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ABSTRACT: Over the last 2 decades, cleaner fishes have been employed to remove external sea
lice parasites from Atlantic salmon Salmo salar in sea cages. Norway, Scotland, Ireland, and the
Faroe Islands combined now use ~60 million cleaner fish per year. While small-scale experiments
demonstrate the efficacy of cleaner fishes, industrial-scale sea cages have multiple structures and
conditions that create different environments, which may impact cleaner fish efficacy and welfare.
Here, in commercial sea cages, we investigated if 4 different anti-lice strategies impacted the
delousing efficacy, physical condition, and behaviour of cleaner fish (corkwing wrasse Symphodus
melops). The strategies tested were: (1) cleaner fishes only; (2) cleaner fishes and functional feed;
(3) cleaner fishes, functional feed, and deep lights and feeding; and (4) cleaner fishes, functional
feed, deep lights and feeding, and lice skirts. Corkwing wrasse were sampled from 3 cage-level
replicates of each anti-lice strategy 3 times over 2 mo. Lice levels on salmon were recorded every
3 to 4 wk. Only 11% of corkwing wrasse had salmon lice in their gut, with individual wrasse hav-
ing up to 72 lice in their stomach. Wrasse in cages encircled by lice skirts consumed one-ninth as
many lice as those in other anti-lice treatments and had less overall impact on the number of lice
per salmon. Fin, skin, mouth and eye condition, K factor, and observed cleaning behaviours of
corkwing wrasse were similar across all anti-lice strategies. Our results demonstrate that different
in-cage anti-lice strategies altered the magnitude of lice consumption in corkwing wrasse at this
site and for this production period. Moreover, while a small proportion of corkwing wrasse appear
to target lice as prey, most individual corkwing wrasse were ineffective biological control agents
in a full-scale farm setting.

KEY WORDS: Biological control · Fish welfare · Lepeophtheirus salmonis · Lice skirts ·
Salmo salar · Symphodus melops
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1.  INTRODUCTION

The hunt is on for ethical, effective, and cost-
efficient solutions that will protect the world’s most
farmed marine fish, Atlantic salmon Salmo salar,
from salmon louse Lepeophtheirus salmonis infesta-
tions. Salmon lice are ectoparasitic copepods that
feed on salmonid tissues, causing lesions which can
lead to immunosuppression, osmoregulatory failure,

and even death (Costello 2006, Fast 2014). They pro-
liferate in the dense host populations generated by
aquaculture and may spillback to wild fishes with
population-level consequences (Krkošek et al. 2013).
Treatment with chemotherapeutants dominated sal -
mon lice control for decades until the resistance to
most chemotherapeutants emerged (Aaen et al.
2015), and public concern regarding the effects of
chemo therapeutants on non-target organisms led to
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political reform favouring ‘green’ salmon production
(Hersoug 2015). At present, treatments that physi-
cally remove lice by heat shock or mechanical abra-
sion are most common but can be detrimental to
salmon welfare (Overton et al. 2019).

Biological control via the use of cleaner fish is an
alternative, widely used method for lice control in sea
cages (Treasurer 2018). Cleaner fishes (many species
of wrasse, e.g. Centrolabrus exoletus, Ctenolabrus
ru pes tris, Labrus bergylta, Symphodus melops, and
Tauto golabrus adspersus, and lumpsuckers Cyclo -
pterus lumpus) eat salmon lice directly off the skin of
salmon. Wrasses and lumpsuckers were discovered
as biological control agents in the 1980s (Bjordal
1988), and in tank trials, wrasse can maintain lice
numbers at <0.5 lice per salmon when stocked at
5−10% of salmon numbers (Leclercq et al. 2014).
Com pared to chemical treatments, cleaner fish are
regarded by some as an economically and ecologi-
cally sound solution to the salmon lice problem (Liu &
Bjelland 2014). Over 54 million cleaner fishes were
stocked in 65% of Norway’s salmon farms in 2017, a
30-fold increase since 2008 (Norwegian Directorate
of Fisheries 2018), while ~6.5 million are stocked
each year in Scotland and Ireland (Munro & Wallace
2017, 2018, Bolton-Warberg 2018).

Compared to tank trials, the evidence basis for the
delousing effect of cleaner fishes in commercial-scale
sea cages is limited (Overton et al. 2020), with few full-
scale studies conducted with suitable replication and
a non-confounded experimental design (Table 1).
One replicated study found lumpsuckers successfully
controlled lice levels on a salmon farm from late
autumn to early spring (Imsland et al. 2018), but re -
search over the high lice incidence summer months
and across cleaner fish species is lacking. Gut analy-
ses reveal that 14−36% of lumpsuckers and 16% of
goldsinny wrasse Ctenolabrus rupestris eat lice in
sea cages (Deady et al. 1995, Imsland et al. 2014,
Eliasen et al. 2018). Variation in delousing efficacy in
sea cages may be due to genetics (Imsland et al.
2016), learning and experience (Imsland et al. 2015),
or environmental factors such as temperature (Sayer
& Reader 1996) and light (Loew et al. 2016). Further-
more, the additional complexities and large scale of
commercial salmon farms may contribute to deterio-
rating condition (Skiftesvik et al. 2013), low winter
survival (Darwall et al. 1992, Sayer & Reader 1996),
in creased disease risk (Gulla & Bornø 2018), and ex -
ceedingly high (48−100%) mortality of cleaner fishes
held in commercial net pens (Nilsen et al. 2014,
Olsen 2017). At present, it is unclear how an array of
relatively new sea lice prevention strategies, which

further alter commercial sea cage environments,
interact with cleaner fish condition and de lousing
efficacy (Overton et al. 2020).

Prevention technologies reduce opportunities for
louse attachment to salmon. The infectious copepo-
did stage of salmon lice is positively phototactic and
most abundant in the upper surface layer, so a num-
ber of prevention strategies encourage deep swim-
ming in salmon (Oppedal et al. 2017). Submerged
lights and submerged feeding can draw salmon
deeper at night, but not consistently during sunlight
hours (Frenzl et al. 2014). Additionally, salmon need
to surface to fill their swim bladder (Dempster et al.
2009, Korsøen et al. 2009), so they are still susceptible
to lice in surface waters. Alternatively, lice skirts —
fine mesh nets that encircle sea cages — act as a bar-
rier to salmon lice. Lice skirts are widely used, with
>900 lice skirts sold by a single company in 2017,
with 2 to 3 skirts used depending upon cage size
(Nodland 2017). With good conditions, they can
reduce lice loads by 30% (with a 5 m skirt; Grøntvedt
et al. 2018) to 80% (10 m skirt; Stien et al. 2018).
However, lice skirts can reduce dissolved oxygen
content in cages (Stien et al. 2012, 2018), which can
lead to poor welfare, reduced growth, and altered
behaviour of salmon (Oppedal et al. 2011, Oldham et
al. 2017, Solstorm et al. 2018). The effects of lice
skirts on cleaner fish is unknown. Functional feed is a
passive method for prevention of infestation that can
lower lice loads on salmon by 20% compared to stan-
dard diets (Jensen et al. 2015). Functional feeds may
work by including ingredients that thicken the muco -
sal cell layer of salmon epidermis, promote healing of
damaged tissue, and repel copepods. It is considered
a positive potential solution that promotes welfare
and incurs little effort by the farmer. Other lice-
 prevention strategies include snorkels, which limit
salmon surface access within a narrow tarpaulin tube
(Stien et al. 2016), situating new farms in waters with
low connectivity (Samsing et al. 2017), fallowing
(Werkman et al. 2011), and floating closed contain-
ment cages (Nilsen et al. 2017).

Cage-based prevention strategies cause consider-
able changes to the sea cage environment, to which
both salmon and cleaner fishes will respond. For
instance, the use of submerged lights and feeding
zones can attract salmon, leading to deeper swim-
ming (Frenzl et al. 2014). Similarly, light is likely
an important environmental gradient determining
cleaner fish distribution, as they use vision to forage
and generally occupy shallow habitats (wild cork-
wing wrasse Symphodus melops, <5 m; Quignard &
Pras 1986). In sea cages, submerged lights may draw
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cleaner fishes deeper and extend lice-hunting hours.
However, substantial improvements to delousing
may be limited by lack of shelter, given that hides are
often not placed near lights and do not extend the full
depth of the sea cage. Lice skirts can reduce surface
dissolved oxygen saturation (Stien et al. 2012), and
salmon can swim deep to avoid hypoxic water (Old-
ham et al. 2017). Cleaner fishes may respond simi-
larly, but lice skirts also reduce surface flow (Frank et
al. 2015), and cleaner fish may prefer shallow, low-
flow water that mimics their wild habitats (Skiftesvik
et al. 2015, Yuen et al. 2019), leading to salmon swim-
ming at depth and cleaner fishes near the surface,
thus reducing encounter rates. Furthermore, if func-
tional feed successfully lowers the lice load on
salmon, cleaner fishes will have fewer opportunities
to consume lice. Each prevention strategy could re -
duce the cleaner–host encounter rate and limit
opportunities to interact with and delouse salmon.

Prevention strategies may also impact cleaner fish
welfare. In standard sea cages, cleaner fish condition
worsens with time (Skiftesvik et al. 2013). With lice
skirts, this may be exacerbated if low oxygen levels
decrease fish metabolism and impair foraging behav-
iour. To counter poor cleaner fish welfare, the indus-
try has assembled best practice procedures (FHF
2016). The procedures stipulate that farmers must
feed cleaner fishes regularly, a practice now widely
im plemented (e.g. all Mowi farms; Henrik Tren-
gereid pers. comm). If anti-lice strategies are effec-
tive, and cleaner fishes rely on lice as the principal
component of their diet, then condition may de -
crease. Moreover, current best prac-
tice procedures do not account for the
impact of new sea cage technologies.

Here, in a replicated commercial-
scale trial, we compared the delousing
efficacy, physical condition, and be -
haviour of corkwing wrasse S. melops,
a widely used wild-caught wrasse in
Norway, under different lice preven-
tion strategies. This is important be -
cause innovative prevention technolo-
gies change the sea cage environment,
and farmers must demonstrate that
cleaner fishes remain effective in re -
moving lice and that their welfare is
secured in new cage arrangements. By
understanding how cleaner fishes deal
with the complexities of a full-size sal -
mon farm, the industry can improve
cleaner fish survival and welfare and
lower lice infestation rates. Achieving

this will subsequently reduce the economic, welfare,
and environmental costs of alternative sea lice con-
trol measures.

2.  MATERIALS AND METHODS

2.1.  Location, experimental design, 
and environmental conditions

The experiment was conducted at the Centre for
Aquaculture Competence’s full-scale research and
development facility at Vindsvik, in Jøsenfjorden,
western Norway (~59° N) from 25 August (Day 1) to
11 October (Day 49) 2017. A specific animal ethics
approval was not required under Norwegian law, as
normal production procedures were followed. As
cleaner fish are part of standard production (used in
65% of cages in Norway; Norwegian Directorate of
Fisheries 2018) and were present in all cages at this
site, their use was not regarded as an experimental
treatment. Sampling of fish with acceptable humane
endpoints to determine their welfare status or sample
organs is within animal welfare regulations as this
forms part of normal farming operations. The site
was operational since September 2016, with all anti-
lice strategies (see below) in place by January 2017,
with continuous monitoring of the salmon for a 13 mo
period (Bui et al. 2020). This full-scale farm has 12 cir-
cular sea cages that are 120 m in circumference and
35 m deep, arranged in 2 rows parallel to the coast-
line (Fig. 1a,b). Each sea cage contained ~65 000
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Fig. 1. (a) Diagrammatic representation of the Vindsvik study site and experi-
mental design. Each circle represents a 120 m circumference sea cage, with
shade representing anti-lice strategy. Strategies were allocated to sea cages in
a randomised block design. CF: cleaner fish, FF: functional feed, DL/F: deep
light and deep feeding, LS: lice skirts. (b) Aerial view of the study site at dusk 

with underwater light treatments clearly visible in cages
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Atlantic salmon (mean ± SE, 1.9 ± 0.08 kg) and ~5000
cleaner fishes. New wild-caught cleaner fishes were
added to cages when mortality estimates were high,
as determined by the site manager (see Table S1 in
the Supplement at www. int-res. com/ articles/ suppl/
q012 p067 _ supp. pdf). At the time of this study, cork-
wing wrasse (~84% of all cleaner fishes caught in
pots) were the most abundant species, but lump-
suckers Cyclopterus lumpus (<1%), rock cook Cen-
trolabrus exoletus (<1%), goldsinny (~4%), and both
wild and farmed ballan wrasse Labrus bergylta
(~12%) were also present. Three hides for cleaner
fish shelter (~1 m diameter) made of black plastic
strips and extending from the surface to 6 m depth
hung in each cage.

One of 4 anti-lice strategies was applied to each of 3
replicate sea cages (N = 12 sea cages): (1) cages con-
taining cleaner fishes and salmon that were fed a stan-
dard salmon feed (Skretting Optiline, 9 mm), henceforth
referred to as cleaner fish only; (2) cages containing
cleaner fishes and salmon that were fed a functional
feed (Skretting’s Shield, 9 mm); (3) cages containing
cleaner fishes and salmon that were fed functional
feed, plus deep lights (Aurora SubLED Combi, 120 W
UV LED light, violet colour, at 5-7 m depth; AKVA
Group) and deep feeding (AKVA SubFeeder; AKVA
Group); and (4) cages containing cleaner fishes and
salmon that were fed functional feed, plus deep
lights/feeding, plus a skirt to prevent sea lice (mesh
size 350 μm, 6 m deep, Norwegian Weather Protection
Aquaculture). Treatments were allocated to sea cages
using a randomised block design (Fig. 1a,b).

Cleaner fishes and salmon in all cages were fed
using standard husbandry procedures during the ex -
periment, including supplementary feed for cleaner
fish. Environmental profiles of the water column
were collected from a reference point on the farm
using a conductivity, temperature and depth (CTD)
sensor (Model SD204, SAIV AS, Norway). The CTD
probe was set to measure every minute, moving
between 0 and 40 m in depth.

2.2.  Swimming depths of Atlantic salmon
and cleaner fish

The swimming depth distributions of salmon in
each cage were continuously recorded using a PC-
based echo integration system (CageEye). The trans-
ducers were positioned below the centre of each cage
at 35 m depth, facing upwards with a 15° acoustic
beam. Full details of the system are given by Bjordal
et al. (1993). Echo intensity, which is directly propor-

tional to fish density, was recorded at 0.5 m depth in-
tervals from 0 to 35 m and converted to relative echo
intensity in each interval. A mean value of the echo
observations per minute (60 pings min−1) was
recorded and used to calculate a relative density on a
scale from 0 to 1. All data were condensed to cage av-
erages per 1 m depth interval, to create a mean
salmon school depth, prior to  analysis.

As the echosounder system did not provide data on
wrasse swimming depths, we directly observed
wrasse with an ROV prior to the first sampling period
during daytime to set the depth for wrasse pots.

2.3.  Delousing efficacy of cleaner fish

Delousing efficacy was measured in 2 ways: the
number of lice per corkwing wrasse gut, and a calcu-
lated ‘cleaner fish effect’ (CFE). To determine the
number of lice consumed by wrasse, 8 to 10 corkwing
wrasse from each sea cage were caught using
prawn-baited wrasse pots deployed from 09:00 to
12:30 h at 7 m depth, then euthanised with an over-
dose of tricaine methanesulfonate (Finquel®, Scan
Aqua AS; 5 g 10 l−1). Each wrasse was dissected and
their gut contents visually inspected. The number of
salmon lice were counted, scales were recorded as
present or absent, and the other content was identi-
fied as either crustaceans, feed, algae, completely
digested/unidentifiable, or empty.

Cleaner wrasse primarily consume the mobile stages
of lice (preadult and adult) as they are large enough
to detect (Skiftesvik et al. 2013). Thus, to measure
CFE, we compared the ex pected mean number of
mobile lice salmon−1 (μ(expected mobile)) to the
actual mean number of mobile lice salmon−1 (μ(actual
mobile)). Assuming no chemical delousing and equal
attrition across cages, the μ(expected mobile) for
sample t should equal the μ(actual mobile) at sample
time t, unless cleaner fishes are removing mobile lice.
Thus, a high CFE occurs when cleaner fishes con-
sume many lice, whereby there is a low μ(actual
mobile) compared to high μ(expected mobile).

To calculate μ(expected mobile)t, 20 salmon were
collected from every cage using a 3 m ring net pulled
up from ~5 m near the centre of the cage 3 wk before
the experiment (2 August) and close to Sample 1 and
Sample 2 (28 August and 13 September). Salmon
were not sampled at Sample 3 (6 October) due to lice
treatments. Each sample spanned over 3 consecutive
days (see Table S1). Salmon were transferred using a
dip net to a bath containing an overdose of an aes -
thesia. After euthanasia, individuals were as sessed
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for their infestation status whereby lice were counted
and staged as chalimus I, chalimus II, preadult I, pre -
adult male, preadult female, adult male, adult female,
adult female with eggstrings, or Caligus elongatus.
Then, the mean number of lice per salmon across
replicate cages was determined for each lice man-
agement strategy. At 12.5°C (the average tempera-
ture during the experimental period), it takes 3 wk
for attached lice (i.e. copepodids, chalimus 1, and
chalimus 2) to become mobile lice (i.e. pre-adult 1
stage and later) (Samsing et al. 2016; Hamre et al.
2019), when they can be consumed by cleaner fishes
(Brooker et al. 2018). Thus, to calculate μ(expected
mobile)t, we used the following formula:

(1)

where μ(expected mobile)t is the expected mean
number of mobile lice per salmon for that lice man-
agement strategy at sample time t, assuming no mor-
tality or emigration; μ(attached)t–3weeks is the mean
number of attached lice salmon−1 for that manage-
ment strategy, 3 wk prior to sample time t; and
μ(actual mobile)t−3weeks is the mean number of mobile
lice per salmon for that management strategy, 3 wk
prior to sample time t.

To calculate the CFE for each lice management strat-
egy and sample point, we used the following formula:

(2)

where μ(expected mobile)t is the expected mean
number of lice per salmon for that lice management
strategy at sample time t, assuming no mortality or
emigration; μ(actual mobile)t is the actual mean num-
ber of mobile lice per salmon for that management
strategy at sample time t, which was recorded from
the physical inspection of experimental fish.

2.4.  Physical condition of cleaner fish

Length (L, ±0.05 cm) from snout to caudal fin and
weight (W, ±0.05 g) were measured, from which Ful-
ton’s condition factor (K = W / [L]3 × 100) was calcu-
lated to estimate corkwing wrasse condition. Eye, fin,
skin, snout, opercula and gill damage were recorded
as present or absent, as were deformities.

2.5.  Behaviour of cleaner fish

In each sea cage at all 3 sampling times, behaviour
was filmed for 15 min on 2 underwater cameras (Go-

Pro Hero 5) at 7 m depth. A remotely operated under-
water vehicle (Deep Trekker DTG2) checked the
cameras were not tangled and that one was facing a
hide. Video recordings were analysed afterwards to
determine the prevalence of the following behaviours:
swimming with salmon, inspecting sal mon, feeding
on lice, alternative feeding, salmon avoidance, inter/
intra-specific aggression (see Table S2). Behaviours
were counted as present or absent in each 15 min film
replicate.

2.6.  Statistical analyses

To determine if corkwing wrasse lice consumption
differed between prevention strategies, a zero-
inflated generalised linear mixed model (function
‘glmmTMB’ in package ‘glmmTMB’, RStudio v. 3.4.2;
R Core Team 2018) analysed lice count per corkwing
gut data, where group was fixed and cage and sam-
ple time were random effects. As there were more
fish with several or no lice in their guts, and only a
few with 10s of lice gut−1, a negative binomial family
was specified.

CFE fitted a normal distribution so was analysed
using a standard linear model (function ‘lm’), with
both group and sample as fixed effects. Sample was
treated as a fixed effect because there were not
enough levels to treat it as a random effect.

To test if corkwing wrasse condition differed be -
tween different anti-lice strategies, K-scores fitted
a normal distribution and therefore were analysed
using a linear mixed-effects model estimated by
maximum likelihood, with group as a fixed effect and
cage and sample time as random effects (function
‘lmer’ in ‘lme4’).

To test if physical damage differed between pre-
vention strategies, fin, skin, eye, snout, gill, and
opercula damage were fitted to a generalised linear
mixed model with a binomial distribution, where
group was a fixed effect and sample time and cage
were random effects (function ‘glmmTMB’ in pack-
age ‘glmmTMB’, R). Stomach contents and behav-
iour data were analysed using the same model and
distribution.

Mean school depth was calculated for each re -
plicate cage from 30 August to 23 September. A 1-
way ANOVA (function aov, R) was used to test if
salmon schooled at different depths when subjected
to different lice-prevention strategies. Post-hoc an -
alysis was conducted using Tukey’s test (function
TukeyHSD, R) where p < 0.05 was considered statis-
tically significant.

t t

t

expected mobile attached

actual mobile

3weeks

3weeks

( ) ( )
( )

μ = μ

+ μ
−

−

t tCFE expected mobile actual mobile( ) ( )= μ − μ

72



Gentry et al.: Lice prevention strategy affects cleaner fish efficacy

Homogeneity of variance and normality of errors
were confirmed with visual inspection of residual
plots for both K-score and CFE (function ‘plot’, R). All
models were compared to corresponding null mod-
els, excluding group as a factor in likelihood ratio
tests (function ‘anova’, R) to attain p-values. Where
p < 0.05, Tukey’s test (function ‘lsmeans’ in   package
‘lsmeans’, R; Lenth 2016) generated adjusted p- values
using least squares means to identify significant dif-
ferences between groups.

3.  RESULTS

3.1.  Environmental conditions

Between 25 August (Day 1) and 11 October 2017
(Day 49), salinity (Fig. 2a) from 5 to 35 m depth
ranged between 26 and 34 PSU. From 0 to 5 m, the
first and last 3 wk were marked by periods of brack-
ish water, reaching a minimum of 12 PSU. For most of
this study period, there was a thermocline of warm
water (>14°C) be tween 0 and 15 m and cooler water
below 15 m (Fig. 2b). In the fifth week, the water tem-
perature was uniformly warm (14−15°C) throughout
the water column. During the last 2 wk of the study
period, the mean temperature dropped to 12°C, with
coldest temperatures occurring below 25 m and at
the surface. Dissolved oxygen concentration gener-
ally re mained above 85% in the first 5 m of water
throughout the trial, while deeper waters experi-
enced levels ~70% saturation (Fig. 2c). The third
week was characterised by slightly lower dissolved
oxygen levels (~60%) from 10 to 30 m. This was fol-
lowed by 10 d of high oxygen saturation (>75%)
across all depths, before levels once again stratified
with high dissolved oxygen at the surface and ~70%
at depth.

3.2.  Swimming depths of Atlantic salmon

An overall difference in the mean swimming depth
of salmon between anti-lice strategies was ob served
throughout the experimental period (df = 3, F = 6.4,
p = 0.02). On average, salmon swam far deeper in
cages surrounded by lice skirts (mean ± SE: 11.1 ±
1.9 m) compared to CF (4.1 ± 0.04 m) and CF + FF
(4.2 ± 0.5 m) cages (Fig. 3). Salmon subjected to deep
lights but not lice skirts also swam shallower (6.6 ±
0.8 m) than those in skirt-encircled cages, but the
post-hoc Tukey’s test re vealed there was no signifi-
cant difference between these 2 cage types (p = 0.1).

3.3.  Cleaner fish stocking levels and salmon lice
levels among anti-lice strategies

At the start of Sample 1, an average of 6843 – 7920
cleaner fish were stocked onto the 4 anti-lice strat -
egies (see Table S1 in the Supplement). Cleaner fish
continued to be stocked throughout the experiment,
so that numbers increased to 6843 – 9564 at Sample 3.
Cleaner fish mortalities were recorded in each cage
as the number of dead cleaner fish retrieved from the
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salmon mortality net placed in the bottom of each cage
(Fig. S1). At Sample 1, mobile lice per salmon aver-
aged 0.57 to 1.4, increasing to 1.28 to 2.64 in Sample 2
(Fig. 4b). Attached salmon stages ranged from 0.1 to
1.7 in Sample 1 and from 0.3 to 0.9 in Sample 2 (Fig. 4a).
Mean attached lice per salmon differed at Sample 1
only, with lice skirt treatments lower than all other
treatments. Mean mobile lice per salmon did not differ
among treatments at either time. Lice abundances
were not estimated in Sample 3 due to lice-control
treatments undertaken by the farm staff (Table S1).

3.4.  Delousing efficacy of cleaner fish

Corkwing wrasse in lice skirt-encircled sea cages
were the poorest delousers compared to other anti-
lice strategies. This result was consistent over both
measures of delousing efficacy: the number of lice in
guts (Fig. 5) and CFE (Fig. 6).
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Fig. 3. Boxplots of mean salmon schooling depth for each anti-
lice strategy, showing the third quartile (Q3) and first quartile
(Q1) range of the data at the Vindsvik site from 30 August
(Day 6) to 23 September (Day 30) 2017. CF: cleaner fish, FF:
functional feed, DL/F: deep light and deep feeding, LS:
lice skirts. Different symbols (* and ^) indicate significant

differences revealed by Tukey’s test
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Of all fish sampled across treatment groups, 11%
of corkwing wrasse consumed lice. The mean (±SE)
number of lice per corkwing gut were 0.3 (± 0.2),
0.9 (±0.4), 1.8 (±0.9), and 0.2 (±0.0) for cleaner fish
only, cleaner fish plus functional feed, cleaner fish
plus functional feed plus deep lights/feeding, and
cleaner fish plus functional feed plus deep lights/
feeding plus lice skirt strategies, respectively (Fig. 5).
The full model indicated a strong overall effect of
anti-lice strategy on the number of lice in corkwing
guts. Post-hoc pairwise testing revealed that this
overall effect was driven by differences between the
lice skirt treatment and both functional feed (z = 2.8,
p = 0.001) and functional feed plus deep lights/
feeding (z = 5.1, p < 0.0001) treatments.

Using the CFE estimate, the most effective cleaner
fishes were in sea cages with cleaner fish plus func-
tional feed (mean ±SE CFE = 1.4 ± 0.33). There was
no difference between the cleaner fish only (CFE =
1.1 ± 0.30), cleaner fish plus functional feed plus deep
lights/feeding (CFE = 0.8 ± 0.26), and lice skirt (CFE =
−0.2 ± 0.40) strategies (Fig. 6). Comparison of full and
reduced models indicated an effect of anti-lice strat-
egy (F = 5.1, p = 0.009) and no effect of sampling
time (F = 2.6, p = 0.12). Post-hoc pairwise comparison
revealed the effect was driven by differences
between the lice skirt-encircled cages and the
cleaner fish only (p = 0.04) and between the lice skirt-
encircled cages and cleaner fish plus functional feed
(p = 0.008) treatments.

3.5.  Physical condition of cleaner fish

The different anti-lice strategies had the same
impact on corkwing wrasse physical condition. Con-
dition (K-score: χ2 = 5.9, p = 0.1, general model:
[weight in g] = 0.014  [length in cm]3, R2 = 0.9), fin
(χ2 = 2.2, p = 0.5), skin (χ2 = 1.6, p = 0.7), eye (χ2 =
1.10, p = 0.8), and snout (χ2 = 2.0, p = 0.6) damage
were similar across anti-lice strategies. Gill and oper-
culum damage were too rare (19 and 12 incidences
respectively) to model reliably. Fin damage was com-
monly recorded on corkwing wrasse (75% preva-
lence), followed by skin (28%), eye (13%), opercu-
lum (4%), and snout (3%) damage (Fig. 7).

3.6.  Gut contents of cleaner fish

The most common food in corkwing guts across
cage groups was completely digested, unidentifiable
matter (38%), followed by algae (29%), crustaceans

(21%), lice (1.8%), then feed (0.9%) (Fig. 8). Ten per-
cent of guts were empty. Crustaceans, predominantly
Caprellid amphipods, were 5-fold less important prey
items for corkwing in the cleaner fish plus functional
feed group compared to corkwing in the lice skirt-
encircled group (z = −3.6, p = 0.001). There were no
other differences between main food consumed and
anti-lice regime. In total, 20% of corkwing wrasse
had scales in their guts and anti-lice strategy did not
affect prevalence of scales (χ2 = 3.0, p = 0.4).

3.7.  Behaviour of cleaner fish

We detected no differences in cleaner fish behav-
iours between anti-lice strategies (lice feeding: χ2 = 3.6,
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p = 0.3; inspection: χ2 = 4.8, p = 0.2; swimming near
salmon: χ2 = 2.9, p = 0.4; alternate feeding: χ2 = 1.9,
p = 0.6; avoiding salmon: too infrequent to model
reliably). The most commonly observed behaviour in
sea cages across treatments over 10 observed hours
was swimming near salmon (89 instances), followed
by alternative feeding (45 instances), inspecting
salmon for lice (25 instances), avoiding salmon (8
instances), and feeding on lice (6 instances).

4.  DISCUSSION

In an experiment on a commercial-scale Atlantic
salmon farm, we tested if cleaner fish delousing effi-
cacy differed between anti-lice strategies. Based on
stomach contents and estimations of CFE, cleaner
fishes were least effective when used with anti-lice
skirts. The experiment was conducted at 1 site in
autumn over a 2 mo period and results relate to 1 spe-
cies of cleaner fish. Our results do not mean that
skirts will always reduce cleaner fish efficacy, as dif-
ferent circumstances may arise for other species and
at other sites and times. However, given the broad
use of cleaner fish (65% of farms use cleaner fishes:
Norwegian Directorate of Fisheries 2018) and wide-
spread use of skirts (Nodland 2017, Grøntvedt et al.
2018), the effects of different in-cage anti-lice strate-
gies should be broadly tested in space, time, and
across species to see if they alter lice consumption by
cleaner fish.

Regardless of anti-lice strategy, measures of the
physical condition of corkwing wrasse were similar.
This means that farmers could implement new strate-
gies for lice control — specifically those that involve
unfamiliar structures and feed and light regimes —
without high risk of harming corkwing wrasse any
more than traditional sea cages.

4.1.  Delousing efficacy

Delousing efficacy was measured in 2 ways: by
counting lice in corkwing wrasse guts and estimating
overall CFE for each anti-lice strategy. The poorest
delousers (mean lice per gut = 0.23) and the lowest
CFE (−0.21) were found in lice skirt-encircled sea
cages, despite extended foraging hours permitted by
24 h deep lights. Several explanations for this result
are possible. First, echosounder data showed that
salmon swam ~5 m deeper when lice skirts were
used, compared to other cages that also had deep
lights and feed but no skirt; the deeper depth prefer-

ence could possibly be to avoid patches of lower
water quality caused by the skirt (Stien et al. 2012,
Frank et al. 2015). Oldham et al. (2017) showed some
avoidance of low dissolved oxygen conditions by
salmon. However, it is likely that cleaner fishes
mostly occupy the top 7 m of sea cages, to take
advantage of shelter provided by hides and the
observed warmest water (Brooker et al. 2018, Skiftes -
vik et al. 2014). Different depth distributions for
salmon and cleaner fishes would lead to fewer inter-
actions between the species and, subsequently, less
lice-feeding opportunities. As different cleaner fish
species demonstrate different habitat preferences
(e.g. lumpsuckers avoid warm water), it may be pos-
sible to overcome the depth distribution problem by
selecting species that will swim near salmon in a
given farm’s environment.

4.2.  Physical condition

Corkwing wrasse physical condition was not
affected by anti-lice strategies in this study, and
K-score (1.39) was broadly similar to corkwing
wrasse in previous studies (e.g. 1.34: Sayer et al.
1996, 1.43: Treasurer & Feledi 2014). Compared to
other stressors that are negative for welfare, such as
capture, transfer, net-raising, and stocking (Skiftes -
vik et al. 2014, Treasurer & Feledi 2014, European
Union Reference Laboratory for Fish Diseases 2016),
the physical modification inside a sea cage may have
comparably little effect on wrasse welfare.

Across lice management strategies, 75% of cork-
wing had fin splits or erosion. The damage, along
with skin and snout wounds, is probably due to fish
capture (wild fishing and experimental) and contact
with farm structures. Fin damage may also have oc -
curred in hot water and mechanical delousing treat-
ments (see Table S1), but further research is required
to verify this observation. Severity of damage should
be scored in a similar way as salmon welfare scoring
(e.g. Stien et al. 2013) to study causes and develop-
ment over time, environments, and treatments. Terri-
torial fin nipping may also contribute to fin damage,
although we did not observe fin nipping in video
footage and nipping is rare when fish re ceive ade-
quate feed (Moutou et al. 1998, Hatlen et al. 2006).

Previously, skin, eye, operculum, and snout dam-
age in corkwing wrasse have been reported as negli-
gible (Treasurer & Feledi 2014). This suggests that
the damage rates recorded here, especially for skin
(28%), are high. Veterinarians report 60 to 100%
mortality of cleaner fishes in salmon farms (Olsen
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2017), at least 33% of which occurs within 5 mo after
stocking (Nilsen et al. 2014). It is likely that external
injuries and disease cause high mortality, but meth-
ods to measure welfare, mortality, and escapees need
to be improved. Nevertheless, by law, fish housed in
sea cages must be treated to the same ethical stan-
dard as salmon (Norwegian Seafood Research Fund
2018). To meet this ethical requirement, and given
the recent and rapid expansion in cleaner fish use
(Norwegian Directorate of Fisheries 2018), there is an
urgent need to advance, validate, and oversee imple-
mentation of industry recommendations (Norwegian
Seafood Research Fund 2018) across Norway to
secure cleaner fish welfare via a verified and measur-
able standard for ‘healthy’ cleaner fishes in sea
cages. Without this benchmark, we cannot extrapo-
late our findings beyond this specific site, season,
and species.

4.3.  Gut contents

Across all anti-lice strategies, corkwing wrasse
consumed similar but highly varied diets that in -
cluded algae, crustaceans, fish feed, and salmon lice.
The only difference was that wrasse in the cleaner
fish plus functional feed treatment ate fewer crus-
taceans compared to all other strategies. Crustacea
were generally Caprellid amphipods, which are
abundant on salmon farm nets (Blöcher 2013), so
corkwing wrasse would have many opportunities to
reach optimal prey handling efficiency for this food
item (Warburton 2003). Lice, however, are not reli-
able food sources on salmon farms as loads usually
remain below 0.5 adult female lice per salmon. Thus,
cleaner fishes would have had fewer opportunities to
learn delousing behaviours and it would take longer
to reach optimal prey handling efficiency of lice. The
proportion of caprellids in gut contents was greatest
in cages with skirts. Caprellids may have been more
abundant in cages with lice skirts, as skirts create an
area of reduced flow immediately behind the skirt
wall, which may promote biofouling and Caprellid
abundance.

4.4.  Behaviour

In >600 min of video, lice feeding was recorded 6
times by 4 cleaner fish, indicating that cleaner fish–
salmon interactions are rare and hard to capture on
film in this setting. We detected no differences in the
suite of behaviours performed by cleaner fishes

among anti-lice strategies. Therefore, the differences
observed in lice per gut and CFE likely reflect differ-
ent encounter rates between salmon and cleaner
fishes induced by the different anti-lice strategies.

4.5.  Industry implications

Although focusing on only one species of cleaner
fish in autumn, this work emphasises the importance
of full-scale studies, where complex interactions be -
tween farm routines, environmental conditions, and
cage technologies likely affect cleaner fish efficacy.
A clear recommendation arising from this work is
that aquaculture production managers should test
new technologies across seasons and sites for inter-
actions with cleaner fish performance. This will
enable fine-tuning of cleaner fish deployment strate-
gies to optimise their efficacy.

In this commercial-scale experiment, lice skirts im -
paired the delousing efficacy of corkwing wrasse.
This likely occurred due to skirts creating a spatial
mismatch between where corkwing (shallower at
hide depths of 0 to 7 m) and salmon (deeper with an
average swimming depth of 11 m) occurred in cages,
which reduced the encounter rate between cleaners
and salmon. If new technologies create a mismatch
between cleanerfish swimming depths and salmon
swimming depths, then strategies such as adjust -
ments to hide depths could reduce this difference if
cleaners follow hides deeper. Different species of
cleaner fish may also have clear vertical preferences
that can be used in co-management with prevention
technologies. An example is the semi-pelagic nature
of lumpsucker compared to the more bottom-
dwelling wrasse, or the temperature tolerance of dif-
ferent species. If further research reveals that specific
lice-prevention technologies consistently compromise
the interactions of cleaner fish with salmon and re-
duce lice-feeding opportunities, periods of non-use of
cleaner fish may prove the best strategy.

Salmon lice made up <2% of the diet of corkwing
wrasse, and only 11% of guts contained salmon lice.
Increasing the number of cleaners that engage in
feeding behaviour and the frequency with which
they engage should be a priority for cleaner-fish
managers. If research can identify high-performing
cleaner fish and transfer their behaviour to other
individuals via selective breeding programs (e.g.
lump suckers; Imsland et al. 2016) or through specific
acclimation measures, such as pre-exposing cleaner
fish to lice-infected salmon in small enclosures or
providing live Artemia and frozen lice as feed before
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they are stocked in full-scale sea cages (e.g. Gentry
2018, Imsland et al. 2019), then cleaner fishes could
become more effective biological control agents. If
corkwing wrasse welfare and efficacy cannot be
improved, the industry may need to reconsider its
use of this species as a biological control agent.
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