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Abstract: The projected increase in global population will demand a major increase in global food
production. There is a need for more biomass from the ocean as future food and feed, preferentially
from lower trophic levels. In this study, we estimated the mesopelagic biomass in three Norwegian
fjords. We analyzed the nutrient composition in six of the most abundant mesopelagic species and
evaluated their potential contribution to food and feed security. The six species make up a large part
of the mesopelagic biomass in deep Norwegian fjords. Several of the analyzed mesopelagic species,
especially the fish species Benthosema glaciale and Maurolicus muelleri, were nutrient dense, containing
a high level of vitamin A1, calcium, selenium, iodine, eicopentaenoic acid (EPA), docosahexaenoic
acid (DHA) and cetoleic acid. We were able to show that mesopelagic species, whose genus or
family are found to be widespread and numerous around the globe, are nutrient dense sources of
micronutrients and marine-based ingredients and may contribute significantly to global food and
feed security.

Keywords: mesopelagic; nutrients; Benthosema glaciale; Maurolicus muelleri; trace elements; minerals;
fatty acids; vitamin A; vitamin D

1. Introduction

One of the greatest societal challenges of the twenty-first century is to secure sufficient and
nutritious food for all in a sustainable manner [1]. Currently, two billion people suffer from vitamin
and mineral deficiencies, especially in vitamin A, iron and zinc [2]. Micronutrient deficiencies, known
as hidden hunger, can severely affect health and development and in some cases lead to irreversible
effects [3]. As many as 842 million people suffer from chronic hunger, meaning an insufficient amount
of food for an active life [2] and two billion people consume excess calories [4]. By 2050, the global
population is projected to rise to 9.6 billion, demanding a 60% increase in global food production [5].
Food from the ocean has a large potential to meet this need, and contribute to food security due to its
highly nutritious nature [6], containing essential vitamins, minerals, long-chain omega-3 fatty acids,
and other nutrients not found in plant-based or terrestrial animal sources [7–9]. Fish also enhance the
bioavailability of minerals like iron and zinc [10–13] especially from cereal- and legume-based meals.

A recent report concluded that better ocean and fisheries management globally could increase
catches by 20% compared with current levels [6]. Whether the future increased demand for marine
food production from fisheries and aquaculture can be met will largely depend on the effects of
climate change mitigation, the global implementation of ecosystem-based fisheries management [14],
and the aquaculture’s capacity to expand in a sustainable way [15]. A shift in diets from terrestrial,
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animal-based protein towards ocean-based options may reduce the triple burden of malnutrition, and
contribute significantly to climate change mitigation [16].

Fish account for about 20% of the global intake of animal protein and for almost 7% of all protein
consumed by humans [17,18]. The existing supply of marine raw materials cannot meet the nutritional
demand for human consumption nor feed production needed for the aquaculture industry to grow [17].
Thus, there is a need to use more biomass from the ocean as future food and feed, preferentially
from lower trophic levels, such as organisms from the mesopelagic zone [19]. The mesopelagic zone,
stretching from 200 to 1000 meters depth, comprises about 60% of the planet‘s surface and 20% of
the ocean volume, constituting a large part of the total biosphere. The total amount of mesopelagic
fish biomass is suggested to be in the order of 10,000 million tons globally—equivalent to 100 times
the annual catch of traditional fisheries [17,20–22]. Mesopelagic organisms have the potential to
become a major contributor to global nutrition and can play an important part in national and global
bioeconomy if exploited in a sustainable manner. However, mesopelagic species remain one of the least
investigated biomasses in terms of distribution, abundance, fishing methods and product development.
There is little information on the nutrient content or nutritional value of mesopelagic species, which is
needed to evaluate its potential as a novel food or feed resource.

This paper contributes with novel data on the nutritional content of six of the most abundant
mesopelagic species in fjords of western Norway, with the genera or families to which they belong
being found to be widespread and numerous in mesopelagic ecosystems all around the globe [20,23,24].
We also evaluate their potential contribution to food and feed security.

2. Materials and Methods

2.1. Biological Material

Two species of mesopelagic fish, the glacier lanternfish (Benthosema glaciale) and the silvery
lightfish (Maurolicus muelleri), the decapod Eusergestes arcticus, the decapod genus Pasiphaea (comprising
P. multidentata, P. sivado and P. tarda), the euphausiid Northern krill (Meganyctiphanes norvegica) and
the scyphozoan helmet jellyfish (Periphylla periphylla) were harvested in three different fjords of the
Norwegian west coast; Osterfjorden, Bjørnafjorden and Boknafjorden (Figure 1). Specimens were
caught in mesopelagic trawls between December 5th and 9th, 2018, onboard the research vessel “Johan
Hjort”. The macroplankton trawls used are pelagic otter trawls with equal sized mesh throughout the
length of the trawl with a mount opening of either ~35 m2 [25,26] or a larger version with ~350 m2

opening. Both trawls were equipped with sensors for the continuous in situ measurement of the trawl’s
opening width, height and flow speed. The trawl sensor data were later used for the calculation of total
water filtered and in combination with trawl catches, the mean density of species/group in the water
column were calculated. All trawl hauls used for later calculation of biomass density were oblique
hauls from the surface down to around 350 m, thus filtering equal amounts of water as a function of
depth. All trawl catches were sorted and identified to the highest possible taxonomic level before being
weighted separately (Supplementary Video S1). For large catches, only a subsample of the remaining
mixed catch was sorted after large and uncommon specimens had been removed. After sorting and
weighting, all common species of fish and crustaceans were measured for length.

At least one pooled sample was prepared for each species/genus from each location for later
chemical analysis. For B. glaciale, M. muelleri and M. norvegica from Osterfjorden, samples were divided
into different size classes, and, for B. glaciale, also according to sex. P. periphylla was only sampled from
catches from Osterfjorden (n = 12) and Bjørnafjorden (n = 10) and the total wet weight was used as size
measurement. A quarter of each P. periphylla individual was used in the composite sample.

All pooled samples were homogenized directly after catch and distributed into different tubes for
separate analysis and stored frozen at −20 ◦C until December 17th, 2018. Thereafter, all samples were
stored at −80 ◦C until analysis.
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2.2. Analytical Methods

Analyses of nutrients of the composite sample were performed at the Institute of Marine Research
(IMR) in Bergen, Norway. All analyses, except for iron and fatty acids, were performed using accredited
methods according to ISO 17025:2005. The laboratory participates in national and international
proficiency tests to secure trueness and establish measurements uncertainty of the methods. Certified
reference materials (CRM) were analyzed to test for accuracy and all values presented were within the
accepted range of the analyses. For all methods, a sample blank and a quality control sample (QC) with
a known composition and concentration of target analyte were included in each series. The methods
were regularly verified by participation in inter-laboratory proficiency tests, or by analyzing certified
reference material (CRM), where such exist.

The limit of detection (LOD) is the lowest level at which the method is able to detect the substance,
while the limit of quantification (LOQ) is the lowest level for a reliable quantitative measurement.
The LOQ for the analytical methods used for the nutrients presented in this paper can be found in
Reksten et al. (submitted to Journal of Food Composition and Analysis).

Protein (crude protein) was determined by burning the sample material in pure oxygen gas in
a combustion tube at 830 ◦C. Nitrogen (N) was detected with a thermal conductivity detector according
to the accredited method AOAC Official Methods of Analysis [27]. Nitrogen content was calculated
from an estimated average of 16% N per 100 gram of protein using the formula; N g/100g − 6.25 =

protein g/100g.
Fat (crude fat) was extracted with ethyl acetate and filtered before the solvent evaporated and fat

residue weighted. The method is standardized as a Norwegian Standard, NS 9402.
Fatty acids were analyzed on a HP-7890A gas chromatograph (Agilent, Santa Clara, CA, USA)

with a flame ionization detector (GC-FIS) as described in [28] with the nonadecanoic acid (19:0) as
internal standard. For this, 2.5 M dry HCl in methanol was used as a methylation agent. The fatty
acids methyl esters (FAME) were extracted using 2 × 2 mL hexane. Several of the samples contained
wax esters and the hexane extracts were added nonadecanol (19:0 alk) as internal standard and fatty
alcohols were separated using solid phase column (500 mg aminopropyl-SPE, Supelco). The FAME
fraction was eluted with 3 mL hexane + 2 mL hexane:ethyl acetate 9:1 v/v) and the fatty alcohols were
eluted with 4 mL chloroform. The extracted hexane was diluted or concentrated to obtain a suitable
chromatographic response. One microliter was injected splitless with an injection temperature of 280 ◦C.
A 25 m × 0.25 mm fused silica capillary, coated with polyethylene-glycol of 0.25 µm film thickness,
CP-Wax 52 CB (Varian-Chrompack, Middelburg, The Netherlands) was used. Helium was used as
mobile phase at 1 mL/min for 45 min and then increased to 3 mL/min for 30 min. The temperature of
the flame ionization detector was set at 300 ◦C. The oven temperature was programmed to hold at
90 ◦C for 2 min, then from 90 to 165 ◦C at 30 ◦C/min and then to 240 ◦C at 2.5 ◦C/min and held there for
35 min. Fifty-seven FAME peaks and fifteen fatty alcohols peaks were selected in the chromatograms,
and identified by comparing retention times with a FAME standard (GLC-463 from Nu-Chek Prep.
Elysian, MN, USA) and fatty alcohol standard (GLC-33-36A from Nu-Chek Prep. Elysian, MN, USA),
and retention index maps and mass spectral libraries (GC-MS) (http://www.chrombox.org/home/)
performed under the same chromatographic conditions as the GC-FID [29]. Chromatographic peak
areas were corrected by empirical response factors calculated from the areas of the GLC-463 mixture.
The chromatograms were integrated using the EZChrom Elite software (Agilent Technologies).

Vitamin A1 (sum all-trans retinol and 13-, 11-, 9 cis retinol) was determined by an analytical
high-performance liquid chromatography (HPLC) (normal phase) using a PDA detector (Photo Diode
Array) (1260 Infinity, Agilent). The sample was saponified and the unsaponified material was extracted.
Retinol content was calculated by external calibration (standard curve) [30].

The sample for determination of vitamin D3 was saponified and the unsaponifiable material was
extracted and purified on a preparative HPLC column. The fraction containing D2 (ergocalciferol)
and D3 (cholecalciferol) was pooled (normal phase). This fraction was injected into a HPLC column

http://www.chrombox.org/home/
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(reverse phase). Vitamin D2/D3 was determined by an UV detector. The content of vitamin D3 was
calculated using an internal standard (vitamin D2) [31].

Selenium (Se), zinc (Zn), iron (Fe), calcium (Ca), potassium (K), magnesium (Mg), phosphorus
(P) and sodium (Na) were determined by Inductively Coupled Plasma-Mass Spectrometry (iCapQ
ICPMS, Thermofisher Scientific, Waltham, MA, USA) equipped with an autosampler (FAST SC-4Q DX,
Elemental Scientific, Omaha, NE, USA) after wet digestion in a microwave oven (UltraWave of UltraClave,
Milestone, Sorisole, Italy) as previously described [32] with some modifications. The elements were
quantified using an external standard curve in addition to an internal standard [33]. Three slightly
different methods were applied: (1) for Ca, Na, K, Mg, and P using scandium (Sc) as the internal
standard, (2) for Zn and Se, rhodium (Rh) was used as the internal standard, and 3) tellurium (Te) was
used as the internal standard for iodine (I). For the determination of iodine, the sample preparation was
a basic extraction with tetramethylammonium hydroxide (TMAH) before ICP-MS analysis.

2.3. Data Management and Presentation of Data

All analytical data were exported from Laboratory Information Management Systems (LIMS)
to Microsoft Excel Office 365 ProPlus for calculation of means and standard deviation (SD). Data
are presented as means ± SD per 100g wet weight of several composite samples of each species and
reported to units of expressions and rounding procedures as advised in the FAO guidelines “Food
composite data” [34]. For values <LOQ, for further calculations, the respective LOQ was divided by 2,
as suggested by Helsel [35]. Vitamin A components are presented as µg/100 g of the vitamin A isomers
retinol (sum of 13-, 11-, and 9-cis and all-trans retinol (A1)) and 3.4 didehydro-all-trans retinol (A2).
Values for vitamin A1 were included in the calculations, while values for vitamin A2 were excluded
due to the small amount present and the reduced biological activity of dehydroretinaol isomers [36].
For vitamin A1, 1 µg = 1 RE (retinol equivalent). Vitamin D is presented as the amount of vitamin
D3 present in sample, as the amount of vitamin D2 is considered negligible in fish [37]. Nutrients are
presented by species and the mean values from different fjords are merged.

2.4. Biomass Density

In order to estimate the biomass density of the species in the fjord, the total catch of each species
was divided by the total amount of water that had passed through the trawl:

Biomass densityspecies =
Biomass in Trawlspecies

Trawlarea × Trawlspeed × Trawltime

Biomass densities calculated from oblique trawl hauls only report the average biomass in the fjord
down to the deepest point of the trawl’s depth profile, and hence do not take into account the fact that
mesopelagic organisms tend to aggregate in diel vertical migrating layers [38]. Consequently, these
layers will likely have a much higher than average density and a future fishery targeting the layers
would catch more biomass per volume trawled than reported here. The estimate is based on 12 trawls
in Bjørnafjorden and 5 trawls in Osterfjorden. The catches from Boknafjorden cannot be considered
quantitative, thus no species composition was attempted for this location.

Nutritional Potential

The catch composition (Figure 2) shows the average value of species-specific biomass densities
from each trawl haul in the two fjords, as well as the mean of the two fjords for the investigated species.
The latter values were used to calculate the amount of protein, fat and selected micronutrients (g)
present per km3 (Anutrient) fjord as:

Anutrient =
n∑

species=1

(
Concnutrient

species × Biomass densityspecies

)
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where Concnutrient
species is the concentration of a specific nutrient in a specific species (g/kg) and

Biomass densityspecies represents the average trawl catch of each species in the two fjords (kg/km3).
To calculate the potential concentrations of the different nutrients after processing into an oil and

protein fraction the following assumptions were made; (1) the processing would result in a protein and
oil fraction similar to what we gained from our chemical analysis for total fat and protein. (2) 100 % of
all elements were following the protein fraction. (3) 100 % of itamin A was following the oil fraction.

Under these assumptions, the concentration of nutrients in the protein or oil fraction Concnutrient
oil/protein

was calculates as
Concnutrient

oil
protein

= Concnutrient
species /Conc

oil
protein

species

where Concoil/protein
species is the concentration of total fat and protein in a specific specie.

The nutritional potential (potential daily doses of recommended intake (RI)) of nutrients per
km3 fjord from the mesopelagic species was based on the Nordic Nutrition Recommendations [39]
for women for the selected nutrients; iodine, calcium, iron, zinc, selenium and vitamin A1, and the
calculated amount of the nutrients in each species (Supplementary Table S2):

Potential daily
doses = Concnutrient

species /RI

3. Results

Novel data on the nutrient composition in six mesopelagic species from Norwegian fjords and
their potential for global food and feed security are presented here. We also compare our findings with
the nutrient content of other protein sources, and Blue whiting (Micromesistius poutassou), one of the
main commercial industry fishes used to produce fishmeal and fish oil in Norway.

3.1. Sample Characteristics

This study included six mesopelagic species; two fish species, B. glaciale and M. muelleri, three
shellfish/crustacea M. norvegica, Pasiphaea spp. and E. arcticus and one jellyfish Periphylla perihylla,
sampled in three fjords in western Norway; Osterfjorden, Bjørnafjorden and Boknafjorden, December
2018 (Figure 1).

Figure 1. Mesopelagic species in Norwegian fjords. The shrimps (a) Pasiphaea sp. and (b) Eusergestes
arcticus, the krill (c) Meganyctyphanes norvegica, and the fish species (d) Benthosema glaciale and
(e) Maurolicus muelleri caught at a cruise in Osterfjorden, Bjørnafjorden and Boknafjorden on the
Norwegian west coast in December 2018.

The six species presented here make up a large and continuous part of the mesopelagic biomass
density in deep Norwegian fjords (Figure 2).

An overview of the species sampled is given in Table 1.
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Figure 2. Biomass density of mesopelagic species in Norwegian fjords. Biomass density of mesopelagic
species/groups in Osterfjorden and Bjørnafjorden in December 2018 from oblique trawls with
macroplankton trawls with either 35 or 350 m2 opening area. The fjords contained most of the
same species; however, their contribution to the total ecosystem varied greatly. (a) The jellyfish
Periphylla periphylla in Osterfjorden and Bjørnafjorden and an average of the 2 fjords. (b) Mesopelagic
species, without jellies, in Osterfjorden and Bjørnafjorden, and an average of the 5 other species
mentioned in this paper.

Table 1. Overview of analyzed samples. Number of composite samples including number of specimens
in each sample and the average length or weight of the specimens (mean ± SD) from Osterfjord,
Bjørnafjord and Boknafjord (December 2018) is given.

Location Species Classification Composite
Samples (n)

Specimens per
Composite Sample

Average
Length (mm)

Osterfjorden

Benthosema glaciale Pisces 4

27 62.6 ± 2.3
135 50 ± 2.8
135 48.8 ± 2.9
>50 23.9 ± 5.6

Maurolicus muelleri Pisces 2
>50 23.6 ± 2.6
>50 44.5 ± 3.9

Meganyctiphanes norvegica Crustacea 2
>50 17.2 ± 2.1
>50 33.2 ± 2.3

Pasiphaea sp. Crustacea 1 >50 70.1 ± 10.6

Eusergestes arcticus Crustacea 2
>50 32.2 ± 5.2
>50 26.4 ± 4.8

Boknafjorden

Benthosema glaciale Pisces 1 >50 52.7 ± 6

Maurolicus muelleri Pisces 1 >50 48.5 ± 5.9

M. norvegica
(Northern krill) Crustacea 1 >50 33.4 ± 2.4

Pasiphaea sp. Crustacea 1 >50 82 ± 8

Eusergestes arcticus Crustacea 1 >50 50.3 ± 10.3

Bjørnafjorden

Benthosema glaciale Pisces 1 83 41.4 ± 10.5

Maurolicus muelleri Pisces 1 >50 36.6 ± 9.4

M. norvegica
(Northern krill) Crustacea 1 >50 30.3 ± 5.1

Pasiphaea sp. Crustacea 1 >50 49.3 ± 19.6

Eusergestes arcticus Crustacea 1 >50 43.6 ± 7.2

Weight (g)

Osterfjorden Periphylla periphylla
(Helmet jellyfish) Cnidaria 1 12 575 ± 446

Bjørnafjorden Periphylla periphylla
(Helmet jellyfish) Cnidaria 1 10 952 ± 293
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3.2. Nutrient Dense Mesopelagic Species

The protein content was similar for all species except the jellyfish P. periphylla, and comparable to
Blue whiting, whereas fat content varied greatly (Table 2).

Table 2. Analytical wet weight-based values for protein, total fat and dry matter in six mesopelagic
species caught in three fjords in western Norway, and Blue whiting for comparison.

Species n
Protein
g/100g

(min–max)

Total Fat
g/100g

(min–max)

Dry Matter
%

(min–max)

Benthosema glaciale
(Glacier lantern fish) 7 14.0 ± 0.5

(13.5–14.6)
13.7 ± 3.7
(6.1–16.0)

30.8 ± 3.9
(22.0–33.7)

Maurolicus muelleri
(Silvery lightfish) 4 12.3 ± 0.4

(11.9–12.7)
17.8 ± 8.1
(7.1–24.7)

33.3 ± 8.1
(23.0–41.2)

Meganyctyphanes norvegica
(Northern krill) 4 15.5 ± 0.9

(14.8–16.8)
5.5 ± 0.6
(4.9–5.9)

24.0 ± 1.9
(21.3–25.3)

Pasiphaea sp. 3 14.1 ± 4.6
(42–50)

5.4 ± 2.7
(3.3–8.4)

21.7 ± 5.1
(15.9–24.1)

Eusergestes arcticus 4 15.5 ± 0.5
(14.9–15.9)

9.4 ± 3.1
(4.9–12.1)

27.5 ± 3.6
(22.3–30.7)

Periphylla periphylla
(Helmet jellyfish) 2 0.95

(0.90–1.00)
0.45

(0.34–0.56)
4.82

(4.76–4.87)

Micromesistius poutassou *
(Blue whiting) 10 16.1

(15.5–17.1)
3.9

(2.9–5.8)
20.8

(18.4–22.9)

Data are expressed as mean ± standard deviation, and minimum and maximum values. n = number of composite
samples. * Measurements on individual samples, data from (https://sjomatdata.hi.no/#search/)

The fish species B. glaciale and M. muelleri contained high levels of vitamin A1 (retinol) (Table 3).
Vitamin A2 was only detected in B. glaciale and M. muelleri at 26.0 ± 7.5 µg/100g and 27.8 ± 7.2 µg/100g,
respectively (mean ± SD). In the other species, vitamin A2 was under the limit of quantification (LOQ)
(<0.5 µg) and vitamin D was under LOQ for all species (data not shown). All species, except the
jellyfish P. periphylla, contained high levels of calcium and selenium, whereas iodine content varied
considerably between the species (Table 3).

High amounts of monounsaturated fatty acids were found in all species, mainly 18:1n-9, 20:1 n-9,
20:1n-11 (gadoleic acid) and 22:1n-1 (cetoleic acid), and eicopentaenoic acid (EPA) and docosahexaenoic
acid (DHA) (Table 4). The content of DHA was higher than EPA in all mesopelagic species, in contrast
to commercial fish oil (Table 4).

B. glaciale and E. arcticus contained considerable amounts of wax esters (long-chain fatty acid
alcohols esterified to long-chain fatty acids), of which 16:0, 20:1 and 22:1 constituted the major fatty
acids, respectively (Table S3).

Most of the nutrients analyzed are similar to, or higher than, that of commonly consumed fish
fillets such as farmed Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua) and meat (Table 5),
and Blue whiting commonly used to produce fishmeal and fish oil for the aquaculture industry.

https://sjomatdata.hi.no/#search/
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Table 3. Analytical wet weight-based values of vitamin A1, iodine and selected minerals in six mesopelagic species caught in three fjords in western Norway, and Blue
whiting (M. poutassou) for comparison.

Species n
Vitamin

A1
µg/100g

Iodine
µg/100g

(min–max)

Calcium
mg/100g

(min–max)

Potassium
mg/100g

(min–max)

Magnesium
mg/100g

(min–max)

Phosphorus
mg/100g

(min–max)

Sodium
mg/100g

(min–max)

Selenium
µg/100g

(min–max)

Zinc
mg/100g

(min–max)

Iron
mg/100g

(min–max)

B. glaciale 7 1633 ± 356
(1300–2300)

43 ± 6
(30–49)

500 ± 47
(420–550)

258 ± 51
(160–300)

67 ± 12
(52–89)

383 ± 60
(280–440)

385 ± 108
(300–600)

61 ± 9
(47–72)

0.8 ± 0.1
(0.7–1.0)

1.08 ± 0.44
(0.61–1.83)

Maurolicus
muelleri 4 1020 ± 395

(480–1400)
27 ± 14
(16–47)

543 ± 60
(480–600)

227 ± 6
(220–230)

61 ± 8
(54–70)

400 ± 10
(390–410)

380 ± 69
(340–460)

44 ± 8
(34–52)

1.1 ± 0.1
(1.1–1.2)

1.56 ± 0.05
(1.50–1.60)

M. norvegica 4 63.3 ± 15.3
(50.0–80.0)

119 ± 42
(85–180)

658 ± 57
(590–730)

358 ± 33
(320–390)

163 ± 13
(150–180)

368 ± 22
(340–390)

495 ± 124
(360–660)

101 ± 41
(71–160)

1.0 ± 0.1
(0.9–1.1)

2.15–1.39
(0.98–4.00)

Pasiphaea sp. 3 11.0 ± 1.0
(10.0–12.0)

46 ± 4
(42–50)

633 ± 211
(410–830)

283 ± 110
(160–370)

83 ± 29
(53–110)

333 ± 119
(200–430)

337 ± 107
(220–430)

43 ± 21
(23–65)

0.9 ± 0.3
(0.6–1.1)

0.39 ± 0.30
(0.19–0.74)

Eusergestes
arcticus 4 34.5 ± 29.6

(6.0–60.0)
117 ± 6

(110–120)
532 ± 88

(460 -660)
358 ± 22

(300–420)
378 ± 22

(350–400)
377 ± 22

(350–400)
363 ± 51

(300–420)
52 ± 17
(38–76)

1.8 ± 0.9
(1.0–3.1)

0.32 ± 0.11
(0.23–0.45)

Periphylla
periphylla 2 0.3

(0.15–0.45)
2.3

(2–2.5)
43

(42–44)
83

(80–86)
105

(110–110)
12.3

(9.6–15.0)
1000

(1000–1000)
3.9

(3.4–4.4)
0.1

(0.1–0.1)
0.04

(0.04–0.05)

M. * poutassou 10 2370
(1000–4500)

23
(19–34)

429
(198–785)

264
(233–282)

64
(55–72)

309
(222–517)

425
(373–466)

62
(60–64)

1.1
(1.0–1.2)

1.75
(1.50–2.00)

Data are expressed as mean ± standard deviation, and minimum and maximum values in brackets. n = number of composite samples. * Measurements on individual samples, data from
https://sjomatdata.hi.no/#search/.

https://sjomatdata.hi.no/#search/
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Table 4. Absolute and relative values of selected fatty acids in 6 mesopelagic species caught in three fjords in western Norway, and for comparison Blue whiting
(Micromesistius poutassou) and fish oil intended for aquaculture feed production (mean ± SD).

B. glaciale
g/100 g ww
min–max

%
(n = 8)

Maurolicus muelleri
g/100 g ww
min–max

%
(n = 4)

M. norvegica
g/100 g ww
min–max

%
(n = 4)

Pasiphaea sp.
g/100 g ww
min–max

%
(n = 3)

E. arcticus
g/100 g ww
min–max

%
(n = 4)

P. periphylla
g/100 g ww
min–max

%
(n = 2)

M. poutassou *
g/100g ww
min–max
(n = 10)

Fish oil **
%

(n=10)

Amount FA (g/100 g sample weight) 6.8 ± 1.7 14.5 ± 7.9 3.4 ± 1.7 3.7 ± 0.8 5.3 ± 2.1 0.2

Amount FAOH (g/100 g sample weight) 4.2 ± 1.2 0.03 ± 0.01 0.07 ± 0.02 0.02 ± 0.01 2.4 ± 1.0 0.04 ± 0.05

14:0
0.34 ± 0.10
0.13–0.42
5.0 ± 0.5

1.05 ± 0.62
0.34–1.65
7.1 ± 0.6

0.19 ± 0.11
0.04–0.29
5.1 ± 1.0

0.10 ± 0.06
0.04–0.16
2.4 ± 0.8

0.17 ± 0.04
0.11–0.20
3.3 ±0.8

0.006
0.004–0.008

3.0

0.14
0.09–0.21 7.3 ± 1.3

16:0
0.39 ± 0.09
0.21–0.47
5.9 ± 0.5

2.29 ± 1.23
1.00–3.39
16.1 ± 2.0

0.52 ± 0.25
0.16–0.72
15.2 ± 0.4

0.59 ± 0.29
0.38–0.92
15.9 ± 0.1

0.47 ± 0.16
0.27–0.66
9.0 ± 0.8

0.018
0.013–0.023

9.6

0.50
0.37–0.79 15.8 ±2.6

Sum SFA
0.90 ± 0.21
0.73–1.10
13.0 ± 1.5

3.78 ± 2.04
1.58–5.52
26.5 ± 2.4

0.85 ± 0.43
1.10–4.88
24.7 ± 1.1

0.86 ± 0.41
0.53–1.31
23.0 ± 0.8

0.74 ± 0.22
0.45–0.99
14.5 ± 1.8

0.035
0.03–0.04

18.5 26.9 ± 4.8

18:1n-9
1.35± 0.43
0.62–1.82
19.8 ± 3.1

1.35 ± 0.79
0.57–2.207
9.4 ± 1.8

0.43 ± 0.19
0.16–0.509
13.4 ± 3.5

0.80 ± 0.36
0.57–1.22
21.8 ± 3.5

0.80 ± 0.43
0.50–1.43
15.1 ± 4.0

0.029
0.025–0.033

16.6

0.44
0.29–0.76 10.0 ± 3.3

20:1n-9
0.53 ± 0.17
0.17–0.73
7.6 ± 1.1

1.52 ± 0.89
0.36–2.216
10.0 ± 2.2

0.24 ± 0.18
0.01–0.43
5.9 ± 3.2

0.19 ± 0.13
0.09–0.34
4.7 ± 1.2

0.55 ± 0.26
0.18–0.77
9.9 ± 2.3

0.018 ± 0.005
0.015–0.022

9.7

0.21
0.10–0.42 5.4 ± 4.8

20:1n-11
0.13 ± 0.4
0.04 -0.17
3.0 ± 0.8

0.15 ± 0.08
0.13–0.23
1.9 ± 0.3

0.03 ± 0.02
0.00–0.04
1.0 ±0.2

0.04 ± 0.03
0.02–0.07
0.7 ± 0.2

0.17 ± 0.09
0.05–0.25
1.0 ± 0.2

0.00
0.002–0.003

1.4

0.045
0.02–0.09 0.5 ± 0.4

22:1n-11
0.78 ± 0.24
0.26–1.07
11.3 ± 1.5

3.08 ± 1.77
0.74–4.28
20.4 ± 4.8

0.26 ± 0.22
0.01–0.54
6.1 ± 4.15

0.20 ± 0.16
0.09–0.38
4.9 ± 1.5

0.52 ± 0.23
0.19–0.69
9.5 ±2.1

0.027
0.019–0.035

14.4

0.28
0.11–0.67 7.5 ± 7.0

Sum MUFA
4.03 ± 1.14
1.60–5.05
57.1 ± 5.8

7.82 ± 4.41
2.40–11.84
52.7 ±5.8

1.42 ± 0.79
0.34–2.21
39.6 ± 6.6

1.75 ± 0.95
1.12–2.84
46.1 ± 4.1

3.05 ± 1.33
1.33–4.58
56.0 ± 4.1

0.104
0.09–0.11

56.7 35.5 ±12.8

18:2n-6
0.12 ± 0.03
0.06–0.15
1.8 ± 0.2

0.19 ± 0.10
0.07–0.28
1.2 ± 0.1

0.08 ± 0.03
0.04–0.11
1.7 ± 0.4

0.06 ± 0.02
0.04–0.07
1.7 ± 0.4

0.11 ± 0.05
0.07–0.18
2.2 ± 0.4

0.002
0.002–0.003

1.2

0.04
0.03–0.07 1.6 ±0.4
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Table 4. Cont.

B. glaciale
g/100 g ww
min–max

%
(n = 8)

Maurolicus muelleri
g/100 g ww
min–max

%
(n = 4)

M. norvegica
g/100 g ww
min–max

%
(n = 4)

Pasiphaea sp.
g/100 g ww
min–max

%
(n = 3)

E. arcticus
g/100 g ww
min–max

%
(n = 4)

P. periphylla
g/100 g ww
min–max

%
(n = 2)

M. poutassou *
g/100g ww
min–max
(n = 10)

Fish oil **
%

(n=10)

20:4n-6
0.04 ± 0.01
0.02–0.05
0.6 ± 0.1

0.05 ± 0.02
0.03–0.06
0.4 ± 0.1

0.03 ± 0.01
0.03–0.04
1.2 ± 0.7

0.04 ± 0.01
0.03–0.04
1.1 ± 0.4

0.04 ± 0.01
0.03–0.05
0.7 ± 0.2

0.002
0.002–0.002

1.0

0.03
0.01–0.04 0.9 ±0.4

SUM n-6
0.217 ± 0.050

0.12–0.26
3.2 ± 0.3

0.31 ± 0.15
0.14–0.46
2.3 ± 0.2

0.15 ± 0.05
0.08–0.19
5.0 ± 1.9

0.13 ± 0.03
0.10–0.16
3.7 ± 0.8

0.20 ± 0.08
0.13–0.30
3.8 ± 0.7

0.01
0.01–0.01

6.6 2.8 ± 0.5

20:5n-3
0.414 ± 0.104

0.21–0.51
6.2 ± 0.6

0.61 ± 0.35
0.28–0.97
4.3 ± 0.8

0.32 ± 0.14
0.15–0.44
10.2 ± 2.7

0.37 ± 0.14
0.25–0.52
10.3 ± 1.1

0.46 ± 0.16
0.27 - 0.65
8.9 ± 0.8

0.013
0.008–0.017

2.6

0.23
0.15–0.36 11.8 ± 4.1

22:6n-3
0.68 ± 0.13
0.42–0.79
10.4 ± 1.6

1.11 ± 0.57
0.61–1.79
8.2 ± 2. 5

0.45 ± 0.19
0.21–0.61
14.2 ± 3.1

0.44 ± 0.16
0.30–0.62
12.1 ± 1.2

0.47 ± 0.16
0.29–0.68
9.1 ± 1.2

0.05
0.04–0.06

6.6

0.53
0.44–0.64 10.2 ± 2.2

Sum n-3
1.54 ± 0.35
0.84–1.84
22.5 ± 3.1

2.44 ± 1.31
1.16–3.97
17.5 ± 3.5

0.96 ± 0.44
0.41–1.33
29.7 ± 5.7

0.96 ± 0.37
0.61–1.36
26.4 ± 3.0

1.27 ± 0.47
0.72–1.86
24.3 ± 1.9

0.039
0.03–0.05

3.3

0.92
0.71–1.25 30.1 ± 6.9

Sum PUFA
1.85 ± 0.41
1.00–2.22
27.1 ± 3.3

2.89 ± 1.52
1.35–4.62
20.8 ± 3.7

1.14 ± 0.49
0.50–1.55
35.6 ± 7.2

1.12 ± 0.42
0.73–1.56
30.9 ± 3.6

1.54 ± 0.57
0.88–2.26
29.5 ± 2.5

0.047
0.03–0.06

24.9 33.7 ± 7.6

* Measurements on individual samples, data from https://sjomatdata.hi.no/#search/. ** Fish oil used for feed production [39].

https://sjomatdata.hi.no/#search/
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Table 5. Potential contribution (%) of selected micronutrients to recommended intake (RI) in women
from a serving of 50 g mesopelagic species in comparison to cod, salmon, sprat, beef, pork and chicken,
and the potential doses of daily RI for women per km3 fjord.

Potential contribution to
RI (%) Iodine Calcium Iron Zinc Selenium Vitamin

A1
Vitamin

D3

RI a 150 µg 800 mg 15 mg 7 mg 50 µg 700 RE 10 µg
Benthosema glaciale 14 31 4 6 61 117 <LOQ
Maurolicus muelleri 9 34 5 8 44 73 <LOQ

M. norvegica 40 41 7 7 101 5 <LOQ
Pasiphaea sp. 15 40 1 6 43 1 <LOQ

Eusergestes arcticus 39 33 1 13 52 3 <LOQ
Periphylla periphylla 1 3 0 8 4 0 <LOQ

Salmon filet (Salmo salar) 1 0 1 3 17 - 43
Cod filet (Gadus morhua) 63 * - 0 3 25 1 -
Sprat (Sprattus sprattus) 2 - 6 15 36 - -

Pork 0 0 3 13 6 0 0
Chicken b 0 1 2 11 12 1 0

Beef 1 0 8 29 6 0 0
No of daily doses of RI

from mesopelagic species/
km3 fjord c

169,000 353,000 31,800 87,300 591,000 348,000 -

RE = retinol equivalent; a RI: recommended intake, values according to [39]. Values for Salmo salar and Gadus morhua
are from the seafood database (https://sjomatdata.hi.no/#search/). No data on calcium and vitamin D in Gadus morhua,
and vitamin A1 in Salmo salar, in the seafood database. The values in Salmo salar represents farmed salmon. Value
from pork, chicken and beef from the Norwegian food database (https://www.matvaretabellen.no/?language=en).
For vitamin A, 1µg retinol (A1) = 1 retinol equivalent (RE). LOQ for vitamin D < 1 µg. b Chicken, thigh, no skin,
raw. c calculated from [39]. * Value from [40].

3.3. Potential Contribution to Combat Micronutrient Deficiency

The mesopelagic species investigated here are nutrient dense for several important micronutrients
relevant for global food and feed security. According to recommended intake (RI) for adult women,
consuming 50 gram of the shrimp E. arcticus and krill M. norvegica (raw) will provide >30% of RI
for iodine, calcium and selenium, whereas 50 gram of the shrimp Pasiphaea and the two fish species
B. glaciale and M. muelleri will provide >30% of RI for calcium and selenium (Table 5). The estimates
of biomass density in Oster- and Bjørnafjorden of the six species presented here give an average of
312 tonnes WW/km3 of jellies, and 26 tonnes WW/km3 of the other five species (Figure 2). Based on
these estimates, 1 km3 of fjord contain huge potential amounts of protein, fat and several micronutrients
(Supplementary Table S1). One cubic kilometer has the potential to provide about 169,000 daily
“doses” of the recommended intake of iodine, 591,000 doses RI of selenium, 31,800 doses RI of iron and
87,300 doses RI of zinc (Table 5).

The mesopelagic fish species presented here are comparable to sprat, a small dietary fish, both in
nutritional content (Table 5) and appearance (Supplementary Figure S1).

3.4. Potential Contribution to Aquaculture Compared to Commercially Available Marine Feed Ingredients

Fish meal is the main source of macro- and microminerals of all feed ingredients used in
commercial aquaculture diets. The mineral content in the mesopelagic species presented here
(Table 3) are comparable to industry fishes such as Blue whiting and capelin (Mallotus villosus,
https://sjomatdata.hi.no/#search/). Our calculations of minerals in the protein fraction (Supplementary
Table S2) show that the mesopelagic species without jellies are as mineral dense as common commercially
available fish meal [41]. Today, iron, zinc and selenium are generally added as premixes to commercial
Norwegian salmonid diets due to the high content of terrestrial feed ingredients. However, for novel
marine feed ingredients and their potential contribution to aquaculture, in addition to their nutrient
content, nutrient bioavailability should always be evaluated.

https://sjomatdata.hi.no/#search/
https://www.matvaretabellen.no/?language=en
https://sjomatdata.hi.no/#search/
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4. Discussion

Here, the nutrient composition of six mesopelagic species from Norwegian fjords is discussed and
their contribution to global food and feed security evaluated. The worldwide biomass of mesopelagic
fish based on trawl catches was estimated at about 1000 million tons [20,42]. However, acoustic surveys
indicate this to be an underestimate of at least one order of magnitude [21], possibly due to trawl
avoidance [22]. Mesopelagic communities are observed acoustically worldwide as deep-scattering
layers, performing varying degrees of diel vertical migrations [38]. The fish species B. glaciale and
M. muelleri belong to the families Myctophidae and Sternoptychidae, respectively, which both have
a worldwide distribution comprising more than 300 different species combined [42]. In addition to
mesopelagic fishes, the mesopelagic community remains poorly understood [43,44], but comprise
significant quantities of pelagic shrimps, euphausiids, squids and jellies [45–47]. A future fishery
targeting the mesopelagic layers might be a mixed fishery where the catch will comprise of different
species making up the mesopelagic community, and knowledge about the community composition
and the nutritional contents will be needed.

Alleviating different forms of hunger effectively requires political commitment and strategies
that go beyond conventional health and nutrition systems, and this has been on the agenda since
early 1990s. Micronutrient malnutrition affects health, but also impacts socioeconomic development,
learning abilities and productivity [48]. Food-based strategies including diet diversity (promoting
foods that are naturally rich in micronutrients) is one of the most sustainable solutions [49]. To reduce
the prevalence of hidden hunger and the triple burden of malnutrition, multiple sectors, such as
agriculture, health, nutrition and the environment, should be involved, aiming to improve people’s
diets in a sustainable manner [1]. Sustainability studies regarding seafood often lack consideration of
either nutritional or health aspects of the products in question [50]. Most seafoods are preferable from
a climate perspective compared to pork and especially beef [50]. Characterizing the nutritional content
of the mesopelagic community will add valuable data to better understand the relative nutritional
benefits of foods from the ocean. Such information can enable the transition towards more healthy
and sustainable diets and ensure food and feed security, and work towards achieving several of the
UN Sustainable Developmental Goals to end hunger and secure safe, nutritious and sufficient food
(SDG 2), ensure good health (SDG 3) and conserve and sustainably use the oceans, seas and marine
resources for sustainable development (SDG 14).

The high content of several important minerals in the mesopelagic species (Table 3) may be
naturally attributed to various parts of the specimen present. Both fish species were analyzed with
head and viscera, which may explain the high levels of vitamin A1 (Table 3). In Amblypharyngodon
mola, a small indigenous fish commonly consumed whole in Bangladesh, 90% of vitamin A was found
in the eyes and viscera [51,52]. Vitamin A deficiency is a leading cause of preventable blindness
in children and is a public health problem in many African and South-East Asian countries [53].
A serving of 50 gram of the two lantern fish species B. glaciale and M. muelleri (raw) provide 117%
and 73% of recommended intake of vitamin A in women, respectively (Table 5). The amount of these
fish species in the two investigated Norwegian fjords has the potential to provide approximately
348,000 daily doses of vitamin A for women per km3. Lanternfish are found in various locations around
the world [54,55]. If other mesopelagic fish species contain similar levels of vitamin A as B. glaciale and
M. muelleri, these species may be an effective way to supplement the diet with vitamin A in low-income
countries. All data presented here are from whole, raw specimens. Processing might affect the amount
of micronutrients [56,57]. Thus, further studies are needed to investigate the impact of processing on
micronutrient content in the mesopelagic species presented here.

Micronutrient deficiency in vulnerable stages of life can affect both physical and mental health.
Iodine deficiency is one the main causes of impaired cognitive development in children [58].
In Norway [59,60] and other European countries [61], pregnant women have suboptimal iodine
status, which may affect infant development [62–64]. Inadequate iodine intake was observed in various
subgroups such as women at childbearing age, the elderly and vegans [65] and pregnant women [60,65].
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Also, the risk of suboptimal usual iodine intakes among children and adolescents varies with age, sex,
maternal educational level and area of residence [66]. Consuming 50 g of several of the mesopelagic
species (raw) may contribute to 15%–40% of the recommended intake of iodine (Table 5).

All the mesopelagic species, except the jellyfish Periphylla, contained high amounts of calcium.
Calcium from small, soft-boned species commonly eaten whole is as efficiently absorbed as from milk,
making them an important source of calcium, especially in developing countries where milk intake is
low and small fish are part of the everyday diet [67,68].

The level of iron in the mesopelagic species presented here would potentially contribute to 1%–7%
of RI in adult women (Table 5). Dietary iron from locally available small marine fish contributes
to food-based strategies to reduce the risk of iron deficiency in rural Cambodians [57]. Small
nutrient-dense fish are important for food and nutrition security and could contribute to fighting iron
deficiency, especially in vulnerable groups [67,68]. Fish also enhance the bioavailability of iron and
zinc, especially from cereal- and legume-based meals [10–13]. Iron deficiency is the most common
nutritional disorder worldwide [69], and anemia due to iron deficiency is associated with significantly
lower scores in cognitive and educational achievement tests in school-aged children, and lower work
productivity in adults [69]. Based on biomass estimations, there is a large potential for iron and zinc
(31,800 and 87,300 daily doses of RI per km3, respectively, Table 5) from mesopelagic species in the
investigated fjords.

In contrast to commercially available fish oils, the mesopelagic species contained higher amounts
of DHA compared to EPA (Table 4), also found in the lantern fish B. pterotum from the Gulf of Oman [55]
and krill (Euphausia superba) [56]. The amount of monounsaturated fatty acids was high in the lantern
fish species (Table 5), of which cetoleic acid (22:1n-11) was especially high. This fatty acid is also
found in high amounts in herring [70,71], capelin and sand eels [72]. A herring diet and herring oil
counteracted the negative metabolic effects in rats induced by a high-fat, high-sugar diet, probably
due to the lipid composition being rich in EPA, DHA, cetoleic acid and gadoleic acid (20:1n-11) [71].
A recent study found that supplementation with saury oil, a fish oil high in gadoleic acid and cetoleic
acid, improved plasma lipids in healthy subjects, indicating that there are other nutritional components
besides EPA and DHA in fish which are important for cardiovascular health [73].

The high content of wax esters in B. glaciale and E. arcticus may affect the lipid profile of these
species (Table 4). Compared to triacylglycerol, wax esters are considered to be less bioaccessible due to
poorer digestibility in both mammals [74] and Atlantic salmon [75]. However, fatty alcohols may be
oxidized [76] and hydrolyzed [77] in the digestive tract of rodents and can therefore not completely be
ignored as a nutrient. It is not known if it is the digestion, absorption, elongation or oxidation of wax
esters that may regulate their nutritional value [77].

In addition to a potential as a nutrient-dense food source (Supplementary Figure S2), the large
biomass of mesopelagic species may also be used as feed ingredients in aquaculture. Already, studies
have shown that cetoleic acid, which is especially high in lantern fish species, stimulates the capacity
of human and salmon cells to produce EPA and DHA, and enhance the retention of EPA and DHA
in Atlantic salmon [72]. One key challenge for sustainable aquaculture development is sufficient
feed ingredients that can produce healthy and robust fish [17,78,79]. Currently, Norwegian farmed
salmon are fed more than 70% plant feed ingredients on average [80], with similar levels in Chile,
Canada and Australia, while Scotland salmon diets contain slightly higher levels of marine feed
ingredients [81]. This blue green shift has changed the dietary supply and availability of marine
lipid soluble nutrients [82] and micro-minerals [83–85]. The potential of using oil or meal from the
mesopelagic biomass could be one of the solutions to secure sufficient and nutritious feed for the
aquaculture industry. The use of mesopelagic biomass as a feed ingredient in aquaculture would
depend on several factors, such as the level of legacy undesirables [86], the nutrient bioavailability and
the nutrient composition in processed oil and meal products. The mesopelagic species presented here,
and mesopelagic fish especially, are comparable, and even more nutrient dense for some nutrients such
as iodine and calcium (Table 3), fat content (Table 2), and several fatty acids such as gadoleic acid, cetoleic
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acid, EPA and DHA (Table 4), compared with the Blue whiting commonly used for the production of
fishmeal and fish oil. Yearly catches of Blue whiting are approximately 400,000 tons in Norway (https:
//www.fiskeridir.no/Yrkesfiske/Tall-og-analyse/Fangst-og-kvoter/Fangst/Fangst-fordelt-paa-art).

Small fish consumed whole including the head and viscera are already part of multiple food
cultures [52,87,88], which probably also will apply to most mesopelagic species being of a small size.
Food-based approaches to tackle micronutrient deficiencies improve the overall quality of a diet
compared to micronutrient supplementation, which is unlikely to ensure a sustainable improvement
of diets worldwide [1]. The data presented here are important in order to make fisheries policy more
nutrition sensitive [89], and we need reliable and high-quality representative data regarding nutrient
content of food from the ocean. Although the Nordic countries benefit from a safe and sufficient food
supply [90], unhealthy diets are a leading risk factor for poor health. Nordic food systems have not
been able to reduce the negative development in non-communicable nutrition-related diseases and
put pressure on the environment domestically and abroad [89]. Norway and many other countries
have food-based dietary guidelines adapted to their nutrition status, food availability, culinary culture
and eating habits [91], but we need to make the guidelines more nutrition-sensitive. Mesopelagic
species may contribute to achieve nutrition-sensitive food system as nutrient-dense food sources either
directly as food or indirectly as feed ingredients. As a next step, it has to be evaluated how this new
resource can be exploited in a sustainable manner.

All data presented in this paper were analyzed at a national reference laboratory using accredited
methods, except for fatty acids analysis. The analytical data reported here are an important contribution
to the insight into nutrient content of mesopelagic species that may be an important food and feed source
in the future. Since the here applied crude protein method is somewhat uncertain due to the assumption
that all measured nitrogen comes from protein and a standard amino acid composition, in future
studies, the amino acid profile should be considered for calculating the true protein content [92,93].
The species presented here represent the majority of the mesopelagic biomass in three fjords in western
Norway. However, many species, such as lanternfish and krill, are also found worldwide, making the
data relevant in a global perspective.

In the present work, the nutrient composition is presented at the species level. Catches of
mesopelagic species can vary tremendously in terms of species composition. Our data show a large
variation in nutrient composition of the species. Accordingly, the nutrient profiles of the catches will
also vary. The commercial mesopelagic fishery is still in an early stage and, presently, it cannot be
foreseen what the main use of the resource will be. There might be a targeted fishery for some more
valuable species, or it might be catching a bulk biomass for processing. Either way, species-specific
data is particularly valuable to predict the nutrient profile of a catch, given some information on the
species composition of the catch.

We are aware that mesopelagic fish can contain anti-nutrients that may lead to unfavorable and
potentially adverse effects for farmed fish and humans [86,94], and levels of contaminants in the species
presented here ([86,94,95], Wiech et al. in prep) that may limit the use for human consumption and
as feed ingredients, but that is outside the scope of this paper. The data presented here are based on
samples from a single research cruise and the nutrient content of the species may vary according to
factors including season, inter-annual fluctuations, fish size and fishing equipment. Olsen et al. [95],
however, found no pronounced effect of season on different nutrient levels, while size affected the
fat content.

5. Conclusions

In this study, six mesopelagic species from three fjords in Western Norway were investigated for
nutritional composition and evaluated in terms of food and feed security. Small fish eaten whole have
potential as a nutrient-dense animal source, both contributing with micronutrients and enhancing
bioavailability from vegetable sources. Several of the mesopelagic species were nutrient-dense,
containing high levels of vitamin A1, calcium, selenium, iodine, EPA and DHA. Due to a large

https://www.fiskeridir.no/Yrkesfiske/Tall-og-analyse/Fangst-og-kvoter/Fangst/Fangst-fordelt-paa-art
https://www.fiskeridir.no/Yrkesfiske/Tall-og-analyse/Fangst-og-kvoter/Fangst/Fangst-fordelt-paa-art
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biomass, mesopelagic species, as marine-based proteins and a source of micronutrients, may contribute
significantly to global food and feed security, if harvested and managed sustainably.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/3/344/s1,
Figure S1: The mesopelagic fish species silvery lightfish (Maurolicus muelleri, bottom) is similar to sprat (Sprattus
sprattus, top), a commonly consumed fish, both in appearance and nutrient composition. Both fish were caught in
the same catch. Photo by Martin Wiech, Figure S2: Dietary potential of mesopelagic biomass. Several mesopelagic
species as sandwich spread. Photo by Martin Wiech, Table S1: Potential amount of protein, fat and selected
micronutrients in six mesopelagic species per km3 of Oster- and Bjørnafjorden in Norway, Table S2: Potential
amount of selected macrominerals (Ca, Na, K, Mg, P) and micronutrients in the protein (Fe, Zn, Se) and in oil
fraction (vitamin A1) from six mesopelagic species of Oster- and Bjørnafjorden in Norway on wet weight basis,
Table S3: Relative amounts of wax esters in B. glaciale and E. arcticus, Video S1: Sorting of trawl catch.
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