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Abstract
Determining the importance of physical and biological drivers in shaping biodiversity 
in diverse ecosystems remains a global challenge. Advancements have been made 
towards this end in large marine ecosystems with several studies suggesting environ-
mental forcing as the primary driver. However, both empirical and theoretical studies 
point to additional drivers of changes in diversity involving trophic interactions and, in 
particular, predation. Moreover, a more integrated but less common approach to the 
assessment of biodiversity changes involves analyses of spatial β diversity, whereas 
most studies to date assess only changes in species richness (α diversity). Recent re-
search has established that when cod, a dominant generalist predator, was overfished 
and collapsed in a northwest Atlantic food web, spatial β diversity increased; that is, 
the spatial structure of the fish assemblage became increasingly heterogeneous. If 
cod were to recover, would this situation be reversible, given the inherent complex-
ity and non-linear dynamics that typify such systems? A dramatic increase of cod 
in an ecologically similar large marine ecosystem may provide an answer. Here we 
show that spatial β diversity of fish assemblages in the Barents Sea decreased with 
increasing cod abundance, while decadal scale changes in temperature did not play 
a significant role. These findings indicate a reversibility of the fish assemblage struc-
ture in response to changing levels of an apex predator and highlight the frequently 
overlooked importance of trophic interactions in determining large-scale biodiversity 
patterns. As increased cod abundance was largely driven by changes in fisheries man-
agement, our study also shows that management policies and practices, particularly 
those involving apex predators, can have a strong effect in shaping spatial diversity 
patterns, and one should not restrict the focus to effects of climate change alone.
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1  | INTRODUC TION

Ecologists strive to understand the processes responsible for gen-
erating and modifying diversity in natural ecosystems (Chase et al., 
2018; Ricklefs, 1987). In particular, the study of the spatial variation 
in species composition, or beta (β) diversity, provides a link between 
processes operating at a local scale and affecting alpha (α) diversity 
and processes affecting changes in regional or gamma (γ) diversity. 
The variability of local species richness trends (Blowes et al., 2019; 
Cardinale, Gonzalez, Allington, & Loreau, 2018; Vellend et al., 2013) 
has led to a call for analyses beyond species richness to achieve a 
more integrated understanding of processes acting at multiple scales 
(Chase et al., 2018; Hillebrand et al., 2018; Socolar, Gilroy, Kunin, & 
Edwards, 2016). Teasing apart the relative importance of underlying 
processes, however, has been difficult, and our understanding of the 
relative importance of multiple fundamental mechanisms remains 
limited (Ohlmann et al., 2018; Xing & He, 2019).

Two types of processes have been emphasized: stochastic pro-
cesses (associated with dispersal–colonization–extinction, ecologi-
cal drift and priority effects), and deterministic processes (coupled 
to environmental factors, niche differences and interspecific inter-
actions; Chase, Biro, Ryberg, & Smith, 2009). Stochastic processes 
will tend to increase β diversity whereas deterministic processes (if 
they vary little over space and time) will lead to lower β diversity. 
Some processes, such as those linked to invasion or disturbance, 
are associated with lower β diversity, even if α diversity increases 
(Finderup Nielsen, Sand-Jensen, Dornelas, & Bruun, 2019; Iacarella 
et al., 2018; Stotz, Gianoli, & Cahill, 2019). Other processes, such 
as biotic interactions and climate change, may increase or decrease 
β diversity (Socolar et al., 2016). Predators could either strengthen 
stochastic processes and increase β diversity by reducing population 
size of all prey populations, or deterministically lead to extinction of 
rare species and therefore more homogenous communities (Chase 
et al., 2009). Chase et al. (2009), in one of the first empirical studies 
to assess the impact of predation on β diversity, found that preda-
tory fish could lower prey β diversity in ponds. Using a model based 
on the equilibrium theory of island biogeography, Ryberg, Smith, and 
Chase (2012) suggested that predation effects may depend on feed-
ing behaviour: generalist predators that feed indiscriminately may 
increase β diversity (and decrease α diversity), whereas specialist 
predators may decrease β and α diversity by selectively removing 
only particular prey species. In other empirical studies, the effect of 
predator–prey interactions on stochastic colonization and extinction 
processes were idiosyncratic and depended on prey and predator 
identities (Cirtwill & Stouffer, 2016), and on the relative importance 
of bottom-up versus top-down effects (Antiqueira, Petchey, dos 
Santos, de Oliveira, & Romero, 2018).

The effects of variation in climate on β diversity are even less 
understood (Socolar et al., 2016), and may be regionally specific, de-
pending on species-specific dispersal abilities (Magurran, Dornelas, 
Moyes, Gotelli, & McGill, 2015; Qian & Ricklefs, 2007). If only 
a few species are able to alter and broaden their spatial distribu-
tions in response to climate change, a reduction in β diversity (biotic 

homogenization) might follow (Socolar et al., 2016). Because multi-
ple drivers will impact diversity simultaneously, patterns of change 
in spatial β diversity may vary as much as those observed for species 
richness: a recent synthesis of diversity time series found large vari-
ation in temporal trends of both local diversity and turnover (Blowes 
et al., 2019).

Current research in marine ecosystems has focused on iden-
tifying linkages between large-scale diversity patterns and ther-
mal tolerances associated with climate variability. For example, 
Magurran et al. (2015) argued that an increase in the turnover 
of groundfish assemblages west of Scotland over three decades 
was due to a spatially uneven pattern of rising ocean tempera-
tures which, in turn, led to an increase in similarity of the fish 
assemblages over large geographic scales. At a larger spatial 
scale, Fossheim et al. (2015) suggested that recent warming in 
the Barents Sea has resulted in a rapid transformation of the fish 
assemblages, due primarily to the incursion of several large, mi-
gratory predator fish species which have displaced some of the 
resident Arctic fish species, potentially leading to more homoge-
neous fish communities at the scale of the Barents Sea as a whole. 
While the focus on the effects of climate change is understand-
able, many large marine ecosystems have also been affected by 
changes in trophic interactions, particularly declines in many top 
predators (Baum & Worm, 2009). The idea that predation might be 
important in structuring large marine ecosystems has been slow to 
develop (Frank, Fisher, & Leggett, 2015; Verity & Smetacek, 1996), 
in contrast to the prominence of predation as a structuring force 
in benthic and intertidal marine communities (Estes & Palmisano, 
1974; Paine, 1980). In freshwater ecosystems, comparative anal-
yses of systems with and without predators, and whole-lake ma-
nipulations, have provided compelling evidence for the role of 
predation in structuring communities (Carpenter & Kitchell, 1993; 
Chase et al., 2009). In the north-western Atlantic, a natural ex-
periment unfolded during the early 1990s as Atlantic cod (Gadus 
morhua), a large-bodied generalist predator, was overfished and 
driven to commercial extinction. The absence of cod revealed that 
it exerted a strong controlling influence on community structure, 
extending to the base of the food chain. The loss of cod resulted 
in the emergence of an ecosystem state dominated by a suite of 
its former prey and meso-predator species (Frank, Petrie, Choi, 
& Leggett, 2005). Moreover, the reduction in predation pressure 
associated with the depletion of northwest Atlantic cod also im-
pacted the spatial pattern of co-occurring groundfish species 
(Shackell, Fisher, Frank, & Lawton, 2012). Furthermore, Ellingsen 
et al. (2015), using long-term, large-scale monitoring data from the 
Scotian Shelf, found that fish assemblages became more hetero-
geneous; that is, the assemblages became more dissimilar from 
place to place as measured by β diversity (Anderson, Ellingsen, 
& McArdle, 2006; McGill, Dornelas, Gotelli, & Magurran, 2015) 
when cod no longer dominated (see Figure 1). Notably, abiotic 
factors, including bottom water temperature, were unimportant 
in explaining the changing patterns of β diversity observed on 
the Scotian Shelf. However, changes in recorded bottom water 
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temperature values over the time period examined for the Scotian 
Shelf were rather small, so it remains unclear how diversity in fish 
communities might be altered by concomitant effects of cod de-
pletion alongside potential changes in climate.

Recently, the resident cod population in the Barents Sea, a 
large subarctic ecosystem, increased by more than sixfold since 
the historic low levels of the 1980s (ICES, 2018; see Figure 1). A 
major reduction in fishing mortality combined with the near abol-
ishment of illegal, unreported and unregulated fishing practices 
from the late 1990s to the present were directly responsible for 
this increase (Kjesbu et al., 2014). The Barents Sea has many simi-
larities to the Scotian Shelf in terms of species composition, ther-
mal environment and availability of high-resolution monitoring 
data, and thus could provide a test of the generality of the struc-
turing role of cod, in a system where changes in temperature were 
also substantial (Lind, Ingvaldsen, & Furevik, 2018). Many highly 
perturbed ecosystems shift from one state to another, but a rever-
sal back to a pre-disturbance state rarely occurs following removal 
of the perturbation (Scheffer, Carpenter, & Young, 2005). If this 
process were reversible, we would expect that the recent increase 
in Barents Sea cod would result in a decline of β diversity, that is, a 

broad-scale spatial homogenization of resident fish assemblages. 
Clearly, a robust test of this hypothesis requires consideration of 
concomitant changes through time in other potential drivers, such 
as temperature.

The situation in the Barents Sea permits an assessment of the 
relative importance of predation by cod versus temperature in 
structuring fish biodiversity, due to the fact that it is a large, het-
erogeneous system (Ingvaldsen et al., 2015; Ingvaldsen & Gjøsæter, 
2013). Specifically, different areas within it have exhibited divergent 
temporal trends in temperature and abundance of large, mature cod. 
We delineated large subregions (of approximately equal spatial ex-
tent) having contrasting patterns in cod abundance and temperature 
through time, and the patterns of β diversity within each of these 
subregions were assessed. This design-based approach (Bråthen 
et al., 2007; Butsic, Lewis, Radeloff, Baumann, & Kuemmerle, 2017; 
Shadish, Cook, & Campbell, 2002) to the analysis of observational 
data allowed us to disentangle the relative importance of an apex 
predator (cod) and a physical climate variable (bottom temperature) 
on the β diversity of the resident fish community. Ten years of moni-
toring data derived from a systematic, large-scale scientific sampling 
program conducted annually from 2004 to 2013 were used for the 
analysis.

2  | MATERIAL S AND METHODS

2.1 | Study design

Ground fish data consisted of all commercial and non-commercial 
fish species sampled by the Institute of Marine Research (IMR), 
Norway, and the Polar Branch of Russian Federal ‘Research 
Institute of Fisheries and Oceanography’ ‘VNIRO’ (‘PINRO’ named 
after N.M. Knipovich), during joint annual ecosystem surveys in 
the Barents Sea (Figure 2) over a period of 10 years (2004–2013; 
Eriksen, 2014). Two to three Norwegian vessels and one to two 
Russian vessels were used each year, and the surveys were run in 
August–September (duration 39–57  days) when the Barents Sea 
had least ice cover. The surveys used a regular grid design with 
stations ca. 60 km apart (with some exceptions), with almost the 
same geographical position of each sampling station each year. All 
vessels used a Campelen 1800 bottom trawl (for details on equip-
ment and bottom trawl rigging, see e.g. Michalsen et al., 2013). 
The trawl time after the trawl had achieved contact with the bot-
tom ranged from 7 to 60 min, and the catches were standardized 
to number of individuals per 15 min tow (i.e. the median trawl time, 
obtained by dividing the catch values for each species by the trawl 
time in minutes and multiplying by 15).

A total of 3,399 trawl sets were included in this study. The 
number of trawls per year ranged from 257 (in 2009) to 456 (in 
2005), and the trawl stations were quite evenly distributed across 
the Barents Sea, covering a study area of 1.3 million km2 (68–82°N, 
14–57°E). For each trawl station, depth at the start of trawling 
was recorded. The depth range of trawl stations was 38–654 m, 

F I G U R E  1   Is there a reversible dynamic relationship between 
apex predator abundance and fish community structure in large 
marine ecosystems? A recent study on the Scotian Shelf (SS), 
Canada demonstrated that fish assemblages became increasingly 
heterogeneous (β diversity increased) with decreasing cod 
populations (Ellingsen et al., 2015). In contrast, the cod population 
in the Barents Sea (BS) has increased recently, and we predicted 
that the return of cod would cause increasing homogenization 
of fish assemblages (i.e. declining β diversity). Lower values of β 
diversity correspond to fish assemblages that are more similar from 
place to place. Inset figure: Y-axis denotes cod spawning stock 
biomass scaled to a maximum value of 1 for each time series: the 
SS (red) and the BS (blue). The dashed blue box identifies the time 
period investigated here
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with shallowest water in the south-east (mean depth in subregion 
11:115 m) and deepest in the west (subregion 6:348 m). The data 
set from this survey is the most spatially extensive available from 
the Barents Sea (Johannesen, Høines, Dolgov, & Fossheim, 2012). 
We have not included data from other surveys of the Barents Sea 
in our analyses due to data incompatibility, in particular with re-
gard to species' identifications and the restricted spatial extent of 
other surveys.

The lengths of all cod from each trawl set were measured, and 
the age of one cod individual from each 5 cm length group was de-
termined by sectioning otoliths. The number of cod per age group 
per trawl station was calculated using length–age keys. We did not 
take into account the uncertainty associated with the length–age 
keys. As the mean age at maturity is around 7 years (ICES, 2018), we 
counted abundance as the number of cod aged 7 years or older to 
a maximum of 17 years (here called mature) in our analysis, partic-
ularly because our focus was on the role of large, apex predators in 
structuring fish biodiversity. The mean length of 7 years old cod was 
74  cm (Johannesen, Johnsen, Johansen, & Korsbrekke, 2019), and 
ontogenetic shifts in Barents Sea cod diet (Holt, Bogstad, Durant, 
Dolgov, & Ottersen, 2019) result in fish becoming a more important 
prey item for cod with increasing size of cod.

The data primarily consisted of benthic fish species, although 
other species, including pelagic fishes, were also routinely captured 
by the bottom trawl (and included in this study). All fish caught were 

identified to species level when possible, and for each species, the 
total number of individuals per trawl was recorded and then stan-
dardized per 15 min tow (as described above). Identification keys 
and taxonomic literature for fish species in the Barents Sea have 
been incomplete, although older Russian literature exists. There is 
ongoing work to improve and harmonize species identifications for 
data obtained from Russian and Norwegian vessels (Mecklenburg 
et al., 2018; Wienerroither et al., 2011). Difficulties remain regard-
ing identification and unresolved taxonomy for several Arctic fishes, 
in particular for the families Zoarcidae and Liparidae (Christiansen 
& Reist, 2013). Juveniles (<10  cm) of the genus Sebastes are also 
difficult to identify. Thus, fish data were organized into two differ-
ent data sets as follows: (Option 1) All taxa from the eelpout family 
were classed as ‘unspecified’ (Zoarcidae spp.), taxa from the snail-
fish family were classed as Liparidae spp. and juveniles of the genus 
Sebastes spp. were pooled with adults into the family Sebastidae 
spp., resulting in a regional count of 71 fish taxa (excluding cod) 
from 2004 to 2013; (Option 2) specimens from the Zoarcidae, 
Liparidae and Sebastidae families were kept at species level, and 
recordings at the family or genus level, including juvenile Sebastes, 
were removed, resulting in 95 fish taxa (excluding cod). Bottom 
temperature data were obtained from CTD (conductivity, tempera-
ture and depth) profiles taken adjacent to each trawl set during the 
ecosystem surveys.

Cod spawning stock biomass (SSB) data for the Barents Sea were 
obtained from ICES (ICES, 2018) and cod SSB data for the Scotian 
Shelf were obtained from research survey data, Bedford Institute 
of Oceanography, Canada (provided by K.T. Frank; Frank, Petrie, 
Fisher, & Leggett, 2011). Data were scaled to a maximum value of 1 
for each time series, representing 4.4 × 106 tons for the Barents Sea 
and 2.4 × 105 tons for the Scotian Shelf.

2.2 | Design-based definition of subregions

We used a design-based approach (Bråthen et al., 2007; Shadish 
et al., 2002) to assess the relative roles of increases in mature cod 
abundance versus changes in bottom temperature on the β diversity 
of fishes. More specifically, we sought to partition the Barents Sea 
into spatially contiguous subregions having approximately similar 
areas (so as not to confound α diversity immediately with β diversity), 
of regular shapes (not snake-like or elongated, to avoid edge effects) 
and with consistent and contrasting patterns of change through 
time in (a) cod and (b) temperature. It was also important to identify 
regions of different types that were not geographically segregated 
(i.e. to avoid spatial pseudo-replication—it would not do to have all 
subregions of a similar type in the north and all regions of a different 
type in the south).

We defined subregions of the Barents Sea with different an-
nual trends (over 10 years) in average bottom temperature and av-
erage abundance of large, mature cod (7+ years, i.e. mean length 
≥74 cm; Johannesen et al., 2019; log(x + 1) transformed). As the 
sampling grid and survey routes were not identical from year to 

F I G U R E  2   Subregional trends in ocean bottom temperature 
and mature Atlantic cod abundance in the Barents Sea. Eleven 
contrasting subregions were identified (grey). Upper half of circles 
shows temporal trends in bottom temperature from negative (blue) 
to positive (red). Lower half of circles shows temporal trends in cod 
abundance from white (zero trend) through to dark green (positive 
trend). See Section 2 for definition of subregions, Figure S7 for 
region-specific trends in bottom temperature and abundance of 
mature cod, and Table S1 for summary statistics
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year, we did this in two steps. First, we interpolated values for cod 
and temperature at each point on a joint grid of 50 × 50 km for 
each year using an additive model with a bivariate tensor prod-
uct smooth of the spatial coordinates (given in the Lambert Equal 
Area Projection), and a smooth term for depth (Wood, 2006). In 
addition, for temperature, we included a smooth effect of sam-
pling date as temperature was still changing in the later part of 
summer. Second, we regressed interpolated values of cod and 
temperature (standardized to 200  m depth and median survey 
date 3 September) versus year to describe the temporal changes 
in these two variables separately at each point in the spatial grid 
(Figure S1a). We then defined subregions of approximately similar 
sizes guided by maps of the regression coefficients and quantiles 
of the distribution of these coefficients across areas and years. 
For temperature, we identified areas with either stable/decreas-
ing (<0.02°C/year) or increasing temperature (>0.02°C/year), that 
is, temperature changes either below or above the median, re-
spectively. For cod, we identified areas with stable (<0.19/year), 
medium increase (0.19–0.38/year), or large increase (>0.38/year) 
in cod abundance, that is, changes in (log) cod abundance within 
the first, second or third tertile of the ordered distribution of 
coefficients respectively. This resulted in 11 subregions (Figure 
S1b). We investigated spatially constrained classification meth-
ods, but they resulted in subregions of widely different sizes that 
were therefore unsuitable for comparative analyses of β diversity. 
Importantly, the subregions were defined based only on patterns 
of changes in the drivers (cod and temperature) and not on any 
preliminary analyses of changes in biodiversity, per se. In addi-
tion, we note that measures of β diversity are intrinsically scale 
dependent (Anderson et al., 2011); hence, our results and asso-
ciated inferences for β diversity are therefore only relevant for 
the spatial scale of the subregions (γ) and standardized replicate 
trawl units (α) we chose to use. More specifically, the areas of 
the subregions ranged from 79,085 to 160,413 km2 (median areal 
extent = 110,738 km2). An investigation of the scale dependency 
of the effects of drivers on diversity patterns was not pursued 
further here.

To assess if temperature recorded during the survey in August–
September reflected temperatures year-round, we compared the 
monthly temperature values obtained from an independent data 
set, along a transect located in the SW part of the Barents Sea, be-
tween Fugløya and Bear Island, which cover inflow of Atlantic and 
coastal water masses to the Barents Sea (Trofimov & Ingvaldsen, 
2018). Correlations were always high, varying between 0.67 (for 
January–August) and 0.89 (for April–August; see Figure S2). Thus, 
we considered our measures of temperature to be a reasonable 
proxy for the annual average temperature regimes occurring 
within each subregion, but we acknowledge that correlations be-
tween seasons may vary over time and space (Boitsov, Karsakov,  
& Trofimov, 2012).

We also considered a classification of the trawls based mainly 
on topography, a classification based on temperature (Stige et al., 
2014), and the Atlantis classification based on hydrography, depth 

and biology (Certain & Planque, 2015; Figure S3; Tables S1 and 
S2). All classifications performed substantially better in predict-
ing temperature and mature cod abundance than a model without 
any spatial classification (Table S1), highlighting how spatially vari-
able temporal trends have been within the Barents Sea. Our de-
sign-based classification based on cod and temperature had lower 
widely applicable information criterion (WAIC; Vehtari, Gelman, 
& Gabry, 2017; Watanabe, 2013), and explained a larger amount 
of variation in cod and temperature than divisions based on either 
topography or temperature (Table S1). The Atlantis division per-
formed better in explaining temporal trends in cod and tempera-
ture (Table S1) but had 30 subregions that varied greatly in size  
(Table S2; Figure S3). Also, several of the Atlantis subregions at 
the fringe of our study area had fewer than three observations 
in some years (Figure S3). In contrast, our cod-and-temperature 
design-based division consisted of 11 similar-sized subregions  
(Table S2). We therefore did ensuing analyses of β diversity within 
each subregion over time using these 11 design-based subregions 
only.

2.3 | Biodiversity measures

All measures of biodiversity were calculated excluding cod. This 
ensured that our models did not confound predictor variables 
(cod and temperature values measured concomitantly in each 
subregion in each year) with the response variables (non-cod fish 
species caught in research trawls). Spatial β diversity of fishes was 
measured as the average distance-to-centroid (Anderson et al., 
2006) among all trawl sets within each subregion in each year 
on the basis of four different dissimilarity measures: (a) modi-
fied Gower: quantitative, variation in relative log abundances, i.e. 
x′ = log10(x) + 1, unless x = 0, in which case x′ = 0 (Anderson et al., 
2006); (b) Raup-Crick: presence/absence, variation in species 
identities that omits the effects of variation in number of spe-
cies (Chase, Kraft, Smith, Vellend, & Inouye, 2011; Raup & Crick, 
1979); (c) Jaccard: presence/absence; and (d) Chao–Jaccard: 
which includes the effect of unseen species (Chao, Chazdon, 
Colwell, & Shen, 2005). We measured temporal changes in spa-
tial β diversity within each subregion. The terms ‘spatial β diver-
sity’, characterizing dissimilarity among assemblages over space 
for one time period, and ‘temporal changes in spatial β diversity’, 
that is, here: temporal change in β diversity within each subre-
gion, should not be confused with the term ‘temporal β diversity’ 
which is a measure of change in community composition through 
time, often quantified as the dissimilarity between each time step 
and the time-series baseline (see e.g. McGill et al., 2015). We re-
port ‘spatial β diversity’ as ‘β diversity’ throughout the article. 
All biodiversity measures were calculated on each fish data set 
(Options 1 and 2) after excluding cod. Jaccard and Chao–Jaccard 
values were highly correlated with one another (Figure S4), sug-
gesting that detection did not affect estimates of β diversity. 
Because α diversity, measured as the annual mean number of 
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species in all trawl sets within each subregion, varied temporally 
(see Figure S5c), we used Raup–Crick rather than either of the 
two Jaccard measures. In general, however, all three measures 
gave similar results.

2.4 | Statistical analysis

Prior to analyses and to define the design, bottom temperature 
data were standardized to 200 m depth and a common median 
survey day (3 September) for each year (hereafter referred to 
as bottom temperature). This was done to facilitate comparison 
of bottom temperature over space and time in the Barents Sea 
where bottom depth varies and since survey route and there-
fore survey date varied between years. There was, however, a 
strong relationship between the observed and standardized bot-
tom temperature values (r  >  .9 for all years). In all analyses of 
β diversity, we used the standardized bottom temperature. The 
number of trawl sets varied per subregion and year, ranging from 
8 (subregion 4 in 2008) to 95 (subregion 6 in 2006). As variation 
in effort and spatial extent of sampling can affect diversity, due 
to the species–area relationship (Crist & Veech, 2006), spatial ex-
tent was quantified as the area of the spatial convex hull of the 
group of trawl sets within each subregion for each year. Mean 
spatial extent within each subregion varied from 54,689  km2 
(subregion 4) to 115,975  km2 (subregion 3) with the largest 
range between years in subregion 1 (58,244 km2) and the small-
est range between years in subregion 6 (10,584  km2). Pairwise 
plots of predictor variables (Figure S6) revealed no systematic 
collinearity between predictor variables among subregions, sug-
gesting that our design was robust and valid for the purpose of 
disentangling potential effects of cod and temperature, as well as 
relevant covariates.

We used a hierarchical Bayesian framework (Gelman & Hill, 
2007) to model how β diversity changed over time, in response 
to changes in mature cod abundance and bottom temperature 
within each subregion, using the ‘rstanarm’ library with default 
priors in R (Goodrich, Gabry, Ali, & Brilleman, 2019; R Core Team, 
2018). Note that, although we naturally expect geospatial au-
tocorrelation among subregions and potentially among trawls 
within subregions, quantitative inferences regarding estimated 
parameters (and associated errors) are indeed accurate and in-
tact, provided they are restricted to the sampling extent of the 
Barents Sea only, and also to the specific 10 year time period of 
this investigation, which indeed is our objective here (de Gruijter 
& ter Braak, 1990; Pawley & McArdle, 2018). We explored mod-
els with a random intercept for each subregion, and models 
where both the intercept and the slope were allowed to vary 
for each subregion. We explored the performance of competing 
models using both WAIC and Leave-One-Out cross-validation 
Information Criterion (LOOIC) as the latter can be more robust 
in the case of weak priors or influential observations (Vehtari 
et al., 2017). We calculated the marginal (fixed effects only) 

and conditional (fixed plus random effects) r2 for all models 
(Nakagawa & Schielzeth, 2013). We standardized the observa-
tions by subtracting the mean and dividing by the standard de-
viation. We present results using (a) unstandardized predictors; 
(b) standardized predictors; and (c) standardized response and 
predictor variables. This facilitates comparison of the magnitude 
of the effects in terms of the regression coefficients for predictor 
variables on their original measurement scales (unstandardized) 
and also the relative magnitude of effects of different predic-
tor variables (standardized) on the different diversity measures 
(Gelman & Hill, 2007). We included both the spatial extent and 
the bottom depth as additional predictor variables (covariates) in 
our analyses. As expected, there was a negative effect of water 
depth on β diversity (more homogeneous assemblages occurred 
with increasing depth), and a positive effect of spatial extent  
(β diversity increased with increasing area; Table S3). We did not 
include measurement errors for cod and temperature values, as 
it would have required a complex statistical model of their spatial 
structure and local measurement variability, which is not known 
(Reeves, Cox, Darby, & Whitley, 1998). Hence, our models and 
inferences were conditional on the observed values for cod and 
temperature. When the 95% credible intervals of the posterior 
distribution of a regression coefficient broadly overlapped with 
0, we considered there was no evidence for an effect of that 
regressor (Mysterud, Yoccoz, Langvatn, Pettorelli, & Stenseth, 
2008). We did not use any hard threshold for differences in WAIC 
or LOOIC values, but combined these values with consideration 
of the parameter estimates from each model in an overall heuris-
tic assessment (McShane, Gal, Gelman, Robert, & Tackett, 2019). 
In addition to β diversity, we also examined effects of cod and 
temperature on changes in α diversity through time. However, 
there was no evidence for an overall temporal change in α diver-
sity at the scale of the subregions (Tables S3 and S4; Figure S5c). 
Neither mature cod abundance nor bottom temperature could 
explain variation in α diversity (Table S5).

Analyses were carried out using the two alternative fish data sets 
with different levels of taxonomic resolution (Options 1 and 2) to elu-
cidate how uncertainty in species' identifications might impact our re-
sults and conclusions. Results based on Options 1 and 2 are presented 
in Tables S3–S5. As expected, the reduced data set (Option 1, where 
some taxa were lumped into groups) reduced variation among subre-
gions, although the overall patterns of change in β diversity over time 
were similar to the results obtained by using the data set with more 
taxa (Option 2). In what follows, we present results based on Option 2.

3  | RESULTS

3.1 | Subregional changes in ocean temperature and 
Atlantic cod

Bottom temperature increased most dramatically in the east 
(0.8–1.0°C per decade), particularly in subregions 5, 8 and 11 
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(Figure 2), whereas declining bottom temperatures typified the 
north (subregion 1) and south (subregions 9 and 10) at a rate of 
−0.6°C over 10 years (Figure 2; Figure S7). Overall, roughly half 
of the subregions either warmed or cooled. Due to the large geo-
graphic extent of the Barents Sea, average bottom temperatures 
differed by about 5°C between the south-west and the north-east 
(Figure S7).

Temporal patterns of mature cod abundance ranged from almost 
no change in the south-west to large increases in the north, north-
east (subregions 1, 2 and 5) and south-east (subregions 10 and 11; 
Figure 2; Figure S7). In subregion 1, where one of the largest de-
creases in bottom temperature occurred, cod abundance also exhib-
ited a large increase. Conversely, some subregions showed increases 
in both cod and temperature (5, 8 and 11). Clearly, a mixture of op-
posing and matching temporal trends between cod abundance and 
temperature was apparent.

3.2 | Testing for homogenization of fish 
assemblages within subregions

There was an overall decrease through time in β diversity (i.e. in-
creasing spatial homogenization) across 11 subregions (Figure 3; 
Table S3; β diversity was based on the modified Gower dissimilarity 
metric, see Section 2). The best overall model (according to WAIC; 
see Section 2) allowed both the slope and intercept to vary among 

subregions; thus, the rate of change in β diversity through time 
varied across the subregions (Figure 3; Table S4). The largest de-
crease occurred in the central part of the Barents Sea (subregions 
4 and 7; Figure 3; Figure S5a), and there was no latitudinal gradient 
in β diversity across the subregions of the Barents Sea (Figure S5). 
This model explained 36% of the marginal variation (fixed effects 
only) and 64% of the conditional variation (fixed and random ef-
fects; see Section 2; Table S4) in β diversity. In general, analyses of 
β diversity based on another dissimilarity metric (Raup–Crick; see 
Section 2) exhibited similar patterns (Tables S3 and S4; Figure S5b).

3.3 | Drivers of changes in β diversity

When comparing the effects of the two main drivers, bottom 
temperature and abundance of large, mature cod, the declining 
trend in spatial β diversity was best explained by cod abundance 
(Figure 4; Table S5), supporting our original prediction (Figure 1). 
There was variation in the magnitude of this effect at the sub-
regional scale, with the largest impact of cod abundance on β  
diversity occurring in the central part of the Barents Sea (Figure 4). 
The model allowing for variation in the effect of cod abundance 
among subregions performed slightly better than a model without 
such variation (based on WAIC: −315.6 vs. −315.1; Table S4). In 
contrast, no effect of bottom temperature on changes in β diver-
sity was evident (Figure 4; Table S5).

F I G U R E  3   Changes in fish β diversity through time.  
(a) Overall estimated change in β diversity (based on the modified 
Gower dissimilarity measure) per year from a model assuming a 
constant slope among subregions (filled black circle) with 95% 
credible intervals. Individual estimates of the slope from a  
model allowing for differences among subregions are also  
shown (open grey circles with numbers indicating subregions).  
(b) Map of estimated change in β diversity per year for each 
subregion (as shown in a); darker violet colours indicate  
a more negative slope (i.e. increasing homogenization). See  
Tables S3 and S4 for summary statistics, and Figure S5a for 
temporal changes in β diversity within each subregion based on 
simple regressions

F I G U R E  4   Drivers of changes in fish β diversity. (a) Overall 
estimated effects of mature cod abundance (7 years and older)  
and bottom temperature (°C) on β diversity (based on the  
modified Gower dissimilarity measure) from a model assuming 
equal slopes among subregions (filled black circles) with 95% 
credible intervals, and estimates of cod effects on β diversity  
from a model allowing for differences among subregions are also 
shown (open grey circles with numbers indicating subregions).  
(b) Map of estimated effects of mature cod abundance on β 
diversity for each subregion (as shown in a); darker orange colours 
indicate greater negative effects. See Tables S4 and S5 for 
summary statistics
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4  | DISCUSSION

Here, we document a decadal-scale pattern of spatial homogeniza-
tion of fish assemblages in the Barents Sea. This decline in β diver-
sity can be explained by an increase in abundance of cod, a generalist 
apex predator. Our study supported the prediction generated from a 
smaller but ecologically similar geographic area (i.e. the Scotian Shelf, 
one-tenth the size of the Barents Sea; Ellingsen et al., 2015), under-
scoring the significance of these earlier findings. The design-based 
approach (see Section 2) provided an effective means of disentan-
gling the relative importance of potential drivers of biodiversity in 
this large and complex marine ecosystem (Bråthen et al., 2007; Butsic 
et al., 2017; Shadish et al., 2002). We infer from this collective work 
across the North Atlantic that a marine apex predator, whether in-
creasing or declining in population size, performs a fundamental role 
in shaping the β diversity of fish assemblages in large marine systems. 
Taken together, the results obtained from these two systems, which 
show that divergent trends in cod abundance yield predictable and 
contrasting biodiversity effects, demonstrate the potential for revers-
ible community-level responses to large-scale fisheries management.

The absence of any evidence that bottom temperature affects 
β diversity may seem surprising, given recent studies highlighting 
the impacts of climate change on diversity (e.g. Blowes et al., 2019; 
Magurran et al., 2015; Thuiller, Lavorel, Araújo, Sykes, & Prentice, 
2005). There are several possible reasons for the discrepancies be-
tween our results and those from previous studies. First, most studies 
have addressed changes in α diversity (and in particular species rich-
ness), and very few have addressed changes in β diversity, particularly 
in large marine ecosystems (Socolar et al., 2016). Second, our study 
observed relatively small changes in temperature (at most +1°C) over 
just 10 years. Temperature ranges for fish species in the Barents Sea 
are often wide (A.V. Dolgov, unpublished data; see e.g. Wienerroither 
et al., 2011), so we might not expect impacts on fish communities 
based on changes in temperatures of ca. 1°C. Such changes are rea-
sonably large, however, compared to overall changes observed since 
1950 for the Barents Sea (ca. +2°C; Trofimov & Ingvaldsen, 2018) 
and also compared to the significant impacts on fish communities 
reported from the North Sea in response to only a 0.5°C change 
in summer near-bottom temperatures (e.g. Magurran et al., 2015; 
Rutterford et al., 2015). Third, if temperatures become more homo-
geneous across a large area over time, then large-scale β diversity 
may well be reduced (as in Magurran et al., 2015). The heterogeneous 
changes in subregional average temperature values observed in our 
study through time may not correspond to an increased homogeneity 
of temperature at the broader scale of the Barents Sea as a whole 
(see also Årthun, Eldevik, & Smedsrud, 2019, for projected changes). 
Interestingly, there was no latitudinal gradient in β diversity across 
the subregions of the Barents Sea, so replacing northern, arctic com-
munities by southern, boreal communities may not affect β diversity. 
Further studies should focus on species-specific dispersal rates and 
how they are related to local climate velocities.

How can an increasing apex predator population have a homog-
enizing effect on communities? Ryberg et al. (2012) suggested that 

generalist predators will increase β diversity because they prey ran-
domly irrespective of the prey species, whereas specialist predators 
may decrease β diversity by removing species underlying species turn-
over. Our results seem to contradict their findings, and one reason may 
be that what matters is the spatial heterogeneity of the cod predation 
pattern compared to the spatial heterogeneity of the fish communi-
ties. This has been emphasized when studying the impacts of herbiv-
ory on plant communities (Adler, Raff, & Lauenroth, 2001), another 
form of predation. If predation by cod is spatially very homogeneous, 
as would be expected from a wide-ranging, opportunistic predator 
(Holt et al., 2019), then we would expect spatial heterogeneity to de-
crease (Adler et al., 2001). Both experimental and observational stud-
ies have also shown that when predation intensity is relatively high the 
interaction strengths among competing species are lessened, allowing 
for increased coexistence and therefore declining spatial segregation 
(Terborgh, 2015). In the absence of predation, however, competitive 
relationships are stronger, leading to reduced levels of coexistence and 
heightened levels of spatial segregation. The degree of spatial segre-
gation is a measure of spatial species turnover and therefore of β di-
versity (Ulrich, Zalewski, & Uvarov, 2012). Furthermore, cod predation 
on small arctic fishes (liparids, cottids, etc.; Holt et al., 2019) may lead 
to their local extinctions and therefore be an additional factor leading 
to community homogenization (Chase et al., 2009).

Whether the observed changes in β diversity was the result of 
direct predation from cod, or indirectly through relaxed competition 
or predation from species heavily preyed upon by cod remain un-
resolved. Identifying the myriad of possible links among species in 
the cod's food web was beyond the scope of the current study, and 
we acknowledge that available time series may not hold sufficient 
information to disentangle these effects as interactions at the spe-
cies-to-species level, although our β diversity approach, which ex-
amines changes in the spatial structure of the entire fish community 
concomitantly did so. What we have demonstrated, is that increased 
cod abundance in the Barents Sea resulted in changes in the entire 
fish community as shown by the decrease in β diversity in response 
to increased cod abundance.

The measurement of changes in spatial β diversity through time 
has added an important new dimension to our knowledge of ma-
rine biodiversity. Declines in marine β diversity (i.e. increasing spa-
tial homogenization) found previously have been attributed solely 
to climate change, and have been considered to be a more import-
ant problem than the loss of local species richness (Magurran et al., 
2015). Our results highlight a contrasting view. Fisheries manage-
ment policies and practices, particularly those involving apex preda-
tors, can have a strong effect in shaping overall biodiversity patterns, 
possibly more than climate change alone. The potential interactive 
effects of simultaneous changes in human interventions, biotic and 
abiotic drivers all need further investigation to achieve greater clar-
ity for future decision-making that can enhance and sustain biodi-
versity in marine ecosystems. Such interactions among multiple 
drivers are, however, poorly understood (Socolar et al., 2016; Turner 
et al., 2020). Estimating interactions also requires considerably 
larger sample size than for estimating main effects (Gelman, 2018), 
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particularly when drivers are correlated (Baum & Worm, 2009). Even 
if our design-based approach allowed us to disentangle the main ef-
fects of cod abundance and temperature changes on spatial β di-
versity, reliable estimates of interactions should be based on larger 
sample sizes.

The recent management measures directed towards cod in the 
Barents Sea, in conjunction with favourable environmental condi-
tions, proved to be highly successful and resulted in a remarkable in-
crease in their biomass. Equally dramatic was the associated change 
in the spatial structure of co-occurring fish species which may ul-
timately prove to be beneficial to the persistence of the current 
ecosystem state. Our study highlights the large impacts on marine 
ecosystems resulting from fisheries management practices, espe-
cially when involving large generalist predators such as cod. Clearly, 
future management decisions involving fisheries in the Barents Sea 
will require the inclusion of a dynamical trophic perspective, includ-
ing climate variability, to better understand how fisheries affect tro-
phic interactions. The utility of such an approach may be judged, in 
part, by the spatial configuration of its component parts which could 
potentially become part of a ‘tool box’ of indicators associated with 
an ecosystem-based approach to fisheries management.

ACKNOWLEDG EMENTS
We are grateful to many technicians, scientists and research ves-
sel crew of IMR and PINRO who participated in surveys and other-
wise contributed to the study. We acknowledge support from the 
Research Council of Norway (project no. 234359), the Norwegian 
Institute for Nature Research and the Fram Centre.

CONFLIC T OF INTERE S T
The authors declare that they have no conflict of interest.

AUTHOR CONTRIBUTIONS
K.E.E., N.G.Y., T.T. and M.J.A. designed the study. A.V.D., E.J. and 
K.T.F. contributed data. E.J. and T.T. processed data. N.G.Y. and T.T. 
analysed data. K.E.E. drafted the manuscript with input from N.G.Y., 
T.T., K.T.F. and M.J.A. N.L.S., E.J. and A.V.D. contributed substantially 
to revisions.

DATA AVAIL ABILIT Y S TATEMENT
Data at the subregional scale that support the findings of this study 
and R code used to produce all findings will be made available in the 
Dryad Digital Repository. Raw data from the Norwegian part of the 
Barents Sea, collected by the IMR, Norway, are available upon re-
quest. Raw data from the Russian part, sampled by the Polar Branch 
of Russian Federal Research Institute of Fisheries and Oceanography 
(PINRO), are not publicly available due to Russian Law, preventing 
publication of raw data collected on Russian territory. Access to 
Russian raw data is granted through contracted collaboration in joint 
projects with PINRO.

ORCID
Kari E. Ellingsen   https://orcid.org/0000-0002-2321-8278 

R E FE R E N C E S
Adler, P., Raff, D., & Lauenroth, W. (2001). The effect of grazing on 

the spatial heterogeneity of vegetation. Oecologia, 128, 465–479. 
https://doi.org/10.1007/s0044​20100737

Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., 
Freestone, A. L., … Swenson, N. G. (2011). Navigating the multi-
ple meanings of β diversity: A roadmap for the practicing ecologist. 
Ecology Letters, 14(1), 19–28. https://doi.org/10.1111/j.1461-0248. 
2010.01552.x

Anderson, M. J., Ellingsen, K. E., & McArdle, B. H. (2006). Multivariate 
dispersion as a measure of beta diversity. Ecology Letters, 9(6),  
683–693. https://doi.org/10.1111/j.1461-0248.2006.00926.x

Antiqueira, P. A. P., Petchey, O. L., dos Santos, V. P., de Oliveira, V. M., 
& Romero, G. Q. (2018). Environmental change and predator diver-
sity drive alpha and beta diversity in freshwater macro and micro-
organisms. Global Change Biology, 24(8), 3715–3728. https://doi.
org/10.1111/gcb.14314

Årthun, M., Eldevik, T., & Smedsrud, L. H. (2019). The role of Atlantic 
heat transport in future Arctic winter sea ice loss. Journal of Climate, 
32(11), 3327–3341. https://doi.org/10.1175/JCLI-D-18-0750.1

Baum, J. K., & Worm, B. (2009). Cascading top-down effects of chang-
ing oceanic predator abundances. Journal of Animal Ecology, 78(4),  
699–714. https://doi.org/10.1111/j.1365-2656.2009.01531.x

Blowes, S. A., Supp, S. R., Antão, L. H., Bates, A., Bruelheide, H., Chase, 
J. M., … Dornelas, M. (2019). The geography of biodiversity change 
in marine and terrestrial assemblages. Science, 366(6463), 339–345. 
https://doi.org/10.1126/scien​ce.aaw1620

Boitsov, V. D., Karsakov, A. L., & Trofimov, A. G. (2012). Atlantic water 
temperature and climate in the Barents Sea, 2000–2009. ICES 
Journal of Marine Science, 69(5), 833–840. https://doi.org/10.1093/
icesj​ms/fss075

Bråthen, K. A., Ims, R. A., Yoccoz, N. G., Fauchald, P., Tveraa, T., & 
Hausner, V. H. (2007). Induced shift in ecosystem productivity? 
Extensive scale effects of abundant large herbivores. Ecosystems, 
10(5), 773–789. https://doi.org/10.1007/s1002​1-007-9058-3

Butsic, V., Lewis, D. J., Radeloff, V. C., Baumann, M., & Kuemmerle, T. 
(2017). Quasi-experimental methods enable stronger inferences 
from observational data in ecology. Basic and Applied Ecology, 19, 
1–10. https://doi.org/10.1016/j.baae.2017.01.005

Cardinale, B. J., Gonzalez, A., Allington, G. R. H., & Loreau, M. (2018). Is 
local biodiversity declining or not? A summary of the debate over 
analysis of species richness time trends. Biological Conservation, 219, 
175–183. https://doi.org/10.1016/j.biocon.2017.12.021

Carpenter, S. R., & Kitchell, J. F. (Eds.). (1993). The trophic cascade in lakes. 
Cambridge, UK: Cambridge University Press.

Certain, G., & Planque, B. (2015). Biodiversity baseline for large marine 
ecosystems: An example from the Barents Sea. ICES Journal of Marine 
Science, 72(6), 1756–1768. https://doi.org/10.1093/icesj​ms/fsv040

Chao, A., Chazdon, R. L., Colwell, R. K., & Shen, T.-J. (2005). A new statis-
tical approach for assessing similarity of species composition with in-
cidence and abundance data. Ecology Letters, 8(2), 148–159. https://
doi.org/10.1111/j.1461-0248.2004.00707.x

Chase, J. M., Biro, E. G., Ryberg, W. A., & Smith, K. G. (2009). Predators 
temper the relative importance of stochastic processes in the assem-
bly of prey metacommunities. Ecology Letters, 12(11), 1210–1218. 
https://doi.org/10.1111/j.1461-0248.2009.01362.x

Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M., & Inouye, B. D. 
(2011). Using null models to disentangle variation in community dis-
similarity from variation in α-diversity. Ecosphere, 2(2), 1–11. https://
doi.org/10.1890/ES10-00117.1

Chase, J. M., McGill, B. J., McGlinn, D. J., May, F., Blowes, S. A., Xiao, 
X., … Gotelli, N. J. (2018). Embracing scale-dependence to achieve a 
deeper understanding of biodiversity and its change across commu-
nities. Ecology Letters, 21(11), 1737–1751. https://doi.org/10.1111/
ele.13151

https://orcid.org/0000-0002-2321-8278
https://orcid.org/0000-0002-2321-8278
https://doi.org/10.1007/s004420100737
https://doi.org/10.1111/j.1461-0248.2010.01552.x
https://doi.org/10.1111/j.1461-0248.2010.01552.x
https://doi.org/10.1111/j.1461-0248.2006.00926.x
https://doi.org/10.1111/gcb.14314
https://doi.org/10.1111/gcb.14314
https://doi.org/10.1175/JCLI-D-18-0750.1
https://doi.org/10.1111/j.1365-2656.2009.01531.x
https://doi.org/10.1126/science.aaw1620
https://doi.org/10.1093/icesjms/fss075
https://doi.org/10.1093/icesjms/fss075
https://doi.org/10.1007/s10021-007-9058-3
https://doi.org/10.1016/j.baae.2017.01.005
https://doi.org/10.1016/j.biocon.2017.12.021
https://doi.org/10.1093/icesjms/fsv040
https://doi.org/10.1111/j.1461-0248.2004.00707.x
https://doi.org/10.1111/j.1461-0248.2004.00707.x
https://doi.org/10.1111/j.1461-0248.2009.01362.x
https://doi.org/10.1890/ES10-00117.1
https://doi.org/10.1890/ES10-00117.1
https://doi.org/10.1111/ele.13151
https://doi.org/10.1111/ele.13151


2906  |     ELLINGSEN et al.

Christiansen, J. S., & Reist, J. D. (2013). Chapter 6. Fishes. In H. Meltofte 
(Ed.), Arctic biodiversity assessment. Status and trends in Arctic biodi-
versity (pp. 193–245). Akureyri, Iceland: Conservation of Arctic Flora 
and Fauna.

Cirtwill, A. R., & Stouffer, D. B. (2016). Knowledge of predator–prey in-
teractions improves predictions of immigration and extinction in is-
land biogeography. Global Ecology and Biogeography, 25(7), 900–911. 
https://doi.org/10.1111/geb.12332

Crist, T. O., & Veech, J. A. (2006). Additive partitioning of rarefaction 
curves and species–area relationships: Unifying α-, β- and γ-diversity 
with sample size and habitat area. Ecology Letters, 9(8), 923–932. 
https://doi.org/10.1111/j.1461-0248.2006.00941.x

de Gruijter, J. J., & ter Braak, C. J. F. (1990). Model-free estimation 
from spatial samples: A reappraisal of classical sampling theory. 
Mathematical Geology, 22(4), 407–415. https://doi.org/10.1007/BF0 
08​90327

Ellingsen, K. E., Anderson, M. J., Shackell, N. L., Tveraa, T., Yoccoz, N. G., 
& Frank, K. T. (2015). The role of a dominant predator in shaping bio-
diversity over space and time in a marine ecosystem. Journal of Animal 
Ecology, 84(5), 1242–1252. https://doi.org/10.1111/1365-2656.12396

Eriksen, E. (2014). Survey report from the joint Norwegian/Russian eco-
system survey in the Barents Sea and adjacent waters. August-October 
2014. IMR/PINRO Joint Report Series. No. 1/2015. 153 pp. ISSN 1502– 
8828.

Estes, J. A., & Palmisano, J. F. (1974). Sea otters: Their role in structuring 
nearshore communities. Science, 185(4156), 1058–1060. https://doi.
org/10.1126/scien​ce.185.4156.1058

Finderup Nielsen, T., Sand-Jensen, K., Dornelas, M., & Bruun, H. H. 
(2019). More is less: Net gain in species richness, but biotic homoge-
nization over 140 years. Ecology Letters, 22(10), 1650–1657. https://
doi.org/10.1111/ele.13361

Fossheim, M., Primicerio, R., Johannesen, E., Ingvaldsen, R. B., Aschan, 
M. M., & Dolgov, A. V. (2015). Recent warming leads to a rapid bore-
alization of fish communities in the Arctic. Nature Climate Change, 5, 
673–677. https://doi.org/10.1038/nclim​ate2647

Frank, K. T., Fisher, J. A. D., & Leggett, W. C. (2015). The spatio-temporal  
dynamics of trophic control in large marine ecosystems. In T. C. 
Hanley & K. J. La Pierre (Eds.), Trophic ecology: Bottom-up and top-
down interactions across aquatic and terrestrial systems (pp. 31–53). 
Cambridge, UK: Cambridge University Press.

Frank, K. T., Petrie, B., Choi, J. S., & Leggett, W. C. (2005). Trophic cas-
cades in a formerly cod-dominated ecosystem. Science, 308(5728), 
1621–1623. https://doi.org/10.1126/scien​ce.1113075

Frank, K. T., Petrie, B., Fisher, J. A. D., & Leggett, W. C. (2011). Transient 
dynamics of an altered large marine ecosystem. Nature, 477, 86–89. 
https://doi.org/10.1038/natur​e10285

Gelman, A. (2018). You need 16 times the sample size to estimate an in-
teraction than to estimate a main effect. Retrieved from https://statm​
odeli​ng.stat.colum​bia.edu/2018/03/15/need-16-times​-sampl​e-size- 
estim​ate-inter​actio​n-estim​ate-main-effec​t/

Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/
hierarchical models. Cambridge, UK: Cambridge University Press.

Goodrich, B., Gabry, J., Ali, I., & Brilleman, S. (2019). rstanarm: Bayesian 
applied regression modeling via Stan. R package version 2.19.2. 
Retrieved from https://mc-stan.org/rstanarm

Hillebrand, H., Blasius, B., Borer, E. T., Chase, J. M., Downing, J. A., 
Eriksson, B. K., … Ryabov, A. B. (2018). Biodiversity change is uncou-
pled from species richness trends: Consequences for conservation 
and monitoring. Journal of Applied Ecology, 55(1), 169–184. https://
doi.org/10.1111/1365-2664.12959

Holt, R. E., Bogstad, B., Durant, J. M., Dolgov, A. V., & Ottersen, G. 
(2019). Barents Sea cod (Gadus morhua) diet composition: Long-
term interannual, seasonal, and ontogenetic patterns. ICES Journal 
of Marine Science, 76(6), 1641–1652. https://doi.org/10.1093/icesj​
ms/fsz082

Iacarella, J. C., Adamczyk, E., Bowen, D., Chalifour, L., Eger, A., Heath, 
W., … Baum, J. K. (2018). Anthropogenic disturbance homogenizes 
seagrass fish communities. Global Change Biology, 24(5), 1904–1918. 
https://doi.org/10.1111/gcb.14090

ICES. (2018). Report of the Arctic Fisheries Working Group (AFWG). 18–24 
April 2018. Ispra, Italy. ICES CM 2018/ACOM:06. 859 pp.

Ingvaldsen, R. B., Bogstad, B., Dolgov, A. V., Ellingsen, K. E., Gjøsæter, H., 
Gradinger, R., … Yoccoz, N. G. (2015). Sources of uncertainties in cod 
distribution models. Nature Climate Change, 5, 788–789. https://doi.
org/10.1038/nclim​ate2761

Ingvaldsen, R. B., & Gjøsæter, H. (2013). Responses in spatial distribution 
of Barents Sea capelin to changes in stock size, ocean temperature 
and ice cover. Marine Biology Research, 9(9), 867–877. https://doi.
org/10.1080/17451​000.2013.775450

Johannesen, E., Høines, Å. S., Dolgov, A. V., & Fossheim, M. (2012). 
Demersal fish assemblages and spatial diversity patterns in the 
Arctic-Atlantic transition zone in the Barents Sea. PLoS ONE, 7(4), 
e34924. https://doi.org/10.1371/journ​al.pone.0034924

Johannesen, E., Johnsen, E., Johansen, G. O., & Korsbrekke, K. (2019). 
StoX applied to cod and haddock data from the Barents Sea NOR-RUS 
ecosystem cruise in autumn. Swept area abundance, length and weight 
at age 2004–2017. Fisken og Havet 2019-6. Retrieved from https://
www.hi.no/en/hi/nettr​appor​ter/fiske​n-og-havet​-en-2019-6

Kjesbu, O. S., Bogstad, B., Devine, J. A., Gjøsæter, H., Howell, D., Ingvaldsen, 
R. B., … Skjæraasen, J. E. (2014). Synergies between climate and man-
agement for Atlantic cod fisheries at high latitudes. Proceedings of the 
National Academy of Sciences of the United States of America, 111(9), 
3478–3483. https://doi.org/10.1073/pnas.13163​42111

Lind, S., Ingvaldsen, R. B., & Furevik, T. (2018). Arctic warming hotspot in the 
northern Barents Sea linked to declining sea-ice import. Nature Climate 
Change, 8(7), 634–639. https://doi.org/10.1038/s4155​8-018-0205-y

Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J., & McGill, B. (2015). 
Rapid biotic homogenization of marine fish assemblages. Nature 
Communications, 6, 8405. https://doi.org/10.1038/ncomm​s9405

McGill, B. J., Dornelas, M., Gotelli, N. J., & Magurran, A. E. (2015). Fifteen 
forms of biodiversity trend in the Anthropocene. Trends in Ecology & 
Evolution, 30(2), 104–113. https://doi.org/10.1016/j.tree.2014.11.006

McShane, B. B., Gal, D., Gelman, A., Robert, C., & Tackett, J. L. (2019). 
Abandon statistical significance. The American Statistician, 73(sup1), 
235–245. https://doi.org/10.1080/00031​305.2018.1527253

Mecklenburg, C. W., Lynghammar, A., Johannesen, E., Byrkjedal, I., 
Christiansen, J. S., Dolgov, A. V., … Wienerroither, R. M. (2018). 
Marine fishes of the Arctic region. Akureyri, Iceland: Conservation of 
Arctic Flora and Fauna. ISBN 978-9935-431-70-7.

Michalsen, K., Dalpadado, P., Eriksen, E., Gjøsæter, H., Ingvaldsen, R. 
B., Johannesen, E., … Skern-Mauritzen, M. (2013). Marine living re-
sources of the Barents Sea – Ecosystem understanding and moni-
toring in a climate change perspective. Marine Biology Research, 9(9), 
932–947. https://doi.org/10.1080/17451​000.2013.775459

Mysterud, A., Yoccoz, N. G., Langvatn, R., Pettorelli, N., & Stenseth, N. C. 
(2008). Hierarchical path analysis of deer responses to direct and in-
direct effects of climate in northern forest. Philosophical Transactions 
of the Royal Society of London, Series B: Biological Sciences, 363(1501), 
2359–2368. https://doi.org/10.1098/rstb.2007.2206

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method 
for obtaining R2 from generalized linear mixed-effects models. 
Methods in Ecology and Evolution, 4(2), 133–142. https://doi.org/ 
10.1111/j.2041-210x.2012.00261.x

Ohlmann, M., Mazel, F., Chalmandrier, L., Bec, S., Coissac, E., Gielly, L., 
… Thuiller, W. (2018). Mapping the imprint of biotic interactions on  
β-diversity. Ecology Letters, 21(11), 1660–1669. https://doi.org/ 
10.1111/ele.13143

Paine, R. T. (1980). Food webs: Linkage, interaction strength and commu-
nity infrastructure. Journal of Animal Ecology, 49(3), 667–685. https://
doi.org/10.2307/4220

https://doi.org/10.1111/geb.12332
https://doi.org/10.1111/j.1461-0248.2006.00941.x
https://doi.org/10.1007/BF00890327
https://doi.org/10.1007/BF00890327
https://doi.org/10.1111/1365-2656.12396
https://doi.org/10.1126/science.185.4156.1058
https://doi.org/10.1126/science.185.4156.1058
https://doi.org/10.1111/ele.13361
https://doi.org/10.1111/ele.13361
https://doi.org/10.1038/nclimate2647
https://doi.org/10.1126/science.1113075
https://doi.org/10.1038/nature10285
https://statmodeling.stat.columbia.edu/2018/03/15/need-16-times-sample-size-estimate-interaction-estimate-main-effect/
https://statmodeling.stat.columbia.edu/2018/03/15/need-16-times-sample-size-estimate-interaction-estimate-main-effect/
https://statmodeling.stat.columbia.edu/2018/03/15/need-16-times-sample-size-estimate-interaction-estimate-main-effect/
https://mc-stan.org/rstanarm
https://doi.org/10.1111/1365-2664.12959
https://doi.org/10.1111/1365-2664.12959
https://doi.org/10.1093/icesjms/fsz082
https://doi.org/10.1093/icesjms/fsz082
https://doi.org/10.1111/gcb.14090
https://doi.org/10.1038/nclimate2761
https://doi.org/10.1038/nclimate2761
https://doi.org/10.1080/17451000.2013.775450
https://doi.org/10.1080/17451000.2013.775450
https://doi.org/10.1371/journal.pone.0034924
https://www.hi.no/en/hi/nettrapporter/fisken-og-havet-en-2019-6
https://www.hi.no/en/hi/nettrapporter/fisken-og-havet-en-2019-6
https://doi.org/10.1073/pnas.1316342111
https://doi.org/10.1038/s41558-018-0205-y
https://doi.org/10.1038/ncomms9405
https://doi.org/10.1016/j.tree.2014.11.006
https://doi.org/10.1080/00031305.2018.1527253
https://doi.org/10.1080/17451000.2013.775459
https://doi.org/10.1098/rstb.2007.2206
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1111/ele.13143
https://doi.org/10.1111/ele.13143
https://doi.org/10.2307/4220
https://doi.org/10.2307/4220


     |  2907ELLINGSEN et al.

Pawley, M. D. M., & McArdle, B. H. (2018). Spatial autocorrelation: Bane 
or bonus? bioRxiv. https://doi.org/10.1101/385526

Qian, H., & Ricklefs, R. E. (2007). A latitudinal gradient in large-scale beta 
diversity for vascular plants in North America. Ecology Letters, 10(8), 
737–744. https://doi.org/10.1111/j.1461-0248.2007.01066.x

R Core Team. (2018). R: A language and environment for statistical com-
puting. Version 3.5.1. Vienna, Austria: R Foundation for Statistical 
Computing.

Raup, D. M., & Crick, R. E. (1979). Measurement of faunal similarity in 
paleontology. Journal of Paleontology, 53(5), 1213–1227.

Reeves, G. K., Cox, D. R., Darby, S. C., & Whitley, E. (1998). Some aspects 
of measurement error in explanatory variables for continuous and bi-
nary regression models. Statistics in Medicine, 17, 2157–2177. https://
doi.org/10.1002/(SICI)1097-0258(19981​015)17:19<2157:AID-SIM 
91​6>3.0.CO;2-F

Ricklefs, R. E. (1987). Community diversity: Relative roles of local 
and regional processes. Science, 235(4785), 167–171. https://doi.
org/10.1126/scien​ce.235.4785.167

Rutterford, L. A., Simpson, S. D., Jennings, S., Johnson, M. P., Blanchard, 
J. L., Schön, P.-J., … Genner, M. J. (2015). Future fish distributions 
constrained by depth in warming seas. Nature Climate Change, 5(6), 
569–573. https://doi.org/10.1038/nclim​ate2607

Ryberg, W. A., Smith, K. G., & Chase, J. M. (2012). Predators alter 
the scaling of diversity in prey metacommunities. Oikos, 121(12),  
1995–2000. https://doi.org/10.1111/j.1600-0706.2012.19620.x

Scheffer, M., Carpenter, S., & de Young, B. (2005). Cascading effects 
of overfishing marine systems. Trends in Ecology & Evolution, 20(11), 
579–581. https://doi.org/10.1016/j.tree.2005.08.018

Shackell, N. L., Fisher, J. A. D., Frank, K. T., & Lawton, P. (2012). Spatial 
scale of similarity as an indicator of metacommunity stability in 
exploited marine systems. Ecological Applications, 22(1), 336–348. 
https://doi.org/10.1890/10-2093.1

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and 
quasi-experimental designs for generalized causal inference. Boston, 
MA: Houghton Mifflin Company.

Socolar, J. B., Gilroy, J. J., Kunin, W. E., & Edwards, D. P. (2016). How should 
beta-diversity inform biodiversity conservation? Trends in Ecology & 
Evolution, 31(1), 67–80. https://doi.org/10.1016/j.tree.2015.11.005

Stige, L. C., Dalpadado, P., Orlova, E., Boulay, A.-C., Durant, J. M., 
Ottersen, G., & Stenseth, N. C. (2014). Spatiotemporal statistical 
analyses reveal predator-driven zooplankton fluctuations in the 
Barents Sea. Progress in Oceanography, 120, 243–253. https://doi.
org/10.1016/j.pocean.2013.09.006

Stotz, G. C., Gianoli, E., & Cahill Jr., J. F. (2019). Biotic homogenization 
within and across eight widely distributed grasslands following in-
vasion by Bromus inermis. Ecology, 100(7), e02717. https://doi.org/ 
10.1002/ecy.2717

Terborgh, J. W. (2015). Toward a trophic theory of species diversity. 
Proceedings of the National Academy of Sciences of the United States of  
America, 112(37), 11415–11422. https://doi.org/10.1073/pnas.15010​
70112

Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). 
Climate change threats to plant diversity in Europe. Proceedings of the 

National Academy of Sciences of the United States of America, 102(23), 
8245–8250. https://doi.org/10.1073/pnas.04099​02102

Trofimov, A., & Ingvaldsen, R. (2018). Barents Sea. In C. González-Pola, 
K. M. H. Larsen, P. Fratantoni, & A. Beszczynska-Möller (Eds.), ICES 
report on ocean climate 2017. ICES cooperative research report no. 345  
(pp. 89–90). Retrieved from https://doi.org/10.17895​/ices.pub.4625

Turner, M. G., Calder, W. J., Cumming, G. S., Hughes, T. P., Jentsch, A., 
LaDeau, S. L., … Carpenter, S. R. (2020). Climate change, ecosystems 
and abrupt change: Science priorities. Philosophical Transactions of 
the Royal Society B: Biological Sciences, 375(1794), 20190105. https://
doi.org/10.1098/rstb.2019.0105

Ulrich, W., Zalewski, M., & Uvarov, A. V. (2012). Spatial distribution and 
species co-occurrence in soil invertebrate and plant communities 
on northern taiga islands. Annales Zoologici Fennici, 49(3), 161–173. 
https://doi.org/10.5735/086.049.0304

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model 
evaluation using leave-one-out cross-validation and WAIC. Statistics 
and Computing, 27(5), 1413–1432. https://doi.org/10.1007/s1122​
2-016-9696-4

Vellend, M., Baeten, L., Myers-Smith, I. H., Elmendorf, S. C., Beausejour, 
R., Brown, C. D., … Wipf, S. (2013). Global meta-analysis reveals  
no net change in local-scale plant biodiversity over time. Proceedings 
of the National Academy of Sciences of the United States of America, 
110(48), 19456–19459. https://doi.org/10.1073/pnas.13127​79110

Verity, P. G., & Smetacek, V. (1996). Organism life cycles, predation, and 
the structure of marine pelagic ecosystems. Marine Ecology Progress 
Series, 130, 277–293. https://doi.org/10.3354/meps1​30277

Watanabe, S. (2013). A widely applicable Bayesian information criterion. 
Journal of Machine Learning Research, 14, 867–897.

Wienerroither, R., Johannesen, E., Langøy, H., Eriksen, K. B., Wenneck, 
T. L., Høines, Å. S., … Langhelle, G. (2011). Atlas of the Barents Sea 
fishes. IMR/PINRO joint report series, 1-2011. Bergen, Norway and 
Murmansk, Russia: Institute of Marine Research (IMR) and Polar 
Research Institute of Fisheries and Oceanography (PINRO).

Wood, S. N. (2006). Generalized additive models. An introduction with R. 
New York, NY: Chapman & Hall/CRC.

Xing, D., & He, F. (2019). Environmental filtering explains a U-shape latitu-
dinal pattern in regional β-deviation for eastern North American trees. 
Ecology Letters, 22(2), 284–291. https://doi.org/10.1111/ele.13188

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Ellingsen KE, Yoccoz NG, Tveraa T, 
et al. The rise of a marine generalist predator and the fall of 
beta diversity. Glob Change Biol. 2020;26:2897–2907. https://
doi.org/10.1111/gcb.15027

https://doi.org/10.1101/385526
https://doi.org/10.1111/j.1461-0248.2007.01066.x
https://doi.org/10.1002/(SICI)1097-0258(19981015)17:19%3C2157:AID-SIM916%3E3.0.CO;2-F
https://doi.org/10.1002/(SICI)1097-0258(19981015)17:19%3C2157:AID-SIM916%3E3.0.CO;2-F
https://doi.org/10.1002/(SICI)1097-0258(19981015)17:19%3C2157:AID-SIM916%3E3.0.CO;2-F
https://doi.org/10.1126/science.235.4785.167
https://doi.org/10.1126/science.235.4785.167
https://doi.org/10.1038/nclimate2607
https://doi.org/10.1111/j.1600-0706.2012.19620.x
https://doi.org/10.1016/j.tree.2005.08.018
https://doi.org/10.1890/10-2093.1
https://doi.org/10.1016/j.tree.2015.11.005
https://doi.org/10.1016/j.pocean.2013.09.006
https://doi.org/10.1016/j.pocean.2013.09.006
https://doi.org/10.1002/ecy.2717
https://doi.org/10.1002/ecy.2717
https://doi.org/10.1073/pnas.1501070112
https://doi.org/10.1073/pnas.1501070112
https://doi.org/10.1073/pnas.0409902102
https://doi.org/10.17895/ices.pub.4625
https://doi.org/10.1098/rstb.2019.0105
https://doi.org/10.1098/rstb.2019.0105
https://doi.org/10.5735/086.049.0304
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1073/pnas.1312779110
https://doi.org/10.3354/meps130277
https://doi.org/10.1111/ele.13188
https://doi.org/10.1111/gcb.15027
https://doi.org/10.1111/gcb.15027

