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Oceanographic conditions in the Arctic are changing, with sea ice cover decreasing and sea temperatures increasing. Our understanding of
the effects on marine populations in the area is, however, limited. Here, we focus on the Barents Sea stock of polar cod (Boreogadus saida).
Polar cod is a key fish species for the transfer of energy from zooplankton to higher trophic levels in the Arctic food web. We analyse the rela-
tionships between 30-year data series on the length-at-age of polar cod cohorts (ages 0–4) and sea surface temperature, sea ice concentration,
prey biomasses, predator indices, and length-at-age the previous year using multiple linear regression. Results for several ages showed that
high length-at-age is significantly associated with low sea ice concentration and high length-at-age the previous year. Only length-at-age for
age 1 shows a positive significant relationship with prey biomass. Our results suggest that retreating sea ice has positive effects on the growth
of polar cod in the Barents Sea despite previous observations of a stagnating stock biomass and decreasing stock abundance. Our results con-
tribute to identifying mechanisms by which climate variability affects the polar cod population, with implications for our understanding of
how future climate change may affect Arctic ecosystems.
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Introduction
The largest changes in temperature are recorded in the Arctic

areas at the northernmost part of the northern hemisphere

(Hansen et al., 2006). The Arctic sea surface temperature (SST) in

August has increased by an average of 1�C per decade (over the

1982–2019 period; Timmermans and Ladd, 2019).

Simultaneously (1978–2010), the observed sea ice cover and sea

ice period, as well as the modelled sea ice thickness, have de-

creased in the Arctic marginal seas often associated with increased

net primary production (Stroeve et al., 2012; Arrigo and van

Dijken, 2015; Laidre et al., 2015). The Barents Sea, an Arctic

marginal sea located north of Norway and Russia, is a transition

zone between the warmer and deeper Norwegian Sea in the west

and the Arctic Ocean. In the Barents Sea (Figure 1), increased sea

temperature together with increased extent of warm Atlantic wa-

ters and retreat of cold Arctic waters may also allow boreal to

sub-Arctic fish populations like piscivorous Atlantic cod (Gadus

morhua) and planktivorous capelin (Mallotus villosus) to expand

northeastward into areas previously occupied by Arctic fish spe-

cies such as polar cod (Boreogadus saida) (Fossheim et al., 2015;

Fall et al., 2018). In the near future, sea ice cover is projected to

continue shrinking and thinning, leading to changes in the
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frequency and extent of sub-ice blooms, amount and spatio-tem-

poral distribution of secondary production, and increased visual

predation (Slagstad et al., 2011; Horvat et al., 2017; Langbehn

and Varpe, 2017). Climate change is expected to affect Arctic spe-

cies directly, e.g. through effect of temperature on growth rates,

or indirectly by affecting the prey, predators, or competitors of

the focal species (Stenseth et al., 2002; Drinkwater et al., 2010).

For example, reduced ice cover in the Barents Sea may potentially

influence survival and/or growth of young polar cod through loss

of predation refuge, as well as indirectly by acting on the biomass

or phenology of prey populations (Hop and Gjøsæter, 2013).

Identification of potential pathways of climate effects and quanti-

fication of the strength of these effects on Arctic marine species

are current research topics that are being investigated to predict

the possible ecological consequences of climate change in the re-

gion (see, for example Johannesen et al., 2012; Stige et al., 2019a).

Length-at-age of a fish stock can be used to investigate the con-

sequences of climate change as a measure of the effect of direct or

indirect effects of ecosystem variables on the condition of the

individuals composing the stock (Dutil et al., 1999). Variation in

length-at-age of a stock depends on (i) the growth rates experi-

enced by the individuals, e.g. following variations in temperature,

food quantity, or food quality, and (ii) size-dependent mortality,

e.g. predation on the smaller individuals, size-selective fishing, or

removal of the largest individuals through mortality associated

with spawning in the case of semelparous species. In addition, es-

pecially for the youngest age class of a population with a pro-

tracted spawning season, mean size may vary depending on

spawning dates and experienced mortality rates during the first

year of life. For example, individuals spawned early in the season

may benefit from a longer growing period than individuals born

late in the season. The mean size at a given time of year is, there-

fore, higher if a high fraction of the year class is born early in the

year, and the mortality rate is lower than in a situation where the

fraction is low and/or the mortality rate is high. Increase in

length-at-age may indicate a positive development for a popula-

tion, with favourable growth conditions, i.e. high food intake and

suitable temperatures (Sogard, 1997). Large size in early life

implies that the individuals may be more resilient to periods of

reduced food intake (Miller et al., 1988). Individuals may also be

less susceptible to predation, as predation rates generally decrease

with size early in life (Sogard, 1997, but with noticeable excep-

tions, see Pepin, 2016). In contrast, smaller length-at-age can re-

veal suboptimal growth conditions with potential starvation and

has been related to deteriorating conditions of fish stocks (Dutil

et al., 1999).

Polar cod is a semi-pelagic fish species from the Gadidae family

and a key species in the Arctic waters of the Barents Sea. It is an

important component in the Arctic trophic chain by virtue of its

large biomass and by channelling energy from the sympagic and

marginal ice zones as well as from open-water copepods and

amphipods to the higher trophic levels (reviewed in Hop and

Gjøsæter, 2013). Eggs can be found under the ice in the first

months of winter (Rass, 1968; David et al., 2016) and hatch into

larvae from May to September (Baranenkova et al., 1966).

Young-of-the-year are usually found in open water (Baranenkova

et al., 1966), with some exceptions for late hatchers that may be

found under the ice (Lønne and Gulliksen, 1989; David et al.,

2016). Older individuals (ages 1 and 2) may also be found under

the ice where they use cracks or crevices as refuges from predation

(Lønne and Gulliksen, 1989; David et al., 2016). Alternatively,

young individuals may migrate to deeper water and join older

individuals of the stock (Falk-Petersen et al., 1986). Key prey

items in the diet of polar cod are calanoid copepods (particularly

Calanus glacialis), large pelagic amphipods (e.g. Themisto libel-

lula), sympagic amphipods (e.g. Apherusa glacialis), and krill (e.g.

Thysanoessa inermis) (Orlova et al., 2009; Hop and Gjøsæter,

2013). The biomass of these copepods as well as pelagic amphi-

pods in the northern Barents Sea decreases following winters with

low sea ice cover (Stige et al., 2019a). Juvenile polar cod are also

potentially directly influenced by changing temperature condi-

tions in the Barents Sea as growth and survival have been associ-

ated with temperature both in field observations and in rearing

experiments (Bouchard and Fortier, 2011; Laurel et al., 2016).

The stock of polar cod in the Barents Sea can also be influenced

directly by the main predators Atlantic cod and harp seals (Phoca

groenlandica) (Ajiad et al., 2011).

There are still major gaps in knowledge associated with the in-

teraction between the different Arctic species and their environ-

ment (Mueter et al., 2016). For Arctic fishes in general, growth is

often a priori expected to decrease in a warming Arctic

(Wassmann et al., 2011). In the case of polar cod, the relationship

between body size and environmental factors has been analysed

for the young-of-the-year (Eriksen et al., 2015; Bouchard et al.,

2017). However, less is known about how length-at-age of older

stages is associated with environmental factors. Here, we analyse

statistically the associations between abiotic (sea ice extent, sea

temperature) and biotic (prey and predator biomasses) environ-

mental factors and length-at-age of polar cod to improve our un-

derstanding of the effects of climate change on this Arctic species.

Material and methods
Datasets
In this study, we used 30 years of length-at-age data of polar cod

originating from the joint Norwegian/Russian ecosystem survey

Figure 1. Map of the Barents Sea. Relevant sampling area for
copepod, amphipod, krill (solid green box), and relevant sampling
area for sea ice and sea surface temperature (dashed red box).
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in the Barents Sea and adjacent waters (BESS) carried out annu-

ally in August–October by the Institute of Marine Research in

Norway (IMR) and the Knipovich Polar Research Institute of

Marine Fisheries and Oceanography (PINRO), the current Polar

Branch of the Russian Federal Institute of Fisheries and

Oceanography (VNIRO). We chose to use length-at-age values

over weight-at-age in our study as weight is more sensitive to

short-term variation in food and is less conservative than length

in reflecting the growth history of an individual. We here used

data for the years 1986–2015 obtained through the annual survey

reports (Figure 2a–e). In this study, we analysed data on young-

of-the-year (age 0) and older (ages 1þ) polar cod. The data for

fish of age 1 and older are based on annual stock size estimates,

which are acoustic estimates distributed by age and length groups.

The estimates were made using standard methods for acoustic

surveys (e.g. Simmonds and MacLennan, 2005), where nautical

area scattering coefficients (NASC) output from echosounders

are transformed into number of fish per areal unit based on trawl

samples where lengths are measured (total length to the nearest

half centimetre below) and age (in years) estimated from otoliths.

In this way, abundance-weighted length distributions (based on

the midpoint in each length bin of 0.5 cm size class) are con-

structed. The NASCs are obtained from 38-kHz echosounders,

which are normally calibrated by standard spheres at the start of

the survey. The trawl used for obtaining biological samples of pe-

lagic fish is a standard sampling trawl (“Harstad”; Godø et al.,

1993) with small meshed (8 mm) net in the codend. For polar

cod, otoliths from 96 specimens from each sample were extracted

and the otoliths were read by experienced age readers according

to species-specific protocols. Age readers at the two participating

institutes undergo tests for inter-reader bias to check that ages es-

timated at the various participating vessels are comparable over

years.

The data for age 0 (0-group) polar cod originate from the

same survey, but abundance is estimated based on a grid of spe-

cial trawl hauls covering the upper 60 m of the water column and

where the abundance index is based on the catches (Eriksen et al.,

2009). The trawl used for these 0-group hauls is the same as used

for targeted sampling of older polar cod as described above. For

some years, data on age 0 are spatially differentiated between a

western component (Svalbard region, Figure 1) and an eastern

component (Novaya Zemlya region, Figure 1). In this case, an age

0 total mean length-at-age was computed by averaging western

and eastern mean lengths-at-age weighted by the stock abundance

estimates for each spatial component.

As an index of SST (Figure 2f), we considered annual mean

summer SST (taken as the months May–September) in the area

74–80�N, 20–50�E (Figure 1). This period covers the main pri-

mary and secondary production seasons in the central and north-

ern Barents Sea (Wassmann et al., 2006). The index was

calculated from monthly SST data on a 2� � 2� grid provided by

the National Oceanic and Atmospheric Administration

(NOAA_ERSST_V3 data set http://www.esrl.noaa.gov/psd/).

An index of winter sea ice concentration was calculated from

monthly satellite-derived sea ice concentrations (Nimbus-7

SMMR and DMSP SSM/I-SSMIS Passive Microwave Data,

NSIDC-0051) provided by the National Snow and Ice Data

Center (Cavalieri et al., 1996; updated yearly https://nsidc.org/

data/NSIDC-0051/versions/1). The index was calculated for the

same representative area as for SST. Ice index for year t referred

to the average ice cover between December of year t� 1 and May

Figure 2. Time-series of standardized data for the different variables
considered in the analysis. (a) Natural logarithm of polar cod length-
at-age for age 0, (b) age 1, (c) age 2, (d) age 3, and (e) age 4, (f) sea
surface temperature, (g) winter sea ice concentration, (h) amphipod
biomass index, (i) krill biomass index, (j) copepod biomass index, (k)
natural logarithm of total stock biomass of cod (age 3þ), and (l)
natural logarithm of modelled abundance of harp seals (age 1þ).

1798 N. Dupont et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/5/1796/5828349 by Institute of M
arine R

esearch user on 21 O
ctober 2020

http://www.esrl.noaa.gov/psd/
https://nsidc.org/data/NSIDC-0051/versions/1
https://nsidc.org/data/NSIDC-0051/versions/1


of year t, which were the 6 months that had the highest sea ice

concentrations for the analysed years, on average (Figure 2g).

To shed light on the possible mechanisms behind the correla-

tions between the climate variables and polar cod length-at-age,

we calculated correlations with the following three additional in-

dices: (i) August–September bottom temperature in the central

and northern Barents Sea, (ii) April sea ice cover in the same

area, and (iii) net primary production in the Barents Sea

(Supplementary Table S1). We chose to focus on winter sea ice

and summer SST in the main analysis to restrict the number of

predictor variables and hence the risk of type I errors. In addition,

winter and April sea ice are strongly correlated but the former

shows a stronger correlation with the response variables

(Supplementary Table S1). Finally SST has a better spatial data

coverage compared to bottom temperature.

Prey was divided into three categories based on the known diet

of polar cod: pelagic amphipods, copepods and krill (Orlova

et al., 2009). Pelagic amphipod and krill biomass were sampled

from 0- to 60-m depth using a pelagic trawl with seven panels of

decreasing mesh size from 100 to 30 mm ending in a codend of

mesh size 8 mm. Sampling took place in August–September in

the Barents Sea north of 74�N, and biomass was reported as kg

wet weight per nautical mile towed for amphipods and g wet

weight m�3 for krill (Dalpadado et al., 2012; Eriksen et al., 2016;

ICES, 2018a). Note that because data for amphipod and krill were

only available from the upper water layer (0–60 m), these indices

do not necessarily represent all amphipods and krill present in

the area. The dominant amphipod taxon was the large pelagic

species T. libellula, while smaller species such as Themisto abysso-

rum were not sampled representatively (ICES, 2018a). We here

used an annual log-scale amphipod biomass index (Figure 2h)

that was constructed from spatio-temporal observations using a

statistical regression approach to account for interannual differ-

ences in sampling protocol (as described in Dalpadado et al.,

2012; Stige et al., 2019a).

Dominant krill taxa sampled were large stages of Thysanoessa

spp. and Meganyctiphanes norvegica. Smaller Thysanoessa spp.

and juvenile euphausiids were not sampled representatively due

to escapement through the mesh (Eriksen et al., 2016; ICES,

2018a). We used an annual log-scale krill index (Figure 2i) that

was calculated from day and night catches, as described in Stige

et al. (2019a).

Copepods were represented by biomass (g dry weight m�2) of

mesozooplankton, for brevity referred to as “copepods” due to

their dominance in the mesozooplankton biomass (Orlova et al.,

2011; Aarflot et al., 2017). Copepods were sampled during annual

surveys by IMR from August to early October using 180-mm

mesh plankton nets throughout the water column (ICES, 2018a).

We here used an annual log-scale index of copepod biomass

(Figure 2j) calculated from the spatio-temporal observation data

from the central and northern parts of the Barents Sea (character-

ized by long-term average surface temperatures <3�C at the time

of the survey) using a statistical regression approach to account

for interannual differences in sampling protocol (as described in

Stige et al., 2014, 2019a). Dominant taxa represented by the bio-

mass index were C. glacialis, Calanus finmarchicus, and Calanus

hyperboreus (Aarflot et al., 2017).

As the main consumers of polar cod in the Barents Sea, we in-

cluded indices for both Atlantic cod and harp seals. Annual bio-

mass [ln(1000 t)] of age 3þ of the Northeast Arctic stock of

Atlantic cod (hereafter referred to as cod) was obtained from

ICES (2018b). Cod population biomass (Figure 2k) estimates

were from virtual population analyses, mostly relying on fisheries

catch data, and referred to as biomass at the beginning of the

year.

Annual abundance of harp seal individuals was extracted from

ICES (2016). The data represent harp seals at age 1þ (Figure 2l)

and were predicted from a deterministic age-structured popula-

tion dynamics model (Øigård et al., 2014). The model uses his-

torical data, reproductive data, and estimates of pup population

to predict yearly total population divided into age classes (from 0

to 20þ years). Abundance of seals aged 1þ is predicted from

mortality rates of pups and older individuals, and age class annual

seal catch. Yearly pup abundance is predicted using observed fe-

cundity and maturation norm for female seals and annual pup

catch.

Statistical analysis
Yearly means of fish length were regressed against a combination

of environmental factors that could influence growth: SST, sea ice

concentration, biomass of prey items, biomass of predators, and

length-at-age of the cohort the preceding year. We investigated

the relationship between the response variables [log-transformed

mean length-at-age, ln(Li,t) for the ith age class of polar cod in

year t] and the independent variables using a multilinear regres-

sion with a Gaussian error distribution. Annual means of log-

transformed length-at-age for each age class (0, 1, 2, 3, and

4 years) were analysed separately. The independent variables con-

sidered were (i) length-at-age of the year class the previous year

(Li�1,t�1; for ages i> 0); (ii) abiotic variables: winter sea ice con-

centration (Ice) and summer SST (SST); (iii) food sources: cope-

pods (Cop), amphipods (Amp), and krill (Krill); and (iv)

potential fish and mammal predators: cod (Cod) and harp seal

(HSeal). The regression equation for the full model was:

ln Li;tð Þ ¼ ai þ bi lnðLi�1;t�1Þ þ ciIcet þ diSSTt þ ei ln Amptð Þ
þfiln Coptð Þ þ gi ln Krilltð Þ þ hi ln Codtð Þ þ ii ln HSealtð Þ þ ei;t ;

e � N 0;rið Þ:

Here, ai, bi, ci, di, ei, fi, gi, hi, and ii are model coefficients for

age class i and ei;t is an independent and normal distributed noise

term with standard deviation ri . All biotic variables including

length-at-age were on natural logarithmic scale, and all indepen-

dent variables were centred on their median. The log-

transformation was applied to achieve homoscedasticity and

normality in the residuals of the regressions and to facilitate com-

parison across ages as all predictor effects could be interpreted as

linear effects on the instantaneous rate of change in length. Due

to the lack of information on length-at-age for age 0 in the

reports for 1989 and 1992–1995, missing amphipod index for

1988, and failure of the BESS in 2003, the numbers of data points

in the age 0 and age 1 regressions were reduced to, respectively,

22 and 21, compared to 26 for ages 2–4.

Some of the explanatory variables used in the model are signif-

icantly correlated with one another, e.g. amphipod and sea ice

concentration (Supplementary Table S1). To avoid variance infla-

tion in our model due to collinearity in our datasets, we reduced

the number of covariates by using the forward selection of envi-

ronmental predictor variables. This procedure permitted us to

find the reduced model with the best compromise between model

Environment and length of polar cod 1799
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parsimony and goodness-of-fit. First, the previous year’s mean

length of a year class was a priori retained in all models (except

for age 0, where no previous year length was available). We then

processed forward by adding one of the predictor variables to the

current model and assessed the Akaike information criterion

(AICc) corrected for low sample size (Hurvich and Tsai, 1989) of

the new model. We then selected the predictor variable providing

the highest decrease in AICc to add to the current model. We re-

peated the selection procedure on the updated model until no

further addition of remaining predictor variables led to a decrease

in the AICc value. Note that a small difference (DAICc) between

different models does not provide strong statistical support for

one model over the other. Therefore, in addition to the model

with the lowest AICc, we presented the models with a DAICc of

<2 compared to the model with lowest AICc.

To assess collinearity among the explanatory variables and to

help with the interpretation of the regression parameters for the

different models, the Pearson’s correlation coefficient R was com-

puted between each of the explanatory variables (Supplementary

Table S1).

Results
The multilinear regression model with the lowest AICc showed

that length at age 0 was negatively related to winter sea ice con-

centration (age 0 model 1, Table 1, Figure 3a). The same model

also showed a non-significant negative association between length

at age 0 and SST (p> 0.05, Figure 3b). A model without SST (age

0 model 2, Table 1) had similar statistical support (DAICc < 2).

The multilinear regression for age 1 showed that length at age

1 was not significantly associated with the mean length of the

same year class the previous year (i.e. as age 0, age 1 model 1,

Table 1, Figure 3c) and that length was negatively associated with

winter sea ice concentration and positively associated with the

amphipod index (age 1 model 1, Table 1, Figure 3d and e).

The multilinear regression for age 2 showed that length-at-age

was positively associated with the length-at-age of the cohort the

previous year (age 2 model 1, Table 1, Figure 3f). This suggests

that a year class composed of large individuals as 1-year olds also

tends to have large mean size as 2-year olds. In addition, length-

at-age was negatively associated with winter sea ice concentration,

but with no significant relationship with amphipods or other

prey indices (Figure 3g).

The model with lowest AICc for length at age 3 indicated a

non-significant relationship with length-at-age the previous year

and a negative relationship with the amphipod index (age 3

model 1, Table 1). A model with harp seal abundance as predictor

(age 3 model 2, Table 1) had similar statistical support (DAICc <
2). One competitive model considered during the forward selec-

tion process (Supplementary Table S2) suggested a significant

negative relationship with winter sea ice concentration. However,

this model had a DAICc of slightly >2 (DAICc ¼ 2.18) compared

to the model with the lowest AICc. From a statistical point of

view, the model including the amphipod index or harp seal abun-

dance provided a better prediction of the observed variation in

the response variable. We nevertheless chose to consider and to

present the results for the model including length-at-age the pre-

vious year and winter sea ice concentration (age 3 model 3,

Table 1, Figure 3h and i) because (i) the negative association with

winter sea ice concentration is consistent with the models for

other ages and (ii) the lowest DAICc model implied a negative

prey effect that is difficult to interpret biologically. We note that

the positive correlations among the amphipod index, harp seal

abundance, and sea ice concentration (Supplementary Table S1)

may cause statistical confounding between the effects of these fac-

tors. In a sensitivity analysis excluding the amphipod biomass in-

dex from the tested covariates for all age classes, the selection

process resulted in no statistically significant covariates being se-

lected for the age 1 model and the model with length-at-age the

previous year and winter sea ice to become competitive for the

age 3 model (DAICc ¼ 0.52).

The model with lowest AICc for age 4þ length showed a posi-

tive association with length-at-age of the previous year and a

non-significant negative relationship with winter sea ice concen-

tration (age 4 model 1, Table 1, Figure 3j and k). A model with-

out sea ice concentration as covariate had similar statistical

support (age 4 model 2, Table 1).

Competitive models to the model 1 for age 4þ excluded sea ice

as a predictor (age 4 model 2, Table 1) or selected either amphi-

pod prey index (age 4 model 3, Table 1) or SST (age 4 model 4,

Table 1). In all competitive models for age 4þ, only length-at-age

of the previous year showed a significant positive relationship.

Discussion
Our results show the associations between environmental varia-

bles and length-at-age of polar cod in the Barents Sea. Contrary

to expectation for Arctic animals (see Introduction section and

Wassmann et al., 2011), we found that the most rapid increases

in mean body length of the Barents Sea polar cod occurred in

Table 1. Model selection results for the multilinear regression for the different ages of polar cod.

Age Model Intercept Length-at-ageyear-1 Ice SST ln(Amp) ln(HSeal) DAICc R2 n

0 1 1.43 6 0.02**** not available �0.006 6 0.001**** �0.06 6 0.03* – – 0 0.47 22
2 1.42 6 0.02**** not available �0.005 6 0.001**** – – – 1.79 0.39

1 1 2.37 6 0.01**** 0.10 6 0.09 �0.003 6 0.001*** – 0.11 6 0.02**** – 0 0.49 21
2 1 2.7 6 0.01**** 0.34 6 0.16** �0.002 6 0.001*** – – – 0 0.45 26
3 1 2.85 6 0.02**** 0.34 6 0.23 – – –0.07 6 0.02*** – 0 0.4 26

2 2.85 6 0.01**** 0.46 6 0.22* – – – �0.41 6 0.16** 1.66 0.36
3 2.85 6 0.01**** 0.42 6 0.23 �0.002 6 0.001** – – – 2.18 0.35

4 1 2.98 6 0.01**** 0.53 6 0.20** �0.002 6 0.001* – – – 0 0.53 26
2 2.98 6 0.01**** 0.79 6 0.16*** – – – – 1.28 0.48
3 2.98 6 0.01**** 0.59 6 0.21*** – – �0.04 6 0.03 – 1.51 0.5
4 2.98 6 0.01**** 0.68 6 0.17*** – – – – 1.58 0.5

Estimates for the different regression parameters that were retained by the selection procedure are presented 6 their standard error and p-value levels:
*0.05< p< 0.1, **0.01< p< 0.05, ***0.001< p< 0.01, ****p< 0.001.
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years with little sea ice. Specifically, low winter sea ice concentra-

tion was associated with high mean length of polar cod at ages 0,

1, 2, and 3. High biomass of amphipod prey was only associated

with high mean length at age 1 of polar cod. SST in summer and

biomasses of fish predators and other prey groups than amphi-

pods were not significantly related with length-at-age of polar

cod.

Effect of sea ice on length-at-age of polar cod
Our results are in accordance with findings from the Canadian

Arctic (Bouchard and Fortier, 2011; Bouchard et al., 2017) by

suggesting a negative relationship between sea ice extent in winter

and mean length of polar cod at age 0. One possible explanation

for this negative association is that in years with an early sea ice

retreat, the early hatched larvae comprise a larger proportion of

the cohort by the first winter, compared to years with later sea ice

retreat (Bouchard and Fortier, 2011; Bouchard et al., 2017).

As the hatching of polar cod larvae takes place from May to

September in the Barents Sea (Baranenkova et al., 1966), age 0

fish are from 0 to ca. 4 months post-hatching at the time of the

survey in autumn. With such large variation in monthly age

within the year class, it is expected that an increased early season

survival in low-ice years would lead to an increase in mean age

and length, as well as abundance of age 0. This is in apparent con-

trast with observations of a positive association between sea ice

and age 0 abundance in the Barents Sea (Eriksen et al., 2015).

However, this positive association is hypothesized to be a result

of effects of sea ice on spawning areas for polar cod (Eriksen

et al., 2015) and not larval survival. In summary, these findings

suggest that the observed trend towards a decrease in winter sea

ice cover (Stroeve et al., 2012) and an early sea ice spring retreat

Figure 3. Partial regression plots of length-at-age for the different age groups depending on the selected predictors by AICc forward
selection. Effect on age 0 length-at-age by (a) winter sea ice concentration and (b) sea surface temperature. Effect on age 1 length-at-age by
(c) previous year length-at-age, (d) winter sea ice concentration, and (e) amphipod prey biomass index. Effect on age 2 length-at-age by (f)
previous year length-at-age and (g) winter sea ice concentration. Effect on age 3 length-at-age by (h) previous year length-at-age and (i)
winter sea ice concentration. Effect on age 4 length-at-age by (j) previous year length-at-age and (k) winter sea ice concentration.
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in the Barents Sea (Laidre et al., 2015) may lead to higher survival

of early hatchers and possibly faster growth of polar cod through

the first summer, resulting in an increased mean length in au-

tumn when sampled, while abundance is decreasing probably due

to a reduction in spawning areas for mature polar cod (Eriksen

et al., 2015).

In addition, our results suggest negative associations between

winter sea ice concentration and mean lengths-at-age 1 to 3 (and

non-significantly at age 4þ), which cannot be explained by early

hatching and effect of previous year size, as we included previous

year mean length of the year class as predictor variable in the sta-

tistical analysis. This finding suggests that sea ice condition has

an additional effect on the change in mean length for each age in-

terval. We hypothesize that these associations are caused by low

winter sea ice concentration extending the duration of the period

with suitable conditions for the growth of polar cod.

Both copepods and amphipods, which are main components

of the diet of polar cod (Hop and Gjøsæter, 2013), decrease in

biomass in years with low winter sea ice cover (Stige et al.,

2019a), resulting in positive correlations between copepod and

amphipod biomasses and sea ice concentration (Supplementary

Table S1). Large size of polar cod in low-ice years, therefore,

occurs despite reduced prey biomass in these years. However, low

sea ice cover is associated with earlier phytoplankton blooms, in-

creased primary production, and longer phytoplankton growing

season (Arrigo et al., 2008; Dalpadado et al., 2014; ICES, 2018a).

An early start of the spring primary production period in low-ice

years is, therefore, potentially associated with increased secondary

production in the Barents Sea, as shown in the Canadian Arctic

seas (LeBlanc et al., 2019). However, in the Barents Sea, zoo-

plankton loss rates, particularly from capelin predation, may also

be higher in these years (Stige et al., 2019a). Despite the lack of

high zooplankton biomass concentrations in years with low ice

coverage in our data, an increase in length-at-age related to an

increase in primary production may be suspected from satellite-

derived data of primary production in the Barents Sea. Time-

series of primary production in Arctic waters do not cover the

period before 1998 and were, therefore, not included in our mod-

els. Nevertheless, the correlation coefficient between length-at-age

and annual net primary production in the Barents Sea for the pe-

riod 1998–2012 (Arrigo and van Dijken, 2015; see Supplementary

Table S1) suggests a significant positive association in accordance

with the hypothesis of increased length-at-age due to a potential

increase in secondary production in years with increased primary

production. Additional analyses also showed that length-at-age is

similarly strongly positively correlated with sea ice cover in April

(Supplementary Table S1), pointing to a possible role of the tim-

ing of the onset of production in spring. We hypothesize that in

low-ice years, zooplankton concentrations start increasing earlier

in the season, as do light levels and prey detection rate for visual

feeding. The feeding season for polar cod is then extended, allow-

ing individuals to grow to a larger size by the end of summer, as-

suming that prey availability is not limiting.

Influence of zooplankton biomass on the length-at-age
of polar cod
Considering that copepods, together with amphipods, constitute

an important fraction in the diet of polar cod (Lønne and

Gulliksen, 1989; Hop and Gjøsæter, 2013; Kohlbach et al., 2017),

it is surprising that our results only suggest a relationship between

pelagic amphipod biomass and polar cod length at age 1. In com-

parison, significant associations between growth in length of dif-

ferent age groups and prey biomass have been reported for the

other key zooplanktivorous fish in the Barents Sea, i.e. capelin

(Gjøsæter et al., 2002; Stige et al., 2018).

As a prey, Calanus spp. copepods have high fat content and

provide higher energy content per prey biomass than amphipods,

the latter appearing less beneficial for faster growth (Hop et al.,

1997). However, amphipod species provide a higher percentage

of protein per dry weight than copepods. This could help the de-

velopment of the somatic body of polar cod, i.e. lean and fat tis-

sues in addition to skeleton, but excluding liver and intestines,

which are the body parts richest in protein in an individual polar

cod (Hop et al., 1997). Amphipods in the diet may hence hypo-

thetically enhance growth in length, whereas lipid-rich copepods

support the storage of energy.

It was unexpected that prey biomass indices were not associ-

ated with polar cod length at other ages than age 1. We note that

the species may use different reproductive strategies, with part of

the stock being semelparous, i.e. dying off after the first reproduc-

tive event (Nahrgang et al., 2014). This may confound our results

between prey availability and growth because of a length-

dependent spawning mortality for the larger mature individuals,

i.e. ages 2þ. We do not think that the lack of significant associa-

tion is caused by the copepod index failing to represent the pre-

ferred copepod prey of polar cod, i.e. the largest size fractions of

the copepods (mainly C. glacialis and C. hyperboreus, Hop and

Gjøsæter, 2013), as the interannual trends in large (>2 mm)

copepods correlate strongly with the trends in total copepod bio-

mass (Stige et al., 2014).

Nevertheless, our results suggest that growth in length is more

dependent on length of the feeding season, as captured by the

winter sea ice index, than the biomass levels of prey. We note,

however, that prey biomasses were measured at the end of the

feeding season and do not necessarily reflect biomass levels earlier

in the season (as discussed in Gjøsæter et al., 2002). The multian-

nual life cycles of the main zooplankton species represented by

our prey indices tend, on the other hand, to reduce the short-

term fluctuations in biomass levels. We also note that 0-group

individuals may be too small to exploit amphipods as prey, as the

proportion of amphipods in the polar cod diet drops with de-

creased fish length (Hop et al., 2002).

Effect of temperature on length-at-age of polar cod
We used summer SST extracted from satellite observations in the

northern Barents Sea as a proxy for temperature conditions dur-

ing the primary and secondary production periods in the Barents

Sea, expecting high SST to potentially lead to fast growth in sum-

mer and high mean length in autumn. Such association has been

suggested with the length of age 0 juvenile polar cod in the

Barents Sea (Eriksen et al., 2015) and Canadian Arctic waters

(Bouchard et al., 2017). The findings of Eriksen et al. (2015) were

based on in situ 0–50-m water column temperatures and size dif-

ferences among individual polar cod in different water masses

and, therefore, do not necessarily reflect effects of interannual

temperature variations. The findings of Bouchard et al. (2017),

however, were based on SST averages for May–July, which is

comparable to our study, and the comparison of mean length be-

tween years. The absence of a temperature–length association in

our results may be explained by a suggestion from Bouchard and
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Fortier (2011). In their circum-Arctic comparison of hatching

season of polar cod, it was suggested that juveniles, i.e. age 0 polar

cod, relied more on length of the growing season (negatively cor-

related with hatching date) to achieve a large pre-winter size,

rather than on fast growth (positively correlated with SST during

hatching month).

The absence of associations between SST and mean lengths of

polar cod at ages 1 and older in our results may also be explained

by the ontogenetic depth distribution of the species. Specifically,

during the spring–summer period (February–September), these

age groups of polar cod are found in deep waters (Falk-Petersen

et al., 1986; Ajiad et al., 2011), making summer SST in the north-

ern Barents Sea a poor proxy for the ambient temperature experi-

enced by the polar cod. Additional analyses showed that summer

bottom temperature correlated significantly positively with mean

lengths at age 0 and ages 2–4, with the correlations at ages 0 and 4

being similarly strong as with winter sea ice (Supplementary

Table S1). Physiological effects of temperature on growth rates

may hence potentially contribute to explain the associations we

found between sea ice cover and length-at-age of polar cod.

Consistency in length anomalies with age
Polar cod length-at-age was a significant predictor of the next

year’s mean length from age 1 to age 2 and from age 3 to age 4.

This implies that positive or negative anomalies in mean length

of a cohort tended to be retained across these ages. We found,

however, no consistency in length anomalies from age 0 to age 1

and from age 2 to age 3. Low consistency of length anomalies

across early life stages has also been reported for other marine

fishes and may reflect compensatory mechanisms (Stige et al.,

2019b). From age 0 to age 1, we hypothesize that the length distri-

bution may be strongly modified by size-dependent survival,

which has been reported to occur during the first winter of life

(Fortier et al., 2006). From age 2 to age 3, variable investment of

resources towards maturation and gonad development rather

than growth in length may hypothetically play a role. High mea-

surement errors may also have contributed to reduce the

strengths of associations in our analysis, although the significant

and consistent associations with sea ice concentration suggest

that the length-at-age time-series do contain biologically mean-

ingful signals.

Implications for Arctic ecosystem
Our results show positive associations between sea ice concentra-

tion in winter and length-at-age of polar cod at age 0 as well as at

the older ages. We interpret these results in terms of the length of

the period with suitable conditions for growth, which we propose

is longer in low-ice years, and larval survival. The findings suggest

that in this Arctic environment, variation in yearly winter ice con-

dition is a main driver of polar cod length-at-age, rather than var-

iation in food concentrations or temperature per se.

In summary, our study suggests that polar cod in the Barents

Sea are increasing in body length under global warming and

retreating sea ice. While increase in mean body length may have

positive effects on the population and potentially benefit higher

trophic levels, with a possible reduction in size-dependent preda-

tion and increased reproduction potential, the total biomass of

polar cod in the Barents Sea does not appear to change in re-

sponse to changes in winter sea ice or sea temperatures (Stige

et al., 2019a). We hypothesize that positive growth effects of low

sea ice for the population of polar cod are offset by reduced sur-

vival, possibly through increased overall predation rates with the

increased dominance of boreal species in the Arctic, such as the

Northeast Atlantic cod (Fossheim et al., 2015; Frainer et al., 2017)

or reduced spawning areas (Eriksen et al., 2015). Such positive

effects may, however, be transient, as nonlinear effects may set in

when the Arctic warms beyond the current range. Until now, the

relationships between winter sea ice and length-at-age of polar

cod appear to be linear (Figure 3a, d, g, i, and k). However, a con-

tinuation of the decrease in sea ice concentration may become

disadvantageous, e.g. by desynchronizing the primary and sec-

ondary production periods and then affecting the food conditions

of young polar cod (as proposed by Bouchard et al., 2017) or by

causing shifts in zooplankton species composition, and increased

competition or predation with boreal planktivores and fish

predators.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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