metabolic diseases (Schlegel and Stainier, 2007; Seth et al., 2013;
Gut et al., 2017). However, there are differences in fat storage
sites between Atlantic cod and humans, the molecular bases of
which are not known. In Atlantic cod and other lean fish fat
is stored mainly in the liver, whereas in humans it is stored in
adipose tissues. In fact, cod liver normally contains 50–60% of
fat (Li et al., 1986) that is stored in peroxisomes and cytosolic
lipid droplets, and these subcellular compartments are also
included in iHepatocytes2322.

Generating an Atlantic Cod Liver Draft
Model
As described, we used the RAVEN 2.0 toolbox to generate
a draft metabolic reconstruction of the Atlantic cod liver,
based on protein homology, and using iHepatocytes2322 as our
input template.
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FIGURE 1 | The length distribution of the peptide sequences from three assemblies of Atlantic cod.

In addition to the template model as input, RAVEN 2.0
requires two FASTA files including the peptide sequences of
the target and the template organisms. The literature and
public repositories contain four main versions of Atlantic cod
genome annotations. The first assembly, gadMor1, was published
in 2011 (Star et al., 2011). An updated version, gadMor2,
with extensive genome sequencing enabling novel genomic and
transcriptomics assemblies followed in 2017 (Torresen et al.,
2017). Those two versions along with multiple RNA-seq data
from multiple tissues and developmental stages were used to
create gadMorTrinity (Zhang et al., 2020) which includes less-
fragmented and more comprehensive sequences. gadMor3.0
(GenBank assembly accession: GCA_902167405), here gadMor3,
is a recently published chromosome-level reference assembly
generated using long-read sequencing technology. The length
distribution of the peptide sequences from these three assemblies
are shown in Figure 1. We used gadMor1, gadMorTrinity,
and gadMor3 to examine the potential improvement that
these annotations could bring in the context of metabolic
reconstructions. A separate set of draft models was generated
from each assembly.

First, the FASTA files were used as input to the getBlast
function. A BLAST structure, was created from the reciprocal
BLAST analyses between the target and the template organism,
using the BLASTp algorithm (Altschul et al., 1990). Next,
this structure along with the template model were input to
the getModelFromHomology function to generate a draft cod
GEM by extracting reactions involving cod genes that are
orthologous to human genes in iHepatocytes2322. Figure 2

shows an overview of the draft model reconstruction process. The
process can be tuned based on different input parameters.

We used the RAVEN 2.0 toolbox to generate several draft
models based on different strictness parameters and Atlantic cod
genome annotations. The strictness parameter specifies which
reactions are included in the draft model, mainly based on how

genes from the template GEM organism and from the target
organism are mapped against each other. When strictness is
equal to 1 or 2, gene mapping is done for all pairs based on
BLASTp score threshold, in both or in one direction, respectively.
Alternatively, when strictness is set to 3, all BLASTp results are
checked and only the ones with the lowest E-value are kept for
all gene pairs in each direction separately. Then, target genes are
mapped to template genes for all pairs which have acceptable
BLASTp results, in both directions. In addition, maxE, minLen,
and minIde are adjustable thresholds for the maximum E-value,
the minimum alignment length, and the minimum identity
acceptable in the gene mapping process. Their respective default
values are 10−30, 200, and 40%.

3. RESULTS

The graph in Figure 3 shows the model statistics corresponding
to iHepatocytes2322 and different cod annotations, based on
strictness values of 1 (s1) and 3 (s3) for one-to-many and best
one-to-onemapping between human and cod genes, respectively.
First, we note that s1 leads to a greater number of matched
genes in the draft models. Such high number of matches can be
partly attributed to the fish specific whole-genome duplication
during teleost fish evolution, where fish genomes may have
more than one orthologs for some human genes (Li et al.,
2010; Glasauer and Neuhauss, 2014; Grimholt, 2018; Ravi and
Venkatesh, 2018). However, a higher proportion of these matches
are likely to be a result of splice variants and transcript assembly
artifacts. Accordingly, the more annotated the cod genome, the
more duplicate matches with human genes in the template are
expected. In this context, the trend in the number of genes in
the draft models can be attributed to the fact that gadMor1 has
the lowest while gadMor3 has the highest number of annotated
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FIGURE 2 | Schematic overview of the reconstruction of an Atlantic cod liver draft model.

FIGURE 3 | Model statistics of iHepatocytes2322 compared to draft reconstructions of Atlantic cod liver, using different annotations as reference. Dark color indicates

strictness of s3 (one to one) and light color indicates strictness of s1 (one to many).

sequences. The number of reactions and metabolites across all
resultant drafts is close for both strictness values.

The current version of the RAVEN toolbox adds a reaction to
the draft if at least one of its catalyzing enzymes is mapped
between species. Hence, the number of reactions and
metabolites as produced by the printModelStats function in
the toolbox does not reflect the actual gene mapping between
iHepatocytes2322 and each of the draft models. One way
to properly examine different cod annotation outcomes,
given the known fish genome duplication, is to compare

the number of mapped genes from iHepatocytes2322 with
each draft, with strictness s3. But the current RAVEN only
generates the mapped genes included in the draft model,
we thus added this feature to the getModelFromHomology
function and pulled the request to RAVEN’s GitHub page
(https://github.com/SysBioChalmers/RAVEN/pull/301). The
Venn diagram in Figure 4 shows the output of this function.
As the draft model from gadMor3 is the most complete,
we used it as the baseline and included the other two as
complementary sources. All three draft models were deposited in
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FIGURE 4 | Number of genes in the Atlantic cod liver draft GEMs based on

the three genome assemblies, gadMor1, gadMorTrinity, and gadMor3, when

mapped to iHepatocytes2322 with strictness equal to 3.

BioModels (Malik-Sheriff et al., 2020) and assigned the identifiers
MODEL2010090001, MODEL2010090002, MODEL2010090003.
They are also linked to the FAIRDOMHub (Wolstencroft et al.,
2017) assay “Draft metabolic reconstruction model of Atlantic
cod liver” (https://doi.org/10.15490/fairdomhub.1.assay.1365.2).

A draft reconstruction typically contains missing genes
and reactions which are gaps to be filled later. In cases
where a template model is used as input, such gaps result
from unmapped genes, and subsequent reactions, between
the template and the target organisms. In order to examine
the degree of gaps in our draft model, we considered the
“Metabolism of xenobiotics by cytochrome P450” subsystem
which is highly relevant to our case study. A map showing the
gap filling of this subsystem was visualized by Escher (King
et al., 2015) and can be found on FAIRDOMHub at
https://doi.org/10.15490/fairdomhub.1.datafile.3892.1. The
pathways of benzo[a]pyrene (BaP) and 1,2-Dibromoethane from
this subsystem are shown in Figure 5.

By manual curation, we set several criteria for gap filling: 1.
by searching relevant literature, several reactions were identified
as spontaneous reactions, i.e., not catalyzed by any enzyme, and
included; 2. when the chemistry of the reaction made it clear that
it belonged to a process catalyzed by a certain enzyme family (i.e.,
cytochrome P450 monooxygenases), they were assigned to this
family even though the specific gene homolog was not identified.

4. CASE STUDY OF ATLANTIC COD
EXPOSED TO BENZO(A)PYRENE

Mapping gene expression data to the metabolic pathway can
give a better understanding of the mechanism by which a
toxicant affects the organism. Here, we show a case study of
ex vivo exposure of Atlantic cod liver slices to benzo(a)pyrene
(BaP) (Yadetie et al., 2018). As seen in Figure 5A, all enzymes

related to this metabolic pathway were mapped in our model
following manual curation. In more details, the metabolic
pathway of BaP (adapted from Schlenk et al., 2008) shows that
there are two main biotransformation routes of BaP (Figure 6).

Combining the metabolic pathway and gene expression
data, we show that the main biotransformation route of BaP in
Atlantic cod liver is likely toward the most reactive metabolite,
benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (Figure 6).
Simultaneously, an alternate clearance pathway dependent
upon the SULT and UGT enzymes is actually down-regulated,
demonstrating clear preference for the primary activation
pathway. This shift can be explained by the fact that BaP itself is
a well-known ligand for the aryl hydrocarbon receptor (AHR),
an important ligand-activated transcription factor regulating the
expression of several enzymes in xenobiotic biotransformation
pathways, including CYP1A, and recently characterized in
cod (Aranguren-Abadía et al., 2019). Although this mechanism
is not specific for cod and well described previously (e.g., Kleinow
et al., 1998; Schlenk et al., 2008), this demonstrates how a useful
insight into evaluation of harmful compounds can be gained by
metabolic reconstructions. The expression profiles of the genes
can be found in the Supplementary Table S2.

5. DISCUSSION AND FUTURE
PERSPECTIVES

In this paper, we presented our experience in reconstructing a
draft metabolic network for Atlantic cod liver. As our genome-
scale reconstruction work is still on-going, the main intention in
this paper is to highlight possible challenges of working on non-
model less-annotated organisms. Draft reconstruction for model
species is typically the fastest phase in the process, due to the
abundance of biochemical knowledge and annotations. However,
it becomes less straightforward with a lack of such data. Thanks
to enabling computational tools, an alternative is to use existing
generic or tissue-specific GEMs that fall within the context of the
target reconstruction. In our case, a human liver model was used
as a template to generate a draft cod liver model. The fact that it
is a well-annotated consensus liver GEM compensated for known
physiological and metabolic differences between cod and human,
which could be resolved in the next model curation phases.

As demonstrated for the “Metabolism of xenobiotics by
cytochrome P450” subsystem, gap filling is an essential part
of model curation that need to be applied to all the included
subsystems. We survey main gap filling approaches and then
describe subsequence reconstruction steps. Several tools were
presented to help automate this step. Among those approaches
is Meneco (Prigent et al., 2017), a topological gap filling
approach, written in Python, that identifies missing reactions
through reformulating the gap filling problem as a combinatorial
optimization problem. fastGapFill (Thiele et al., 2014) is available
in the COBRA toolbox. It selects the set of reactions that optimize
a linear score representing the quantitative metabolic production
of the metabolic network. Other existing tools can identify
missing reactions by integrating taxonomic (Benedict et al.,
2014), compartment modularity (Mintz-Oron et al., 2012), or
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FIGURE 5 | Visualization of gap filling of two pathways picked from the subsystem “Metabolism of xenobiotics by cytochrome P450”: (A) benzo(a)pyrene (BaP); (B)

1,2-Dibromoethane. The reactions existing in the auto-generated draft model are shown in blue, and the manually filled gaps are shown in green. Comparing our draft

model with the same subsystem from model iHepatocytes2322, the missing reactions are highlighted in pink. The pink dots indicate the parent toxicants.

phenotypic knowledge such as experimental flux data (Herrgard
and Palsson, 2006; Christian et al., 2009; Kumar and Maranas,
2009; Vitkin and Shlomi, 2012). However, approaches relying
on complementary knowledge to perform the gap filling process
are not applicable to less-annotated organisms. Accordingly,
fastGapFill from the COBRA toolbox could be a suitable choice
to automatically fill the gaps in the draft model. Following this
step, the refined set of reactions needs to be manually curated
since some of them might be added arbitrarily to fulfill selected
model criteria, such as model connectivity, by the gap filling
tool. The model is then ready for evaluation using flux balance
analysis (FBA) (Orth et al., 2010) and phenotype datasets. FBA
aims to simulate the cell behavior through finding a set of
optimal metabolic fluxes which optimize a metabolic objective,

which is often biomass production in bacteria or cancer cells.
The metabolic objective of particular cell types in multi-cellular
eukaryotes is more difficult to determine however, but methods
to infer such objectives have been developed (Bordbar et al.,
2020). The simulation results from FBA are compared with
experimental values of biomass growth and metabolic fluxes
and the model is subjected to refinement until it behaves as
desired. The latter allows the reconstructed metabolic network
to be analyzed using constraint-based modeling approach. Once
those steps are completed, the model can be used to simulate
different biological conditions and study the metabolic potential
of the organism. For example, it is possible to perform gene
knockout studies in silico to identify essential genes for various
biological conditions using the constraint-based model of the

Frontiers in Molecular Biosciences | www.frontiersin.org 7 November 2020 | Volume 7 | Article 591406

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Hanna et al. Non-model Species Metabolic Reconstruction

FIGURE 6 | Metabolic pathways of benzo(a)pyrene (BaP) in fish based on Schlenk et al. (2008) and putative changes in cod liver based on differential gene expression

after exposure to BaP (Yadetie et al., 2018). The upregulation of cyp1a and down-regulation of sult and ugt expression indicate that the formation of the DNA-reactive

metabolite benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide is preferred.

reconstructed network.Thus, insights can be gained into how
important physiological processes in the organism, including
energy metabolism, growth, and reproductive processes, can be
affected by environmental toxicants.
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