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A further growth in the Norwegian aquaculture industry might potentially be hampered by the conclusion that it is not environmentally sus-
tainable. As direct measurements of the lice induced mortality on wild salmonids are impossible, the management is based on a set of high-
quality and well-documented sustainability indicators. These indicators combine observations from the national Norwegian salmon lice moni-
toring programme with salmon lice models. Here, we have documented the quality of one of these models used to identify areas where the
impact from farmed to wild salmonids is over the prescribed limit. The Hardangerfjord area has been used as a test area, but the model is gen-
eral and, therefore, suitable for the rest of the coast. It is shown that the model system is robust and also can be used to test whether new
knowledge gained from laboratory experiments improves the model. New findings on salmon lice behaviour at low salinities have been incor-
porated and the new model, consisting of a high-resolution hydrodynamic model coupled with an individual-based salmon lice model and
forced with realistic input of salmon lice larvae from aquaculture farms, represents the best realization of the local potential infestation pres-
sure on wild fish.
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Introduction
Norway is one of the largest producers of Atlantic salmon in the

world; however, the production volume has stagnated around the

2012-level of approximately 1.2 million tons (Statistics Norway,

https://www.ssb.no/fiskeoppdrett, last accessed 24 December 2019).

The political ambition is to increase the aquaculture production to

5 million tons in 2050, presuming an environmentally sustainable

production. Salmon louse has been identified as one of the main

risk factors for a further increase in salmon farming in Norway

(Taranger et al., 2015). Lice epidemics are assumed to reduce popu-

lations of wild salmonids in large geographical areas (Skilbrei et al.,

2013; Serra-Llinares et al. 2014; Vollset et al., 2014, 2017; Taranger

et al., 2015; Thorstad et al., 2015; Anonymous, 2015), and therefore,

limiting Norway’s ability to fulfil its responsibility for the conserva-

tion of wild salmon stocks (Convention for the Conservation of

Salmon in the North Atlantic Ocean, 1982, www.nasco.int/conven

tion.html and the law of nature biodiversity §8).

The Norwegian government has, therefore, implemented a

management system using traffic lights (green–yellow–red) to

control the growth in an environmentally sustainable way

(Vollset et al., 2017; Myksvoll et al., 2018). So far, the only indica-

tor for sustainability is the effect of parasitic salmon lice, released

from salmon farms, on the mortality of wild salmonid fish. The

entire Norwegian coast is divided into 13 production areas and

based on the indicator, each area is classified as high (red), mod-

erate (yellow), or low (green) risk of salmon lice induced mortal-

ity on wild fish. The assessment is done bi-annually by an expert

group, and the consequence for production is either 6% reduc-

tion (red), freeze (yellow), or 6% growth (green). The quality-

controlled advice provided by the expert group includes several

data and model sources, providing a knowledge-based foundation

for the management authorities to make a decision. This manage-

ment system was applied for the first time in 2017 and will be

fully implemented in 2019, also including the possibility for a
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reduction in production, which will have major implications for

the aquaculture industry.Salmon louse (Lepeophtheirus salmonis)

is a natural ectoparasite, which needs a salmonid fish [in

Norwegian water: Atlantic salmon (Salmo salar), Sea trout

(Salmo trutta), and Arctic charr (Salvelinus alpinus)] to repro-

duce. Salmon farming in open cages has increased the host den-

sity substantially, which in turn affects the salmon lice population

dynamics (Jansen et al., 2012). The infestation pressure caused by

salmon lice is several orders of magnitude higher in farm inten-

sive areas compared to farm-free areas. Salmon lice hatch directly

into the water masses and develop through two naupliar stages

before they become infective copepodids and remain pelagic until

they find a host. The nauplii become infective copepodids after

40 degree-days and die after 170 degree-days if they are not suc-

cessful in finding a host (Samsing et al., 2016). The lice are trans-

ported long distances during the pelagic phase (Asplin et al.,

2014), and they can adjust their vertical positioning depending

on external stimuli (Johnsen et al., 2014, 2016; Crosbie et al.,

2019). To successfully estimate the salmon lice pressure on wild

and farmed salmonids, we need a good and knowledge-based un-

derstanding of the environmental parameters that influence the

distribution of the planktonic stages of lice in the water column.

Several studies have been performed during the last years, and re-

cently new knowledge on the influence of low salinity and salinity

gradients was achieved by Crosbie et al. (2019).

Hydrodynamic models are widely used tools for dispersion of

planktonic matter and waterborne infection, like salmon lice

(Gillibrand and Willis, 2007; Salama et al., 2013; Asplin et al.,

2014; Johnsen et al., 2014, 2016; Sandvik et al., 2016; Myksvoll

et al., 2018). The main advantages with these types of models are

their high spatial and temporal resolution. The Institute of

Marine Research (IMR) has developed a national operational

model that quantifies the number of infective salmon lice with

high resolution in both space and time through the coupling of a

state-of-the-art hydrodynamic model to a particle tracking

model, capable of simulating pelagic salmon lice behaviour

(Asplin et al., 2004, 2011, 2014; Johnsen et al., 2014; Sandvik

et al., 2016; Myksvoll et al., 2018). Such models are particularly

suitable for computation of salmon lice infection pressure, since

the source of salmon lice is assumed to be known as the total

number of fish is reported monthly and the number of adult fe-

male lice and the temperature are reported weekly by all active

salmon farms in Norway [formula given by Stien et al. (2005) for

details]. The model system was validated through a comparison

with lice in sentinel cages in Sandvik et al. (2016). By nature, hy-

drodynamic models are simulating the dispersion and advection

of particles such as salmon lice, giving their density or concentra-

tion in the water masses. It is, therefore, an extra challenge to

compare the direct model results (dose) to an indirect observa-

tion such as lice on fish in the sentinel cages (response) without

having exact information on the dose–response relationship. To

overcome the problem of model validation in such cases, new

methods, from numerical weather prediction, such as fuzzy verifi-

cation has been developed (Ebert 2008) and used (Sandvik et al.,

2016). The main purpose with operating such a complex model is

to provide a warning system to the government on areas with ele-

vated lice infestation pressure. Sandvik et al. (2016) developed a

binary forecast system that “translates” the direct model output,

being copepodids per metre square, into high and low lice densi-

ties based on observations in sentinel cages. This forecast system

provides the opportunity to monitor the entire Norwegian coast

operationally and efficiently, highlighting areas of elevated infes-

tation pressure, where there is a higher risk for being classified as

a red zone according to the traffic-light management system.

High-quality observations of salmon lice directly in the water

masses are hampered by both the spatial and temporal heteroge-

neity in planktonic matter induced by patchiness due to high

concentrations in fronts and eddies (Martin 2003; Lévy et al.,

2018). Skarðhamar et al. (2019) and refs therein have shown rela-

tively low abundance of salmon lice (typically less than one ind.

m�3), in accordance with published concentrations of salmon lice

in Scottish and Faeroes open waters, compared to other species of

similar size range (Penston et al., 2004, 2011; á Nordi et al., 2015,

2016). The methods for direct sampling, therefore, need to be

substantially improved before this can be considered as a suitable

method for monitoring. Indirect measurements of lice attached

to wild salmonids and smolts in sentinel cages have traditionally

been the observational part of the Norwegian salmon lice moni-

toring programme. Whilst cages are deployed at known times

and locations, wild fish data are hampered with uncertainties

both in time and space. Thus, counting of salmon lice on smolts

in sentinel cages is used as a proxy for lice infestation pressure on

wild salmonid fish in the present work. We have used data from

lice on fish in sentinel cages for the years 2012–2017 to calibrate

the modelled salmon lice density in the Hardangerfjord.

In the present study, the main objective was to document the

quality and the set-up of an operational modelling system, which

is one of the main components of the “Traffic-light system”. The

binary forecast system proposed in Sandvik et al. (2016) has been

further developed and constitute now of three categories (green,

yellow, and red). In addition, the method is a suitable tool to in-

vestigate whether new knowledge gained from, for example, em-

pirical, laboratory, or field studies will improve the model

product when implemented in the model. This has been exempli-

fied through the implementation of the results from a recent pub-

lication by Crosbie et al. (2019), that showed a gradual avoidance

of the salmon lice from low saline water.

The robustness of the method has been investigated through a

cross-validation (CV) scheme. This is a further development of

the method presented in Sandvik et al. (2016), where data from

2012 to 2014 were used to make the model, and data from 2015

were used for validation. Observations from the Hardangerfjord

on the Norwegian west coast have been used to parameterize the

method, but the new forecasting system is general, and the find-

ings can be transferred to other areas along the Norwegian coast.

Material and methods
Study area
The long and branched Hardangerfjord is located in western

Norway, south of Bergen (Figure 1). It stretches 179 km from the

coast into the mountainous interior of Norway. The sill depth is

about 170 m, and the fjord has several deep basins with a maxi-

mum depth of 850 m. Because the Hardangerfjord system consists

of a number of large and small fjord arms and has several connec-

tions to the open sea, the current pattern is relatively complicated

with large spatial and temporal variability. A detailed description

of the fjord physics (currents, temperature, and salinity) can be

found in Asplin et al. (2014) and Johnsen et al. (2014).
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Release of salmon lice from fish farms
There are around 100 salmon/salmonid farms (red dots shown in

Figure 1) in the Hardangerfjord system, producing �80 000 tons

of salmon annually (www.fiskeridirektoratet.no).

The adult female sea louse extrudes a pair of egg strings and

the planktonic nauplii stages hatch directly into the water col-

umn. The number of hatched lice larvae (nauplie) has been calcu-

lated using formula in Stien et al. (2005), and numbers of fish,

female lice, and water temperature have been made available

from all salmon farms along the Norwegian coast. More details

on this calculation can be found in Myksvoll et al. (2018). As dis-

cussed in Sandvik et al. (2016) and Myksvoll et al. (2018), the ob-

served temperature and number of female lice are reported

weekly by Tuesday the following week, while the number of fish

in the farms is reported monthly. Thus, there is a temporal uncer-

tainty in calculations of the number of salmon lice larvae released

into the water masses, which has to be taken into account in the

analysis of the results. The quality of these estimates might suffer

from both the coarse and imprecise time resolution, as well as the

uncertainty in the lice counts and the temperature, which is taken

from only one depth in the cages.

Observation by sentinel cages
Sentinel cages stocked with hatchery-reared Atlantic salmon

smolts were used to gather independent observational data of

salmon lice infestation pressure in different parts of the

Hardangerfjord system.

During a 6-year (2012�2017) study period, 18 sentinel cages

(diameter 0.8 m, height 0.9 m, covered with a knotless mesh

1� 1 cm) were deployed annually at 0.5 m depth at fixed loca-

tions along the fjord (see Figure 1, left panel). The methodology

for the mooring system is described by Bjørn et al. (2011) and has

also been used in Scotland (Salama et al., 2013; Pert et al., 2014).

The cages are assumed to give an integrated measure of the local

lice infestation pressure over the period of their deployment. Two

consecutive trials were performed in 2012–2013 and three trials

in 2014–2017 (Sandvik et al., 2016). In each trial, 30 salmon

smolts were placed in each of the sentinel cages and kept at sea

for �3 (or 2) weeks at a time (Table 1), after which all fish were

gently removed from the cages, euthanized by an overdose of an-

aesthetic (MS-222), placed in individual plastic bags and kept on

ice until inspected for lice at the laboratory within the following

48 h. In the laboratory, the salmon lice were identified and

counted on a morphological basis according to Johnson and

Albright (1991); Schram (1993), and recently also Hamre et al.

(2013). In the following, we have used the mean abundance de-

fined as total number of lice divided by the total number of fish

as a measure of the infestation level in the cage. This was assumed

to be the most suitable metrics for the coarse-scale classification

of infestation pressure used in the following. Due to the uncer-

tainty of the observational date of the reported numbers of fish

and lice per fish in the fish farms, which only refer to week num-

ber (not date), we consider a trial length of 2 weeks to be too

short. In the analysis, we have, therefore, combined the two last

trial periods in 2014–2017 (Sandvik et al., 2016). This resulted in

216 data points from the observations by sentinel cages. Thirty-

four of these possible observations were not used. Cage number

12 was omitted as it was placed in a narrow part of the fjord not

resolved by the model (800 m horizontal resolution), and in addi-

tion, 22 observations were rejected in cases where the cage was

not deployed or due to technical problems with the cage. A fre-

quency diagram of the remaining valid observations is shown in

the right panel of Figure 1.

Based on extensive experience and field observations of lice

abundance in hatchery-reared and sentinel-caged smolts over sev-

eral years and large areas along the coastline (Asplin et al., 2011;

Bjørn et al., 2011, 2012, 2013; Nilsen et al., 2014; Karlsen et al.,

2015; Svåsand et al., 2016), the sentinel cage infestation have been

divided into four classes as low (0–1 louse per fish), moderate

(1–5 lice per fish), medium (5–10 lice per fish), and high (>10

lice per fish). To better reflect the classes used in the traffic-light

system (low, medium, and high), classes 2 and 3 have been
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Figure 1. Map showing position and numbering of the 18 sentinel cages in the Hardangerfjord (left) and frequency diagram of the
observations (mean abundance in the 216 cages; right).
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merged in the present study, thus 10 lice per fish is used to clas-

sify the limit of high infestation pressure and 1 louse per fish is

used to separate low and medium infestation pressure.

Salmon lice dispersion model
The salmon lice advection and growth model is based on the

Lagrangian Advection and Diffusion Model (LADiM; Ådlandsvik,

2019). Physical forcing fields (three-dimensional currents and hy-

drography) are provided by the ocean model system NorKyst800

(Albretsen et al., 2011), based on the Regional Ocean Modelling

System (ROMS, www.myroms.org; Shchepetkin and McWilliams

2005; Haidvogel et al., 2008). The horizontal quadratic grid cell

size is 800� 800 m, and realistic forcing of the ocean model from

atmosphere, tides, and rivers are included as described by Asplin

et al. (2014) and Johnsen et al. (2014).

The vertical distribution of the lice larvae might have a large

influence on the horizontal distribution (Heuch 1995; Johnsen

et al., 2014). The larvae are known to have a vertical behaviour

where they swim up towards the surface light and downwards to

avoid low-salinity water (Bron et al., 1991; Heuch 1995; Heuch

et al., 1995; Flamarique et al., 2000). To mimic the drift of the

three planktonic salmon louse stages (the two non-infective nau-

plius I and II and the infective copepodid), four different parame-

terizations of this vertical behaviour as a function of salinity and

stage have been tested. In all experiments, a vertical swimming

speed of 0.5 mm s-1 directed upwards towards the surface when

the light level exceeds a critical level of 2� 10�5 mmol photon

s�1 m�2 (nauplii) and 0.392 mmol photon s�1 m�2 (copepodid)

was used (Johnsen et al., 2014). When exposed to low-salinity lev-

els and light conditions, the low-salinity avoidance was assumed

to be the strongest trigger, and the lice swam down according to:

(A1) Downward swimming of all lice when the salinity <20

[identical to Sandvik et al. (2016)]

(A2) Downward swimming of all lice when the salinity <25.

(A3) Downward swimming of gradually more lice as the salinity

is in the range between 23 and 31 [probability decreasing

linearly from 1 (all swimming downward) when the salinity

is <23 to 0 (none swimming downward) when the salinity

is >32, based on laboratory experiments described in

Crosbie et al. (2019)]

(A4) As A3 but adding that for the nauplii stages they are all swim-

ming downward when the salinity is <34 (Crosbie et al., 2019).

Horizontally, the salmon lice larvae passively drift with the cur-

rents (Asplin et al., 2014; Johnsen et al., 2014). The biology and

life history of the lice are handled with an individual-based model

(IBM) using the super-individual (SI) approach (Scheffer et al.,

1995). The growth of an individual louse is purely temperature-

dependent and is parameterized as a function of degree-days.

Following Samsing et al. (2016), we assume the infective copepo-

did stage to be between 40 and 170 degree-days. The model is ini-

tiated without any salmon lice, while new louse SIs are added

hourly as nauplii at a rate of 5 SI/farm/hour with the internal

number of each SI scaled to represent the reported egg numbers

that week. The lice mortality is assumed to be constant in time

and space at 17% per day (Stien et al., 2005). The model output

consists of hourly fields of spatial distribution and density of

salmon lice copepodids in the sea.

Relative operating characteristic
For discontinuous fields with high spatiotemporal variability and

a skewed distribution, commonly used measures such as root

mean square difference and correlation coefficients can give poor

scores even if both intensity and area extent are correct but are

slightly displaced in space and/or time (e.g. Ebert, 2008). For

skewed distributions, extreme values will also have undue influ-

ence on the values of standard measurements. For multi-

categorical data series that are not normally distributed, the prob-

ability of detection (POD) is a robust and well-suited estimate of

the forecast skill (Wilks, 1995). POD is defined as the number of

events correctly forecasted divided by the total number of events.

However, to give a measure of the quality of a forecast it is better

to combine the hit rate with the false alarm rate. The hit rate, H,

for a random binary forecast (categorical forecast with only two

categories) which, for example, is the case if we only consider the

risk of salmon lice density above a given threshold, is the number

of such predicted values divided by the number of observed ones.

The false alarm rate, F, is defined as the number of events pre-

dicted but not confirmed by observations, divided by the total

number of events predicted. Both of them can take any value be-

tween 0 and 1. In such a binary forecast system (Table 2), these

ratios simply become: POD ¼ aþ d
aþ bþ cþ d

; H ¼ a
aþ c

and

F ¼ b
bþ d

.

The relative operating characteristic (ROC) is a graph of H

against F for different decision thresholds (Mason, 2003).

Assuming a binary forecast system, the ROC becomes a pure in-

dex of accuracy that gives quantitative estimates of the probabili-

ties of forecast outcomes for any decision threshold that the

system might use, and the trade-offs between these probabilities

as the decision threshold varies. An empirical ROC can be plotted

from forecasts of elevated density by stepping through different

forecast systems, each system generating a 2� 2 contingency table

(Table 2) and values of H and F (Mason, 1982). For a forecast

system with zero skill, H¼ F, while in a perfect system, H¼ 1 and

Table 1. Time periods for sentinel cages deployed in the
Hardangerfjord 2012–2017.

Year Period 1 (P1) Period 2 (P2) Period (P3)

2012 8/5–29/5 29/5–20/6 –
2013 13/5–5/6 5/6–26/6 –
2014 8/5–22/5 22/5–5/6 5/6–21/6
2015 12/5–27/5 27/5–9/6 9/6–23/6
2016 11/5–24/5 24/5–7/6 7/6–20/6
2017 8/5–23/5 23/5–6/6 6/6–21/6

Table 2. Schematic contingency table for categorical forecasts of a
binary event.

Forecast

Observed

Yes No Total

Yes a b a þ b
No c d c þ d
Total a þ c b þ d a þ b þ c þ d ¼ n

The numbers of observations in each category are represented by a, b, c, and
d, and n is the total. Redrawn from Mason (2003).
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F¼ 0. The score of the ROC can be defined as the distance be-

tween the perfect solution and the actual solution. In the present

work, the score of the ROC has been defined using the 2-norm:

ROCscore ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�HÞ2 þ F2

q
, where a perfect solution is recog-

nized when ROCscore ¼ 0.

We used the ROC score to test whether the model was capable

of correctly predicting high lice infestation levels in sentinel cages.

Two binary classification schemes were used. In the first classifi-

cation scheme, high infestation level was defined as more than 10

lice per fish, and in the second scheme, the limit was set to 1 louse

per fish. These limits coincide with those used by the Norwegian

traffic-light system to distinguish between low, intermediate, and

high infestation level.

To obtain a binary forecast from the modelled sea lice concen-

tration keeping in mind the natural patchiness of the salmon lice

field, we first computed the time-averaged lice concentration in

the upper 2 m of all nine grid cells (3 � 3) surrounding each cage.

A high infestation level was predicted if at least N of the nine grid

cells exceeded a threshold value of R (lice m-2), where N and R

are adjustable parameters. We computed the hit rate H and false

alarm rate F for variable combinations of N and R. The combina-

tion that yielded a minimum ROC score was selected as the opti-

mal threshold values. This was repeated for each of the four low-

salinity avoidance models (A1–A4) described above.

Results
We first present the results for the binary classification scheme

where 10 lice per fish were used as the limit between observed

high and low lice abundance. Using the 2012�2017 observations

and the corresponding model fields, H and F were computed for

all combinations of threshold parameters R and N, and several

sub-optimal (H� 1, F� 0) solutions were found. The 34 NA

observations were excluded from the analysis.

Using the four different vertical behaviour algorithms, details

for the best resulting integration methods from the ROC are

listed in Table 3 as A1–A4, and their performance is also shown

in the left panel of Figure 2 that illustrates how all methods are

close to the perfect solution (H¼ 1, F¼ 0) in the upper left cor-

ner of the figure. There is a clear improvement of the model per-

formance when including a less restrictive and more detailed

description of the vertical behaviour of the salmon lice larvae as a

function of salinity (A1–A3), while there is a slight decrease when

using an alternative approach for the nauplii stages.

As stated, the ROC is a method to quantify skills from a family

of methods, and how the performance of such methods varies as

a function of different thresholds is illustrated in Table 4 where

nine members of the A3 family is given as S1–S9. In this table, the

best solution, S6, is identical to the best solution, A3, in Table 3.

In the right panel of Figure 2, it is illustrated how all these possi-

ble solutions are close to the perfect solution (H¼ 1, F¼ 0).

However, Table 4 clearly also shows the difference in characteris-

tics between them. With a low lice per metre square threshold,

the model overestimates the number of high values compared to

the sentinel cages (MHCL). This number decreases when increas-

ing this threshold, but the price for this decrease is an increase in

the number of observed high values not given by the model

(MLCH). A similar picture is seen when varying the proportion

of grid cells above the lice per metre square threshold (as exem-

plified with integration methods S4–S6), where the price for a de-

crease in MHCL when increasing this proportion is a

corresponding increase in MLCH. Except for method S9, the

score shows little variations between the methods. The best score

is found for integration method S6, with a proper balance be-

tween the hit rate and the false alarm rate.
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methods. Perfect solution (F¼ 0, H¼ 1) is in the upper left corner at point (0, 1), while the diagonal H¼ F represents zero skill.

Table 3. ROC integration methods (A1–A4) for high infestation
pressure.

R #N/9 Score H F MHCH MHCL MLCH MLCL POD

A1 2.2 7 0.17 0.96 0.17 24 26 1 131 0.85
A2 2.0 9 0.13 0.92 0.10 23 16 2 141 0.90
A3 1.8 9 0.10 0.92 0.06 23 9 2 148 0.94
A4 1.7 7 0.14 0.88 0.07 22 11 3 146 0.92

R denotes threshold level in model field (lice m�2), N denotes the number of
model values above threshold within the 3 � 3¼ 9 matrix, Score is the dis-

tance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Hð Þ2 þ F2

q
to the perfect solution (lowest value is best score), H

is the hit rate and F the false alarm rate, MHCH is the number of cages where
ModelHighCageHigh, etc., while POD is the probability of detection.
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The integration method with the best performance (S6) has a

POD of 0.94 (171 of 182 hits) but predicts high infestation pres-

sure in nine cages where the observed mean abundance is below

10 lice per fish (MHCL) and misses two cages with high infesta-

tion pressure (MLCH). To get a full overview of the hits and

misses, the mean observed lice abundance from all periods and

cages are given in Table 5, together with a colour coding to show

where model and observations disagree. Out of the nine MHCL

data points, 6 observations have a mean lice abundance between

5 and 10 (5 between 6 and 10). These are elevated model points

that are also indicating an observed high lice density from the

sentinel cages. Of the remaining three observations, one observa-

tion in the first period of 2015 and one observation in the second

period of 2016 stands out. These observations are 2.2 and 2.8, re-

spectively, indicating only a low-to-moderate observed lice infes-

tation pressure. The two incidents where the model misses an

observed high infestation pressure are cage number 14 in the

second period of 2015 and cage number 2 in the second period of

2017.

The traffic-light system separates into three different classes,

and 1 louse per fish is used to distinguish between observed low

and medium lice infestation pressure from the sentinel cages. In a

similar way, an ROC can be developed using this as the limit in a

binary forecast. Repeating the same procedure for all different

algorithms for salinity-dependent vertical behaviour with this

limit gives the integration methods (L1–L4) detailed in Table 6

and the score is shown in Figure 2. The integration method L3

(corresponding to A3) gives a model threshold of 0.7 lice m-2 in

at least 6/9 of the points in the 3 � 3 neighbourhood of each of

the cages. This method has a skill score of 0.32, with H, F, and

POD of 0.70, 0.11, and 0.76, respectively. By combining A3 (S6)

and L3, a model forecast system with three classes (low, moder-

ate, and high) can then be given. Two example maps (period 1 of

2015 and period 2 of 2016) are shown in Figure 3.

Validation of the ROC
The model has a clear predictive skill far from random. This can

be illustrated through a simple experiment with a redistribution

of the cages. By randomly permuting the sequence of cage data

and using the simulated louse distribution from A3, the ROC al-

gorithm has been used to fit the best method (lowest score) and

corresponding hits and false alarms. By repeating this experiment

10 000 times, we get a mean score of 0.66 (H¼ 0.54, F¼ 0.45)

with a minimum score of 0.41 and a maximum score of 0.90. The

full distribution of these scores is shown in Figure 4. The mean

point is marked with a black square in the left panel of Figure 2

together with the standard deviation of H and F. The point is

very close to the “no-skill-line” (H¼ F), showing the predictive

skill of the model.

When constructing an integration method, there is always a

chance that a bad model can gain high skill through a special

Table 4. Example ROC integration methods for high infestation
pressure.

R #N/9 Score H F MHCH MHCL MLCH MLCL POD

S1 1.5 9 0.13 0.92 0.10 23 16 2 141 0.90
S2 1.7 6 0.14 0.92 0.12 23 18 2 139 0.89
S3 1.7 9 0.11 0.92 0.08 23 12 2 145 0.92
S4 1.8 6 0.13 0.92 0.10 23 16 2 141 0.90
S5 1.8 7 0.12 0.92 0.09 23 14 2 143 0.91
S6 1.8 9 0.10 0.92 0.06 23 9 2 148 0.94
S7 1.9 6 0.15 0.88 0.09 22 14 3 143 0.91
S8 1.9 9 0.13 0.88 0.06 22 9 3 148 0.93
S9 2.1 9 0.24 0.76 0.04 19 6 6 151 0.93

R denotes threshold level in model field (lice m�2), N denotes the number of
model values above threshold within the 3 � 3¼ 9 matrix, Score is the dis-
tance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Hð Þ2 þ F2

q
to the perfect solution, H is the hit rate and F the

false alarm rate, MHCH is the number of cases where ModelHighCageHigh,
etc., while POD is the probability of detection.

Table 5. Overview of the mean lice abundance in the sentinel cages used in the analysis.

One row per cage (1–18), and one period per column (2012 period 1 to 2017 period 2). The nine red cells indicate the cages and period where the S6 ROC inte-
gration method in Table 2 proposes a high value while the corresponding observation in the cage indicates a low level (MHCL in Table 2). The two orange cells
are the occurrences where S6 give a low value where the observation indicated a high value (MLCH in Table 2). In the remaining cells, the model and observed
level high/low is the same (MHCH and MLCL) (Colour version of this table is available at ICES Journal of Marine Science online.).
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distribution in the data. Therefore, we also validated our model

using a CV framework (Bergmeir and Benı́tez, 2012). The CV

process randomly splits the data series into two disjoint subsets:

(i) the training subset used to run the ROC procedure to evolve

an integration method to approximate the lice abundance; (ii)

the validation subset used to evaluate the approximation capabil-

ity of the Integration method. Since the validation subset is not

involved in the training phase, the generalization capability of an

Integration method is defined through the error obtained by pre-

dicting the values of the target variable of the validation subset,

and the stability of the parameters in the integration method. As

the observation data used contains both a spatial and a temporal

dimension, the data partition was done through randomization

instead of blocks. The CV was run 10 000 times. Each time 80%

of the observations were chosen randomly to become the training

subset, while the remaining 20% of the observations became the

validation subset. Each time the ROC integration method with

the best score was chosen and used to predict the salmon lice in-

festation pressure and corresponding error statistics using the val-

idation subset. For the selection of integration method, a

threshold of R¼ 1.8 lice m-2 was chosen in 80% of the cases (1.9

in 16%), while the proportion of grid cells above the threshold

(N/9) was 9/9 in 97% and 8/9 in 2.5% of the cases. Mean skill, H,

F, and POD for both the training and validation subset are given

in Table 7. Doing the CV analysis for the low lice abundance (1

louse per fish) conclude that close to 62% of the runs give a

threshold of R¼ 0.7 (31% for 0.5), and 77% gives a fraction (N/

9) of 6/9 (21% for 9/9). Further results for this CV exercise are

also given in Table 7. Through the high stability of the parameters
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Figure 3. Modelled traffic-light forecast (red ¼ high, yellow ¼ moderate, green ¼ low lice infestation pressure) for period 1 in 2015 (left)
and period 2 in 2016 (right). Circles are the position of the cages.
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Figure 4. Probability density function (score vs. frequency) counted
in 0.05 bins for the 10 000 experiments with redistribution of the
cages. For comparison, the vertical dotted line is the score of
integration method A3.

Table 6. ROC integration methods (L1–L4) for low infestation
pressure (1 louse per fish).

R #N/9 Score H F MHCH MHCL MLCH MLCL POD

L1 0.8 6 0.32 0.73 0.16 87 10 33 52 0.76
L2 0.8 6 0.33 0.71 0.16 85 10 35 52 0.75
L3 0.7 6 0.32 0.70 0.11 84 7 36 55 0.76
L4 0.5 6 0.32 0.75 0.19 90 12 30 50 0.77

R denotes threshold level in model field (lice m�2), N denotes the number of
model values above threshold within the 3 � 3¼ 9 matrix, Score is the dis-

tance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Hð Þ2 þ F2

q
to the perfect solution (lowest value is best score), H

is the hit rate and F the false alarm rate, MHCH is the number of cages where
ModelHighCageHigh, etc., while POD is the probability of detection.
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in the integration method, we conclude that the high skill of the

proposed method is not through a special distribution in the

data.

Discussion
Based on observations from sentinel cages for the years 2012–

2017, an ROC has been used to suggest a prediction method for

salmon lice infestation pressure in the Hardangerfjord. Using the

binary method twice, a system with three categorical events (high,

medium, and low) is also suggested. The method has clear pre-

dictability skills (H� F). Through the stepwise process with dif-

ferent integration methods (A1–A4), it has also been

demonstrated that the ROC enables an objective way of quantify-

ing the performance of these methods when combining models

and observations. This can easily be repeated if the salmon louse

IBM is further refined; thus, the ROC also serves as a benchmark

system to assess the quality of future updates of the system.

Through a stepwise process (A1–A4), the vertical behaviour in

the salmon lice IBM has been improved compared to the first im-

plementation of a forecast method based on the ROC (Sandvik

et al., 2016). The results from Sandvik et al. (2016) indicated that

the model had too many false alarms in areas with low salinity,

and a clear improvement was gained simply by adjusting the strict

salinity avoidance threshold from 20 (A1) to 25 (A2) psu. A com-

prehensive testing of salinity avoidance has been done in a recent

laboratory study and reported by Crosbie et al. (2019). Their

results show how the relative avoidance changes with salinity, and

this has been implemented for all particles in A3 through a ran-

domization of behaviour as a function of salinity. Salinity avoid-

ance was also tested in Crosbie et al. (2019). In that study, salinity

avoidance was formulated using an equal salinity-dependent

swimming speed for all larvae. This resulted in a too strong

avoidance of surface water with low salinity, a deeper vertical dis-

tribution and shorter horizontal dispersion, which was most pro-

nounced in areas with strong stratification (inner fjords), and an

almost absence of lice larvae in the upper 2 m, even in areas with

observations of lice on wild and farmed fish. In the present work

to ensure an avoidance of (but not complete absence from) water

masses with low salinity, the salinity avoidance was, therefore, pa-

rameterized using a probability function. The clear improvement

in performance from A2 to A3 confirms the sensitivity to salinity

found in the laboratory experiments, while the inclusion of a

stricter salinity avoidance for the nauplii stages (A4) results in a

slightly worse score. The main difference from A1 to A2 and A3 is

how likely the copepodites are to move away from the surface

layer where the sentinel cages are placed at 0.5 m depth. The dif-

ference between A3 and A4 is how this avoidance is done for the

nauplii. There is no impact for the infestation pressure as it will

only alter the drift pattern of the particles during the first 40 day-

degrees. As wind-induced current generally weakens with depth,

the dispersion of particles is less in A4 than in A3, which is also

seen with the increase in false alarms. In addition to the salinity

avoidance, it is also known that the nauplii will swim up towards

the surface light (Bron et al., 1991). How the balance between

these two acts in nature is not known. With its best performance,

A3 is, therefore, kept as the preferred algorithm. The score of the

corresponding algorithms for the low limit of 1 louse per fish

(L1–L4) are almost identical varying between 0.32 and 0.33

(Table 6). However, despite this, there are some variability in the

performance shown in H and F. The chosen method L3 is charac-

terized by the lowest number of false alarms (F¼ 0.11), meaning

that this method is likely to have a slight less yellow area com-

pared to the other three.

The suggested method to separate between high and low infes-

tation pressure (S6 and A3), misses two of the elevated cages and

give nine false alarms. A proper examination of these inconsisten-

cies between model and observations is necessary. The reason

there are more false alarms than missed high-value cages is the

distribution of the data set with fewer high values (above 10 lice

per fish) than low values (below 10), and the definition of H and

F (using these total numbers) that implies that the price for a false

alarm is less than that for a missed cage. The two missed cages are

cage 14 in period 2—2015 and cage 2 in period 2—2017 (see

Table 5). The first occurrence (cage 14) is the outermost cage in

the fjord. The model includes data on salmon lice from all fish

farms in the area. However, there are also other potential sources.

Next to cage 14, there is a harvest cage (open cage where the

salmon is stored before slaughtering) that is not required to re-

port salmon lice. A possible explanation for the high infestation

level in cage 14 is, therefore, salmon lice originating from this

site. In the future, also information on number of fish and lice in

harvest cages should be reported as this might have an impact on

the total lice pressure. The second incident (cage 2 in period 2—

2017) is to the north of Varaldsøy in the inner part of the fjord.

The neighbouring cages to the north, further into the fjord (1, 17,

and 18), all have low infestation levels, while the nearest cages

further out the fjord (3–7) all have high or close to high levels.

Again, close to cage 2, there is a harvest cage, and as the infesta-

tion level in both model and observations in sentinel cages agree

in all neighbouring locations, a likely explanation is that the dif-

ference between model and observations in this position is due to

this harvest cage.

Of the nine false alarms, seven cages are reporting an elevated

lice level above 4.9 and will not be discussed further. However,

the two remaining cages (cage 17 in period 1—2015 and cage 4 in

period 2—2016) need a thorough examination. In the first period

of 2015, the model forecast a few small red areas in the inner part

of the fjord (left panel in Figure 3). One of these coincided with

cage 17. Two of the nearby fish farms were reporting high lice lev-

els in this period; thus, it is likely that there are somewhat more

lice in the area than what was recorded in the cage. The model

also shows a rather patchy field in this area (Figure 3, left panel),

which again supports uncertainty in the observations here due to

patchiness. Cage 4 is situated in the narrow sound west of

Varaldsøy, and in the model (right panel of Figure 3), the entire

sound and a small strip along land south of it (including cage 6)

are coloured red. From the figure, the origin of the salmon lice

causing the modelled high infestation level in this area seems to

be the outer part of the fjord where several cages are red both in

the observations and in the model. A possible explanation for the

too high level in the model at this site is, therefore, too strong

Table 7. Error statistics (mean score, hit rate, false alarm rate, and
probability of detection) for the training and validation subsets after
10 000 runs of the CV.

Score H F POD

High/low ¼ 10: training subset 0.10 0.92 0.06 0.94
High/low ¼ 10: validation subset 0.16 0.87 0.06 0.93
High/low ¼ 1: training subset 0.32 0.72 0.14 0.76
High/low ¼ 1: validation subset 0.37 0.70 0.17 0.74
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advection, which can also explain the elevated model level at

nearby cage 6 in the same period, combined with too coarse reso-

lution locally in the 800 m model.

It should be noted that the infestation efficiency of salmon lice

is influenced by several factors such as salinity, temperature, wa-

ter currents, and the age of the copepodite (Hevrøy et al., 2003;

Brooks, 2005; Bricknell et al., 2006; Samsing et al., 2015, 2016),

relationships that are only partly known. It is also unclear

whether fish are less resistant to further lice infestation if it is al-

ready weakened by existing lice infestation. In the present work,

we have assumed a linear dose/response relationship where the

infestation efficiency is only dependent on the concentration of

infective larvae in the water masses. Samsing et al. (2016) showed

that the infestation success is an order of magnitude higher at

10�C compared to 5�C (and slightly higher than the success at

20�C), while experiments by R.Skern-Mauritzen et al. (pers.

comm.) suggest an increased efficiency from 5�C to 10�C, and an

even higher success rate at 15�C. All fish farms are reporting tem-

peratures at 3 m depth weekly. In the period when the cages have

been deployed, the mean temperature in the Hardangerfjord is

typically between 8.5�C (week 19) and 13�C (week 25). In such a

limited temperature window, a linear response appears to be a

good approximation. However, when running the model in early

spring and late summer a temperature dependence should be

added to the ROC. An interesting observation is that in the two

periods where the ROC has the highest number of false alarms

(period 1—2015 and 2—2016), the modelled temperatures are

among the extremes (second lowest in period 1—2015 and high-

est in period 2—2016).

Concluding remarks
Facing the problems caused by salmon lice from the aquaculture

industry, a reliable forecasting system is essential for a further sus-

tainable development of fish farming. Using the binary method

twice, a system with three categorical events (high, medium, and

low) for a potential lice infestation pressure is suggested, and it is

demonstrated through a random permutation of the cages and a

CV that the system is robust and has clear predictability skills.

The main driver for advection and dispersion of salmon louse is

the ocean physics, and this is well-represented using a high-

resolution ocean model. The system also includes an IBM for

salmon louse, where known behaviour and life development has

been implemented. It has also been shown how model perfor-

mance has improved through the inclusion of new results on

salmon louse behaviour from laboratory experiments. The sug-

gested model system can, therefore, also serve as a benchmark to

assess the performance of future updates of the salmon louse IBM

based on updated experimental knowledge. The system has been

developed for the Hardangerfjord, but the method is general and

can be applied to all Norwegian fjords, and the ROC is at present

in use as one of the main components of the “Traffic-light sys-

tem” for a sustainable management of Norwegian salmon

farming.

The model system uses inputs on reported fish biomass and

lice densities from all aquaculture sites in the area. These numbers

are only reported by week number, and with the well-known high

variability of the hydrodynamics within the fjords, this is a clear

and uncontrolled weakness of the model system. In addition, the

harvest cages also represent an uncontrolled weakness, but always

an underestimation of the model predicted salmon lice infesta-

tion. The combination of observations and models is valuable

and high-quality products depend on proper use of both.

Therefore, the ROC has been developed and performance has

been assessed using the best available and controlled observations

on salmon louse densities in the Hardangerfjord represented by

the number of lice on fish in sentinel cages. The cages are as-

sumed to give an integrated measure of the local lice infestation

pressure over the period of their deployment, but this has never

been proven. This kind of indirect measurement can be influenced

by biofouling, the quality and size of the smolt, the handling of the

fish, and the counting of the lice, but are still considered to be the

most suitable data set for the present coarse-scale analysis. A num-

ber of studies has shown that “particles” transported in the ocean

rarely constitute smooth continuous fields but rather establish

patchy patterns with strong gradients (Mackas et al., 1985). This

non-uniformity in the integrated field has, for example, been

shown through a deployment of several cages in close vicinity to

each other resulting in a relatively large difference in numbers of

salmon lice between individual cages (Svåsand et al., 2015). The

lack of a comprehensive study to understand the impact of short-

term variability and patchiness on the representativeness and

quality of observations from the sentinel cages is a clear limitation

in the use of such data. We, therefore, believe that a high-resolu-

tion model with well-validated hydrography and a realistic repre-

sentation of the salmon louse biology based on all available

knowledge represents the best realization of the local potential in-

festation pressure on wild fish.
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Bjørn, P. A., Sivertsgård, R., Finstad, B., Nilsen, R., Serra-Llinares, R.
M., and Kristoffersen, R. 2011. Area protection may reduce
salmon louse infection risk to wild salmonids. Aquaculture
Environment Interactions, 1: 233�244.

Bricknell, I. R., Dalesman, S. J., O’S, S., Pert, C. C., and Mordue
Luntz, A. J. 2006. Effect of environmental salinity on sea lice
Lepeophtheirus salmonis settlement success. Diseases of Aquatic
Organisms, 71: 201–212.

Bron, J. E., Sommerville, C., Jones, M., and Rae, G. H. 1991. The set-
tlement and attachment of early stages of the salmon louse,
Lepeophtheirus salmonis (Copepoda, Caligidae) on the salmon
host, Salmo salar. Journal of Zoology (London), 224: 201–212.

Brooks, K. M. 2005. The effects of water temperature, salinity, and
currents on the survival and distribution of the infective copepo-
did stage of sea lice (Lepeophtheirus salmonis) originating on
Atlantic salmon farms in the Broughton Archipelago of British
Columbia, Canada. Reviews in Fisheries Science, 13: 177–204.

Crosbie, T., Wright, D. W., Oppedal, F., Johnsen, I. A., Samsing, F.,
and Dempster, T. 2019. Effects of step salinity gradients on
salmon lice larvae behavior and dispersal. Aquaculture
Environment Interactions, 11: 181–190.

Ebert, E. E. 2008. Fuzzy verification of high-resolution gridded fore-
casts: a review and proposed framework. Meteorological
Applications, 15: 51–64.

Flamarique, I. N., Browman, H. I., Belanger, M., and Boxaspen, K.
2000. Ontogenetic changes in visual sensitivity of the parasitic
salmon louse Lepeophtheirus salmonis. Journal of Experimental
Biology, 203: 1649–1657.

Gillibrand, P. A., and Willis, K. J. 2007. Dispersal of sea louse larvae
from salmon farms: modelling the influence of environmental
conditions and larval behavior. Aquatic Biology, 1: 63–75.

Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D.,
Curchitser, E., Di Lorenzo, E., Fennel, K., et al. 2008. Ocean fore-
casting in terrain-following coordinates: formulation and skill as-
sessment of the Regional Ocean Modeling System. Journal of
Computational Physics, 227: 3595–3624.

Hamre, L. A., Eichner, C., Caipang, C. M. A., Dalvin, S. T., Bron, J.
E., Nilsen, F., Boxshall, G., et al. 2013. The salmon louse
Lepeophtheirus salmonis (Copepoda: Caligidae) life cycle has only
two chalimus stages. PLoS One, 8: e73539.

Heuch, P. A. 1995. Experimental evidence for aggregation of salmon
louse copepodids (Lepeophtheirus salmonis) in step salinity gra-
dients. Journal of the Marine Biological Association of the United
Kingdom, 75: 927–939.

Heuch, P. A., Parsons, A., and Boxaspen, K. 1995. Diel vertical migra-
tion: a possible host-finding mechanism in salmon louse
(Lepeophtheirus salmonis) copepodids? Canadian Journal of
Fisheries and Aquatic Sciences, 52: 681–689.

Hevrøy, E. M., Boxaspen, K., Oppedal, F., Taranger, G. L., and Holm,
J. C. 2003. The effect of artificial light treatment and depth on the
infestation of the sea louse Lepeophtheirus salmonis on Atlantic
salmon (Salmo salar L.) culture. Aquaculture, 220: 1–14.

Jansen, P. A., Kristoffersen, A. B., Viljugrein, H., Jimenez, D., Aldrin,
M., and Stien, A. 2012. Sea lice as a density-dependent constraint
to salmonid farming. Proceedings of the Royal Society B, 279:
2330–2338.

Johnsen, I. A., Asplin, L., Sandvik, A. D., and Serra-Llinares, R. M.
2016. Salmon lice dispersion in a northern Norwegian fjord sys-
tem and the impact of vertical movements. Aquaculture
Environment Interactions, 8: 99–116.

Johnsen, I. A., Fiksen, Ø., Sandvik, A. D., and Asplin, L. 2014.
Vertical salmon lice behavior as a response to environmental con-
ditions and its influence on regional dispersion in a fjord system.
Aquaculture Environment Interactions, 5: 127–141.

Johnson, S. C., and Albright, L. J. 1991. Development, growth, and
survival of Lepeophtheirus salmonis (Copepoda, Caligidae) under
laboratory conditions. Journal of the Marine Biological
Association of the United Kingdom, 71: 425–436.

Karlsen, Ø., Bjørn, P. A., Johnsen, I. A., Skarðhamar, J., et al. 2015.
Risikovurdering Lakselus � 2014. Pages 16-49 in Risikovurdering
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