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Abstract. This paper presents a modeling framework that captures the impulsive biomass
dynamics (bust-boom) of a fish stock. The framework is based on coupling a Hawkes-
process model to a discrete-time, ages-structured population dynamics model. Simulation
results are presented to demonstrate the efficacy of the framework in capturing impulsive
events in the population trajectory.
The results presented in this paper are significant in three ways:

• A framework has been presented that demonstrates how premonitory information
may be extracted from exogenous observations from complex environmental systems

• We have demonstrated how exogenous information may be parameterized and in-
corporated into the modeling process for better understanding of the link between
environmental drivers and the population dynamical system

• The framework has been successfully applied in modeling and short-term prediction
of the population dynamics of an empirical fish stock.
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1 Introduction

This paper deals with a system consisting of a single prey (the Barents Sea
capelin) and multiple predators in a real ecosystem, where the prey biomass
is impulsive, and a period of boom is followed by a protracted period of bust.
No unique theory (based on predator-prey considerations) exists currently,
to explain the multiple bouts of population bust and boom that has been ob-
served in the past three decades, see e.g., [5, 15]. The goal of this paper is to
investigate a hypothesis that considers an environmental point process as an
external forcing of the population biomass dynamics. The approach involves
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using extracted information from environmental observations to inform when
future population levels will either be stationary (connected to non-volatile
state of the environmental driver), or nonstationary (linked to an unbounded
number of environmental process events) [2, 12]. In the simplest case, we con-
sider the point process to be self-exciting (the probability of a future event
increases with the occurrence of past events), and that the conditional expec-
tation for occurrence of an event at each time is linear. Such a system can be
viewed as a Poisson cluster process, or more specifically, as a linear Hawkes
process [13]. We present a framework that couples the environment (through
a parameterized point process (Hawkes) model) to a population dynamics
model, to provide short-term predictions of the population trajectory.

In the Barents Sea (BS), capelin is a short-lived (1–4 years) fish species,
that is considered to be the most important fish stock [6]. It is the main prey
for Northeast Arctic cod [1, 8] and juvenile herring [11]. Several marine mam-
mals (e.g. harp seals, humpback whales, minke whales), seabirds, kittiwakes
and guillemots are also known to prey on capelin. The capelin stock has un-
dergone three population collapses during the periods 1985–1989, 1993–1997,
2003–2006 [8], and it is currently in a fourth collapse period, which started
in 2015 [8].

Several hypotheses have been proposed to explain the underlying mech-
anisms for the stock collapse [5, 15]. What has become accepted, is the in-
ability of the stock to replenish itself (referred to as recruitment failure) due
mainly to high levels of predation from other species during crucial capelin
life stages [10]. The dynamics of the capelin stock has therefore be described
as being dominated by a top-down control because the stock dynamics is
regulated by predation pressure from species higher up in the foodchain.
This explanation for stock decline and collapse is consistent with classical
ecological theory, and appears to hold true for most observation years. The
literature also shows a divergence from the accepted theory about top-down
regulation of the capelin population dynamics. During some observation
years, large (key) predator and prey populations have been noted to have
coexisted, with insignificant effects on the prey population biomass [9]. The
divergence from theory implies the existence of other plausible hypotheses for
the dynamics of the capelin biomass. According to an alternative hypothesis
[33], the fluctuation of the capelin fish stock (rather than being a top-down
regulatory system) is a natural adaptation to the environment and a strategy
for optimal growth and survival in the long run. In [33] the fluctuations of
the capelin stock was referred to as stochastic resonance. This resonance was
characterized by a periodicity of 6.2 years, and linked to the lunar nodal tide,
which in turn, is supposed to affect the variability of sea level, temperature,
and salinity in the BS [34]. A more recent paper by [31] analyzed the capelin
biomass data and those of its key predators. This paper showed that the
dynamics of the capelin biomass appears to be predominantly periodic (with
a periodicity τ ≥ 5 years) and autonomous. The findings in [31] appear to
be partially consistent with those in [33]. Both papers allude to regulation



Hawke Process and Population Dynamics 155

of the capelin biomass by exogenous system drivers, rather than the classical
predator-prey system dynamics.

Motivated by [31] and [33], this paper investigates the alternative hypoth-
esis that the dynamics of capelin biomass is characterized by a bottom-up
regulatory process, where food is considered as the main driver explaining
population fluctuations. In contrast to [33], we do not consider exogenous
factors (e.g. lunar nodal tide and temperature) as direct drivers, but as prox-
ies for food. The hypothesis investigated in this paper does not discount that
the populations dynamics may be regulated by both top-down, and bottom-
up processes. This may occur for instance, through a seasonal shift from one
process to the other, or through both processes acting in concert in space
and time.

Figure 1: Schema of main currents in the BS, and location of the FB section.

In the approach developed in this paper, we use different formulations
of autoregressive models to represent the autonomous dynamical system of
the capelin biomass. We use a proxy for food to identify event times asso-
ciated with elevated growth in the stock biomass. Zooplankton (copepods,
euphausiids, amphipods) are the major prey item for BS capelin [3]. Major
zooplankton communities are associated with influx of different water masses
of Atlantic, and Arctic origins. The volume flux of Atlantic water into the BS
is measured along a standard section namely, the Fugløya-Bear Island (FB)
transect, located at the western entrance to of the BS (see Figure 1). Ac-
cording to [3], over 50% of the FB zooplankton density in late summer can be
explained by a regression model that uses only volume flux of Atlantic water
(AW) across the FB transect. Since it is this biomass that is advected into
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the BS to serve as food for capelin (among others), we consider the volume
flux of AW as proxy for food level. By considering the flow of AW into the
BS as generated by a self-regulating process, we describe the volume flux
(proxy for food) by a self-exciting model, with distinct excitation times. By
linking a Hawkes process to the AR biomass model, we develop a framework
for modeling the observed bust-boom dynamics of the capelin stock, where
boom periods are defined by the self-excitation model.

The rest of the manuscript is organized in the following way. Section 2
gives a brief background to the modeling framework. This section presents
the self-exciting (Hawkes) model that uses exogenous volume flux observa-
tions to provide premonitory information about the population trajectory,
and the system of autoregressive models that describe the population dy-
namics. Section 3 summarizes the computational and parameter estimation
procedures, while Section 4 describes how the modeling framework is applied
to an empirical ecological problem. We present final discussion of our results
in Section 5, including their significance in an ecological perspective.

2 Point Process and Population Dynamics Mod-
els

2.1 The Hawkes Process Model

A Hawkes Process (HP) model [12] is a mathematical description for stochas-
tic point process, self-exciting phenomena. The HP is a non-Markovian ex-
tension of the Poisson process [22].Mathematically, a point (counting) process
function N(t) is a Hawkes process satisfying (1) and (2), where Pr stands for
probability and t represents time.

Pr{N(t+ δ)−N(t) = 1|N(s)(s ≤ t)} = Λ(t)δ + o(δ), (1)

Pr{N(t+ δ)−N(t) > 1|N(s)(s ≤ t)} = o(δ), (2)

where Λ(t) is referred to as the intensity function, which satisfies (3).

Λ(t|θ) = λ+

∫ t

−∞
g(t− u|θp)dN(u), (3)

θ ≡ (λ,θp).

We define for some d ∈ N>0, θ ∈ Rd, λ > 0, and the response function
g(t) ≥ 0. The function g is left continuous for t ≥ 0 and

∫∞
0
g(t)dt < 1.

Given a sequence of event times t1, . . . , tn in the interval [0, T ≥ tn], the
log-likelihood `H of a point process with an intensity function Λ(t) is given
by (see [25]) (4).

`H(t1, . . . , tn|θ) = −
∫ T

0

Λ(t|θ)dt+

∫ T

0

log Λ(t|θ)dN(t). (4)
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Equation (5) defines the response function g(t) adopted in this paper, which
is an instance of exponentially decaying response.

g(t|θp) = αe−βt, (5)

θp ≡ (α, β), α > 0, β > 0 α < β.

For this particular choice of g(t), an exact form of the log-likelihood function
(see [25, 28] for derivation details) is given by (6).

`H(t1, . . . , tn|θ) = −λT +

n∑
i=1

[
α

β

(
eβ(ti−T ) − 1

)
+ log (λ+ αA(i))

]
,(6)

A(i) =
∑
t<ti

e−β(ti−t), for i ≥ 2,

where T = tn, A(1) = 0, and ti denotes the occurrence time for the ith event.
In this paper, we use the volume flux of AW into the BS to determine

the event times for the Hawkes process, and an optimization algorithm to
determine the maximum likelihood estimates (MLE) θ̂, of θ in (6).

2.2 Defining a Population Dynamics Model

This paper considers the three classes of models (AR, ARX, and mmAR)
in linking the environment (through the intensity function) to the biomass
dynamics.

Autoregressive (AR) models are useful tools for dynamical system mod-
eling when observations are recorded at discrete times (time series) [26, 29].
Autoregressive models with exogenous terms (ARX), and Multiplicatively
modulated AR (mmAR) models are extensions of AR models to allow for
inclusion of exogenous variables. An ARX model incorporates exogenous
variables by additive terms to an AR model [29]. In the case of an mmAR
model, the influence of the exogenous variables are expressed through the
coefficients of the AR model [21].

Suppose in general, that B ≡ {B1, . . . , BN} is a random variable (e.g.,
representing the time series of population size) whose dynamics we intend
to model. Define {e, f} ⊂ N>0 : e ≤ f , and let X ∈ Re be a vector
of random variables derived from exogenous or environmental observations,
x̃ ∈ Rf . The exact form for X will be defined later. For j = 1, 2, . . . and
n = 1, 2, . . . , N , where M ≤ N ≤M+e, we define the following three models,

Bn =



M∑
m=1

amBn−m + εn, AR,

M∑
m=1

amBn−m + bjXn−j + εn, ARX,

M∑
m=1

(am + bm,jXn−j)Bn−m + εn mmAR,

(7)
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where M is the AR order, am, bj and bm,j are AR coefficients and the coeffi-
cient of exogenous variables, and εn is normally distribution with zero mean
and variance σ2.

2.3 Event Time Detection

Assume that we are given the environmental observations x(t) ≡ {x1, . . . , xf},
with corresponding time series of observation times T = {t1, t2, . . . , tf},
where xj = x(tj), j = 1, . . . , f . The goal is to use a sliding time-window on
x(t), to define event times associated with significant deviations in the value
of x(t). We define a time window length, ψ, for t, and threshold bounds,
[ω1 ω2], for x(t). By sliding the window along the time axis, we define (for
j = 1, . . . , n ≤ f) any τj ∈ T as an event time if x(τj) ≥ ω2 or x(τj) ≤ ω1.

For τ1 < τ2 <, . . . , < τn, the n-ordered set T e ⊆ T : T e = {τ1 τ2 . . . τn},
defines the event times for the Hawkes process. This paper uses the Peak-
finder algorithm (see example usage in [23]) in identifying event times.

2.4 Definition of Xn

The influence of the exogenous variable (parameterized by g(t)) has been
assumed to exponentially decay with time. However, the intensity level and
duration of the influence, is determined by the functional parameter set θ ≡
{α β}, in (5). The optimal parameter set θ̂ is determined using the event
times identified in Section 2.3 (based on x̃(t)), in the optimization of the
likelihood function defined in (6). The optimal parameter set is used in
defining the intensity function.

We consider two instances of the effect (over time) of the exogenous vari-
ables, which lead to different definitions of the intensity function. In the first
instance, we consider the effect of the intensity function at some instanta-
neous time τn to obtain (8).

In = Λ(τn|θ̂) (8)

In the second instance, we consider the cumulative effect of the intensity
function I∗n, from τn−1 to τn. The integrated intensity function is given by
(10).

I∗n =

∫ τn

τn−1

Λ(t|θ̂)dt (9)

= λ̂(τn − τn−1) +
α̂

β̂

 ∑
ti≤τn

(
1− eβ̂ti

eβ̂τn

)
−

∑
ti≤τn−1

(
1− eβ̂ti

eβ̂τn

) .(10)

The series Xn is defined such that Xn = In or Xn = I∗n. The specific
expression for Xn will be determined for each particular dataset.
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3 Summary of Computational Procedures

The computational procedure adopted can be summarized as follows:

1. Optimize `H(θ̂) for MLE estimates, θ̂, of the intensity function, Λ(t|θ),

2. Using Λ(t|θ̂), generate exogenous variable contributions, X

3. For each model, obtain the LSE φ̂ (eq. (11)) of the AR coefficients,
where

φ̂ = (X>X)−1X>Y, (11)

φ ≡

 (a1, . . . , aM )>, AR,
(a1, . . . , aM , bj)

>, ARX,
(a1, . . . , aM , b1,j , . . . , bM,j)

> mmAR,
(12)

Y = (BM+1, · · · , BN )>, (13)

and for j = 1, 2, . . .,

X =



 BM · · · B1

...
. . .

...
BN−1 · · · BN−M

 , AR,

 BM · · · B1 XM+1−j
...

. . .
...

...
BN−1 · · · BN−M XN−j

 , ARX,

 BM · · · B1 XM+1−jBM · · · XM+1−jB1

...
. . .

...
...

. . .
...

BN−1 · · · BN−M XN−jBN−1 · · · XN−jBN−M

 , mmAR.

(14)

4. Let B̂n be the prediction of Bn based on B1, . . . , Bn−M , using the
models defined in (7). For each of the models defined in (7), we can
derive the prediction error term εn(φ), where φ is a vector of the model
parameters, and n = M + 1, . . . , N . Note that the values and dimen-
sion of φ will depend on the model choice. The likelihood function
`A(σ2

` ; εM+1, . . . , εN , φ) is given by (15), from which we derive the log-
likelihood (16).

`A(σ
2
` ; εM+1, . . . , εN , φ) =

1

(2πσ2
` )
µ
exp

{
−

N∑
n=M+1

− ε
2
n(φ)

2σ2
`

}
, (15)

log `A(σ
2
` ; εM+1, . . . , εN , φ) = −µ(1 + log(2πσ2

` )), (16)

µ = (N −M)/2.

We base our model selection on the Akaike Information Criterion
(AIC), defined by (17)

AIC = −2× `A + 2× (number of parameters). (17)
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For each of the three model classes defined in (14), we identify the AIC
to determine the optimum time lag M for B, and j for X.

5. Generate mutually independent normal random variables ε
(r)
N+1(r =

1, . . . , R) with mean 0 and variance σ̂2
` , where R is the number of in-

dependent iterates in a Monte Carlo simulation, and σ̂2
` is the MLE

of σ2
` . Obtain one step ahead prediction for each AR model using

Bn(n = 1, . . . , N) and (18).

B̃
(r)
N+1 =


∑M
m=1 âmBN−m + ε

(r)
N+1, AR,∑M

m=1 âmBN−m + b̂XN−j + ε
(r)
N+1, ARX,∑M

m=1(âm + b̂mXN−j)BN−m + ε
(r)
N+1 mmAR,

(18)

where âm, b̂ and b̂m are LSE of the parameters.

6. Calculate the prediction confidence intervals µ̂pre ± 2σ̂pre, given

µ̂pre = R−1
R∑
j=1

B̃
(j)
N+1, (19)

σ̂pre = (R− 1)−1
R∑
j=1

(
B̃

(j)
N+1 − µ̂pre

)2
. (20)

The κ-steps ahead prediction confidence interval is constructed analo-
gously using B1, . . . , BN , B̃N+1, . . . , B̃N+κ−1.

4 Application — Data and Event Time Detec-
tion

We use the net volume flux (inflow minus outflow) of AW, measured along
the FB section (see Fig. 1) since 1997, using current-meter morrings.[3, 19].
In this paper, we use the monthly mean value of volume flux data from 1998
to 2014 (see Fig. 2a). Following [3], we consider the fluxes spanning April–
July of the considered years as proxies for zooplankton levels in the Barents
Sea.

The capelin biomass data (see Fig. 2b) is taken from the database of
the Working Group on the Integrated Assessments of the BS (WGIBAR)
[17]. Observation data for capelin of age 4+ is usually sparse and unreliable
because BS capelin usually spawns at 3 years, and then dies [7]. We shall
therefore restrict the analysis and discussion of simulation results to cover
capelin in the age range 1–3 years only.

We applied the events identification algorithm described in Section 2.3
to the volume flux data, in order to define the event times τ1, . . . , τn. We
used a simplified approach in defining the parameters for event detection.
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Figure 2: Monthly mean volume flux of AW (left) and capelin biomass (right).

We set ψ = 0.25 · {max(x)−min(x)}, ω1 = 0.080, and ω2 = 1.001. where
the threshold values for ω were based on the mean and standard deviation
for the particular months considered.

Figure 3 shows a plot of the biomasses and event times (triangles).

4.1 Application of Hawkes Process Model to Events Data

We use the flux data to identify the optimal event months. The Maxi-
mum Likehood Estimates (MLEs) were obtained using an interior-point op-
timization algorithm (implemented as fmincon in c©Matlab). The results

are summarized in Table 1, where θ̂ (with largest log-likelihood), is given by

θ̂ ≡ (λ̂, α̂, β̂) ≡ (0.69, 0.52, 11.99). This manuscript does not consider the
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Figure 3: The triangle and blue lines represent estimated event times, and
biomass observations, respectively. For each age group, the vertical axis is
scaled by 10−6.

effect of uncertainties in θ̂ on the estimation of other parameters. Figure 4 is
the estimated intensity function for March–April, using the largest ML value
(see Table 4).

Table 1: The MLE of parameters, and associated maximum log-likelihood
values. Data for March–April are optimal for the Hawkes process model.

Month intervals MLE of parameters ML

λ̂ α̂ β̂ `H
March–April 0.69 0.52 11.99 -14.55
March–June 1.10 0.00 11.81 -16.25
March–July 1.16 0.00 11.58 -16.13
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4.2 Coupling the Intensity Function to Population Dy-
namics Models
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Figure 5: Comparison of best model fit (red) to observation data (blue). The
vertical axis is mean-centered and scaled (multiplied by 10−6) biomass. The
scaled mean for ages 1, 2, and 3 are respectively 0.5875, 1.2276 and 0.7259.
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Table 2: Summary of model fitting results. The column labels of Age, Var,
ML and AIC represent respectively, biomass age, variance of the residual
error, log-likelihood, and AIC values. ARX1, and ARX2 are ARX models
with respectively, In, and I∗n, and similarly for mmAR1 and mmAR2.

Age Model Order Var ML AIC
Age 1 AR M = 1 0.16 -7.79 17.59

AR M = 2 0.17 -8.75 21.51
ARX1 M = 1 0.12 -3.92 11.84
ARX1 M = 2 0.13 -4.38 14.75
ARX2 M = 1 0.15 -6.56 17.12
ARX2 M = 2 0.14 -6.04 18.09

mmAR1 M = 1 0.16 -7.61 19.24
mmAR1 M = 2 0.15 -7.24 22.48
mmAR2 M = 1 0.15 -6.82 17.63
mmAR2 M = 2 0.14 -6.40 20.80

Age 2 AR M = 1 0.46 -23.70 49.40
AR M = 2 0.47 -23.87 51.74

ARX1 M = 1 0.46 -23.67 51.35
ARX1 M = 2 0.47 -23.85 53.70
ARX2 M = 1 0.46 -23.47 50.95
ARX2 M = 2 0.47 -23.84 53.68

mmAR1 M = 1 0.46 -23.70 51.40
mmAR1 M = 2 0.47 -23.78 55.56
mmAR2 M = 1 0.46 -23.55 51.10
mmAR2 M = 2 0.46 -23.66 55.33

Age 3 AR M = 1 0.14 -6.32 14.64
AR M = 2 0.14 -5.72 15.58

ARX1 M = 1 0.14 -6.08 16.15
ARX1 M = 2 0.14 -5.77 17.54
ARX2 M = 1 0.14 -6.30 16.60
ARX2 M = 2 0.13 -5.35 16.69

mmAR1 M = 1 0.13 -5.37 14.73
mmAR1 M = 2 0.13 -4.67 17.34
mmAR2 M = 1 0.12 -4.02 12.04
mmAR2 M = 2 0.12 -3.90 15.80
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From Table 2, ARX1 with order M = 1 for age 1, AR with order M = 1
for age 2, and mmAR1 with orderM = 1 for age 3, are the best fitting models.
Figure 5 shows a comparison of the model fit to data for the indicated ages.
We examined the optimal value for j (the degree of lag) in the ARX and
mmAR models using the AIC indices. Our results shows that j = 1 is
optimal for both model instances. Table 2 summarizes the result of applying
the AR models to biomass of the respective ages. The models with least AIC
value are best fitting models to the data.

4.3 Quantifying Prediction and Prediction Uncertainty

Using the intensity function and best fit models, we performed κ-steps ahead
predictions of the biomasses, and quantified the 95% confidence intervals
associated with each prediction. With reference to the shaded regions in
Figure 6, the lightest gray area (utmost left) represents a κ = 4 years ahead
prediction confidence interval, while the next (light gray) area represents a
κ = 1, 2, 3-steps ahead prediction confidence interval, where data from 1998
to 2011 has been used in the model fitting. The dark gray area (third shaded
region counting from left to right) indicates a κ = 1, 2-steps ahead prediction
confidence interval, using fitting data from 1998 to 2012. Finally, the darkest
gray area is a κ = 1-step ahead prediction confidence interval, based on fitted
data from 1998 to 2013.

5 Discussion and Summary

This paper has presented a modeling framework within which an environ-
mental driver has been coupled to a population dynamics model, to track
the impulsive trajectory of a marine population. To the best of our knowl-
edge, this is the first of such modeling approaches in marine science, that
involves using point processes stochastic control techniques in population
dynamics modeling.

The use of the volume flux of AW for event detection has been motivated
by the fact that inflowing AW plays a crucial role in the physical and ecologi-
cal conditions of the Barents Sea [18]. The inflowing AW currents ameliorate
the winter climate of the polar latitudes [30], and thus influence the growth
rate and distribution of zooplankton and fish larvae, as well as fish popu-
lation parameters as growth, recruitment, migration and distribution (see
[14, 24, 32]

Our analysis identified the volume flux of AW during March–April as
the optimal events time interval. This result is consistent with earlier stud-
ies (see e.g. [3]), which found the early spring (March-April) inflow most
important for determining the peak zooplankton density in the FB section
during August. The authors in [3] argued that this is linked to the conditions
in March-April that determine the initial conditions for plankton transport
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Figure 6: Comparison of observed (blue) and 95% confidence intervals for κ-
steps ahead predictions. The nested confidence intervals (from left to right)
represent respectively, (i) κ = 4 (ii) κ = 1, 2, 3, based on model fit to data
from 1998 to 2011, (iii) κ = 1, 2, based on model fit to data from 1998 to
2012 (iv) κ = 1, based on model fit to data from 1998 to 2013.

from the Norwegian Sea into the BS, and the development of successive gen-
erations that might be produced while being transported northwards in the
BS. The modeling process identified three distinct model (see Table 3) types
for the various age groups, where Xn−1 and X∗n−1 follow respectively, the
definitions in (8) and (9).

Our results show that the dynamics of age-2 capelin biomass is solely
determined by a first-order autoregressive process, i.e., by the biomass of
the previous year (age-1 fish). To explain this, one must first note that the
biomass of age-2 capelin dominates the total stock biomass during the time
intervals (see the year intervals 1998–2014, Fig. 2) considered. According to
the literature (see [20]), when the stock increases, the higher food demands
are met by an expansion of the feeding areas. Furthermore, that the age
composition may be a determining factor such that, a stock consisting pre-
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Table 3: Summary of identified model types.

Age Identified model Parameters

1 Bn = aBn−1 + bXn−1 + εn a = 0.1663, b = 298.3563
2 Bn = aBn−1 + εn a = 0.4437
3 Bn = (a+ bX∗n−1)Bn−1 + εn a = 0.6539, b = 259.7213

dominantly of young capelin may have a more southerly distribution and
different migration pattern compared to a stock with a high abundance of
older fish [4]. The absence of a direct exogenous forcing on age-2 capelin may
therefore be explained by the fact that for this particular age-group, density
(secondary) effects (resulting in larger spatial distribution and propensity to
longer feeding migration) dominate the dynamics. A spatio-temporal mod-
eling framework that includes an index of spatial distribution as exogenous
parameter may be a viable alternative to that examined in this manuscript.

In constrast to age-2 fish, age-1 and age-3 biomasses appear to be affected
respectively, by additive and multiplicative forcing. According to the theory
(see e.g., [16]), the system response differ depending on whether the forcing
is additive or multiplicative. Whereas additive stochastic forcing has a pre-
determined distribution, multiplicative forcing (such as for age-3 biomass)
implies that the stochastic component of the dynamics (bX∗n−1Bn−1) evolves
with the environment, and has the ability to fundamentally change the dy-
namical characteristics and properties of the population trajectory (see [27]).
Observe that in particular for age-3, the biomass dynamics also involves
an integrated effect (X∗n−1) of the environment, and its effect on the age-2
biomass (Bn−1).

In general, the capelin biomass data for all ages is highly variable be-
cause it includes multiple episodes of stock collapse, although our prediction
interval (2011–2014) spans a period during which the stock appears to be
relatively stable. This relative stability notwithstanding, Fig. 6 shows no-
table changes in biomass prediction uncertainties (especially for capelin of
ages 1 and 3) over different prediction horizons. We also observe that in gen-
eral, the 95% confidence interval encapsulates the predictions. The highest
uncertainty is associated with biomass predictions for age-2 capelin, where
the uncertainty envelope remains almost invariant even for short term pre-
dictions (even for κ = 1). The results from Fig. 6 for this age-group are
consistent with previous discussions about the limitations of the exogenous
observations, as well as the derived model (in Table 3), as tools for predicting
age-2 capelin biomass dynamics.

In summary, our results show that the population trajectory of age-1 fish
can be tracked by monitoring the exogenous factor (volume flux) considered
in this paper. The strong dependence of age-3 biomass dynamics on the
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integrated environmental effect on age-2 fish can form the basis for developing
a management strategy for sustainable exploitation of this particular species.
For instance, if a base-line (stable environmental condition) is established,
then a metric that quantifies the integrated deviation from the baseline over
the last two years may be used to predict the future state (bust-boom) of the
stock. This approach (an extension of work presented in this manuscript)
will be pursued in further research.
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