
fmars-07-00107 February 20, 2020 Time: 20:13 # 1

ORIGINAL RESEARCH
published: 21 February 2020

doi: 10.3389/fmars.2020.00107

Edited by:
Alberto Basset,

University of Salento, Italy

Reviewed by:
Rodrigo Riera,

Catholic University of the Most Holy
Conception, Chile

Dominique Davoult,
Sorbonne Universités, France

Inka Bartsch,
Alfred Wegener Institute for Polar and

Marine Research, Germany

*Correspondence:
Thijs Christiaan van Son

thijs.vanson@hi.no

Specialty section:
This article was submitted to
Marine Ecosystem Ecology,

a section of the journal
Frontiers in Marine Science

Received: 05 April 2019
Accepted: 10 February 2020
Published: 21 February 2020

Citation:
van Son TC, Nikolioudakis N,

Steen H, Albretsen J, Furevik BR,
Elvenes S, Moy F and

Norderhaug KM (2020) Achieving
Reliable Estimates of the Spatial

Distribution of Kelp Biomass.
Front. Mar. Sci. 7:107.

doi: 10.3389/fmars.2020.00107

Achieving Reliable Estimates of the
Spatial Distribution of Kelp Biomass
Thijs Christiaan van Son1* , Nikolaos Nikolioudakis2, Henning Steen1, Jon Albretsen1,
Birgitte Rugaard Furevik3,4, Sigrid Elvenes5, Frithjof Moy1 and Kjell Magnus Norderhaug1

1 Institute of Marine Research, Arendal, Norway, 2 Institute of Marine Research, Bergen, Norway, 3 The Norwegian
Meteorological Institute, Oslo, Norway, 4 Danish Meteorological Institute, Copenhagen, Denmark, 5 Geological Survey
of Norway, Trondheim, Norway

Kelp forests are highly productive systems that are important ecologically and
commercially as well as in a blue carbon perspective. Given their importance, there is
an urgent need to achieve reliable estimates of the spatial distribution of their biomass.
Species distribution modelling is a powerful tool for producing such estimates, but
it requires a solid framework, including important environmental covariates that have
a direct effect on their biomass, a proper sampling strategy, and an independent
evaluation dataset. Using Laminaria hyperborea as a model species, we developed a
modelling framework considering these requirements and necessary steps to produce
reliable predictions. Our modelling framework included proportion of hard substrate
and bottom wave exposure, both crucial covariates that have a direct effect on the
biomass of L. hyperborea, but rarely included in modelling studies. Furthermore, we
devised a sampling strategy with field observations covering the whole environmental
covariate space present in the study area. Subsequently, we fitted GAMs relating the
field observations of the biomass of L. hyperborea to relevant environmental covariates.
The best model containing the predictors bottom wave exposure, depth, and proportion
hard substrate explained most of the variance in the dataset (83.1% deviance explained).
This model was then used to predict the spatial distribution of biomass across the
whole study area. To assess the reliability of the biomass predictions, we used an
independent dataset of L. hyperborea biomass observations from the same area. This
independent dataset correlated very well with spatial predictions of biomass based on
our best model (R = 0.85). In total, we predicted a biomass of 457,000 tonnes in a
1,150 km2 study area on the West coast of Norway. Our modelling framework provides
the means for developing a biomass model on a broader geographical scale. Such a
model will be invaluable in improving kelp management regimes as well as for estimating
the contribution of kelp forests to ecosystem services such as carbon sequestration and
climate budgets.

Keywords: biomass modelling, bottom wave exposure, independent evaluation, Laminaria hyperborea,
management, sampling strategy, species distribution modelling
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INTRODUCTION

Kelp forms dense forests in shallow coastal areas from mid- to
high latitudes around the world (Steneck et al., 2002). These
forests are among the highest productive ecosystems on the
planet and provide a variety of ecosystem services (Vilalta-
Navas et al., 2018). Only a small part, less than 10%, of the
kelp production is consumed inside the kelp forests. The rest is
exported as small and large kelp fragments and fuels ecosystems
in shallow and deep waters (Norderhaug and Christie, 2011).
Hence, as these processes have become more evident, the role
of kelp in carbon sequestration has been highlighted and an
unknown part of the kelp produced is buried in sediments on
deep water (Krause-Jensen and Duarte, 2016).

The part of the production consumed within the kelp forest
supports diverse and abundant communities of invertebrates
and algae. The three-dimensional structure of the kelp forest
creates a diverse habitat that nurses a wide range of fish species
(Norderhaug et al., 2005) and provides feeding areas for seabirds
and mammals (Bjørge et al., 1995; Lorentsen et al., 2010).
Kelp forests are therefore regarded as important areas for the
coastal fishery.

Kelp is harvested for the extraction of alginate, a thickener
used in pharmaceutical and food industry. Managing and
understanding the ecological importance of these ecosystem
engineers should rely on firm knowledge about the resources
available. However, basic knowledge about the biomass and
distribution of this important resource is still lacking and such
knowledge may reduce conflicts of interest between different
stakeholders. Proper management of kelp resources requires
detailed knowledge about their spatial biomass distribution.
Only then will we be able to achieve reliable estimates of
how the commercially harvested biomass compares to the
standing stock and subsequently devise harvesting regimes
within sustainable limits.

Studies that provide complete coverage of spatial predictions
can potentially provide accurate and reliable estimates of the
standing stock of a kelp species. In this regard, there exist studies
on the spatial distribution of the probability of occurrence of kelp
forests (Bekkby et al., 2009; Raybaud et al., 2013; Gregr et al.,
2018), abundance (Young et al., 2015), and assemblages (Rattray
et al., 2015). These studies provide valuable ecological insights but
can only indirectly yield information about the standing stock of
the kelp species of interest.

Two studies from France, however, developed statistical
models of the biomass of Laminaria species and subsequently
predicted the species’ distribution of biomass in space (Gorman
et al., 2012; Bajjouk et al., 2015). This also allowed them
to directly estimate the standing stock. The first step in
obtaining good estimates of the standing stock of kelp in a
given area is to attain reliable observations of the biomass
of kelp. Attaining such observations of kelp biomass is
labour intensive and time-consuming, often involving diving
(e.g., Gorman et al., 2012). Remote sensing represents an
alternative and potentially promising method (Cavanaugh
et al., 2011; Nijland et al., 2019), but reliable estimates of
the spatial distribution of kelp biomass will still to a large

degree have to be based on statistical modelling based on
direct observations.

The statistical model needs to include covariates that have
a direct effect on the kelp biomass and field observations
must be based on a proper sampling strategy that is able to
cover the whole environmental covariate space. Then species
distribution modelling (Guisan and Zimmermann, 2000) can
provide means to accurately estimate the spatial distribution of
biomass and subsequently the standing stock within a given
area. However, without a proper sampling strategy covering
the whole environmental covariate space, predictions to new
data containing combinations of environmental covariates
not covered by the sampling strategy will be unreliable
(Elith and Leathwick, 2007).

Using Laminaria hyperborea as a model species, we used the
principles above to model its spatial distribution of biomass in a
pilot area on the west coast of Norway, where high resolution data
on relevant environmental covariates were available. Laminaria
hyperborea grows in exposed coastal areas along the whole
coast of Norway (Sjøtun et al., 1993). It is both ecologically
(Norderhaug et al., 2003; Teagle et al., 2017) and commercially
important (Steen et al., 2016). Knowledge about how its biomass
relates to structuring environmental processes and how its
biomass is spatially distributed is crucial to further improve
the current management regime. The purpose of this study
is therefore threefold: (1) to identify important environmental
covariates that control the biomass distribution of L. hyperborea
and devise a sound sampling strategy based on these covariates;
(2) to make predictions about the spatial distribution of L.
hyperborea biomass based on the best statistical model; and (3)
to apply an independent evaluation dataset to assess the reliability
of the model and its spatial predictions.

MATERIALS AND METHODS

Study Area and Field Sampling Method
Field sampling was conducted in April and June 2017 in the
southern part of the county of Møre and Romsdal on the West
coast of Norway (Figure 1). The extent of the study area is
1150 km2. Here we find some of the most exposed areas along
the Norwegian coast, likely providing an optimal environment
for kelp production and biomass build-up. The study area has
a complex topography, encompassing numerous large and small
islands. Western and northern parts of the area include shallow
banks (0–100 m) open to the Norwegian Sea, while the steep-
sided fjords of the southern part reach depths of 600 m and
the eastern part comprises sheltered straits and basins of varying
depth. Most importantly, available high-resolution bathymetry
made this area optimal for developing a spatial distribution
model for kelp biomass.

Sampling Strategy
The implemented sampling strategy covered as much as possible
of the whole range of combinations of environmental gradients in
the study area. The best way of thinking about this is to envision
the ranges of covariates creating an n-dimensional space. A good
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FIGURE 1 | Map showing the geographical location and the extent of the study area as outlined by the bathymetry raster. The observations as well as the spatial
predictions are limited to depths shallower than 35 m.

sampling strategy is one that achieves a good representation of
this n-dimensional space, which we can call the environmental
covariate space. The quality of such a sampling strategy is
dependent on the quality of each covariate, which is primarily
dependent on two factors: (1) whether the covariate represents
a direct or indirect effect on the response; and (2) how well
the covariate represents its underlying environmental gradient.
Consequently, a sampling strategy with a good representation
of the environmental covariate space may still not sample the
true environmental gradients adequately. Finally, all covariates
to be used in the modelling should also be used in planning the
sampling strategy.

Environmental Covariates
Four environmental covariates were used in the stratification
process (Figure 2).

Depth
We used high resolution (2 m) bathymetry data acquired by
the Norwegian Hydrographic Service (NHS). These data have
been declassified by the Norwegian Defence Authorities and are
available for public use, and they can be accessed at https://
hoydedata.no/LaserInnsyn/.

Proportion hard substrate
The Geological Survey of Norway (NGU) has published a series
of detailed marine base maps representing seabed sediment
conditions of the study area (Elvenes et al., 2019). The maps are
available at www.ngu.no and www.mareano.no. These maps are
scaled 1:20 000, and are based on multibeam echosounder data
provided by the NHS combined with field observations (sediment
sampling and seabed video). NGU has mapped 20 classes of
seabed sediment in the study area, following the classification
standard described by Bøe et al. (2010; modified from Folk,
1954). This is a categorical map (i.e., polygon vector format) that
we converted into a continuous map. This was achieved by a
combination of bespoke and existing functions in R statistical
software (R Core Team, 2018) in which, using the following
steps, we: (1) made a look-up table (Table 1) describing the
typical sediment composition of each categorical sediment type,
expressed as fractions of mud, sand, gravel, cobble and boulders,
and (bed)rock; (2) rasterised the sediment map using the rasterise
function in the raster package (Hijmans, 2018); (3) put a regular
grid with 50 m spacing between the points on top of the rasterised
sediment map; (4) extracted the categorical sediment type in each
point in the grid using the extract function in the raster package;
(5) linked the look-up table to the points in the grid, providing
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FIGURE 2 | Raster plots of environmental covariates used in the fitted GAM models. Plots show values for areas shallower than 35 m. Coordinates in WGS84
UTM32N.

us typical sediment fraction compositions at each point, and
(6) applied ordinary kriging based on the grid for each of the
sediment fractions using the krige function in the gstat package
(Pebesma, 2004; Gräler et al., 2016). The final continuous map of
the proportion of hard substrate used in the modelling was the
sum of the cobble and boulders and the (bed)rock fractions.

Significant wave height and bottom wave exposure
The significant wave height is defined as the average height
of the highest one-third of all waves. We applied the state-
of-the-art, open-source wave model SWAN (Simulating WAves
Nearshore1), developed at Delft University of Technology,
Netherlands, to simulate the combined effect of wind-generated
waves and swells in the coastal regions of the study area.
The model grid applied had a 50 m × 50 m horizontal
resolution using bathymetric data from the Norwegian Mapping
Authority. The wave model was run in a non-stationary mode
for approximately one winter month (January 2009) to cover
most of the geographical variability in wave conditions. The
atmospheric winds applied were provided every third hour from
a 3 km × 3 km simulation using the Weather Research and
Forecasting model (WRF, Skamarock et al., 2008). Wave spectra
along the open boundaries on a 500 m × 500 m SWAN grid

1http://swanmodel.sourceforge.net

were provided every third hour by the Norwegian Meteorological
Institute based on values from the Norwegian hindcast of wind
and waves (NORA10) archive covering the Norwegian Sea
(Reistad et al., 2011). Wave spectra from the SWAN-500 m model
were then applied to force the SWAN-50 m model. The output
from the highest resolution wave model (SWAN-50 m) consisted
of time series of significant wave height and wave peak periods
(wave lengths) valid every 3rd hour.

Waves are characterised with orbital motions dependent on
water depth, wavelength and wave height. Similar to Rattray
et al. (2015) we used linear wave theory to predict the maximum
horizontal component of the wave orbital velocity on the sea bed
for all grid points. Our formula, and then our proxy for Bottom
wave exposure, writes:

Umax =
Hπ

T sinh
(
kd

)
where H is the significant wave height (m), T is the wave period
(s), k is the wave number (k = 2∗π/L where L is the wavelength)
and d is the water depth. Umax was calculated for every time
step based on the wave model output. Due to strong collinearity
between Significant wave height and Bottom wave exposure we
decided to not use them in the same model. We used their
90-percentiles in the statistical analysis.
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TABLE 1 | Lookup table provided by the Geological Survey of Norway (NGU) for conversion of categorical sediment grain size classes to continuous sediment fractions.

Code Type Mud Sand Gravel Cobbles and boulders Bedrock

1 Thin or discontinuous sediment cover on bedrock 6 6 5 3 80

5 Exposed bedrock 0 0 0 0 100

10 Clay 100 0 0 0 0

15 Organic mud 96 4 0 0 0

20 Mud 96 4 0 0 0

21 Mud with sediment blocks 80 10 0 10 0

30 Sandy clay 77 22.5 0.5 0 0

40 Sandy mud 69.5 30 0.5 0 0

50 Silt 92 8 0 0 0

60 Sandy silt 62 37.5 0.5 0 0

70 Clayey sand 36.5 62.5 1 0 0

80 Muddy sand 29 70 1 0 0

90 Silty sand 21.5 77.5 1 0 0

95 Fine sand 4 95 1 0 0

100 Sand 3 95.5 1.5 0 0

105 Coarse sand 2 96 2 0 0

110 Gravelly mud 80 8 12 0 0

115 Gravelly sandy mud 60 25 15 0 0

120 Gravelly muddy sand 24 58 18 0 0

130 Gravelly sand 8 71 21 0 0

140 Muddy gravel 36 19 45 0 0

150 Muddy sandy gravel 18 27 55 0 0

160 Sandy gravel 7 28 65 0 0

170 Gravel 5 5 90 0 0

174 Gravel and cobbles 1 9 45 45 0

175 Gravel, cobbles, and boulders 1 5 35 59 0

180 Cobbles and boulders 1 1 15 83 0

185 Sand, gravel, and cobbles 1 33 33 33 0

205 Mud/sand with cobbles/boulders 30 30 5 35 0

206 Mud and sand with gravel, cobbles, and boulders 35 30 15 20 0

210 Cobbles/boulders covered by mud/sand 20 10 0 70 0

215 Sand, gravel, cobbles, and boulders 1 29.5 29.5 40 0

300 Compacted sediments or sedimentary bedrock 0 0 0 0 100

500 Bioclastic material 26 24 36 14 0

Bottom current speed
The three-dimensional, free-surface, hydrostatic, primitive
equation ocean model ROMS (Haidvogel et al., 2008; Regional
Ocean Modeling System2, Shchepetkin and McWilliams, 2005)
was applied on a 160 m × 160 m grid covering the study area
and adjacent regions to provide time series of current speed
close to the sea floor. Applications using this model system have
been documented in numerous manuscripts, e.g. Storesund et al.
(2017) and Huserbråten et al. (2018). The 90-percentiles based
on hourly output current speed from a 2-year long simulation
were applied in the statistical analysis.

Stratification
Laminaria hyperborea dominates the shallow sublittoral down
to 35 m (Kain and Jones, 1971), and for logistical reasons, no
observations of kelp were made shallower than 3 m. Thus, for the

2http://myroms.org

purpose of the stratification, we applied a mask to the covariate
rasters for pixels not matching the depth range of 3–35 m.

To stratify our study area, K-means clustering (Hartigan
and Wong, 1979) was applied to the masked environmental
covariate rasters using the kmeans function in the stats package
in combination with a bespoke function. Choosing the optimal
number of clusters in k-means is challenging. There exist
approaches that are meant to provide guidance in this respect
(Tibshirani et al., 2001). However, when using k-means clustering
on large continuous raster datasets, there will not be any clear
optimal solution where every point would seem to belong to a
natural cluster. We, therefore, used the proportion of variance
explained between clusters as a measure of optimality. This
proportion is influenced by a range of factors, such as the extent
of the survey area, the number of environmental covariates, and
the variability of each covariate. Depending on these factors, a
good solution can be expected to be found when 80 – 90% of
the variance is explained between the clusters. Another criterion
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could be to set a threshold for what the increase in variance
explained between clusters should be before stopping. Such a
threshold could be 2 – 3%.

In the k-means classification analyses, we used bottom current
speed, depth, significant wave height, and proportion of hard
substrate. The raster of bottom wave exposure was not available at
the time of planning the sampling strategy and was therefore not
included in the k-means classification. The four covariates were
standardised between 5 and 260 (due to potential inflation of the
coefficient of variation values if means are small and close to zero,
see below). This was done to give equal weight to the rasters in the
analysis. Using a combination of the two criteria explained above,
we settled on using 15 clusters. This solution had 81.5% of the
variance explained between the clusters. Subsequently, a modal
smoother function looking at 49 neighbouring pixels was applied,
to reduce the resulting noise from the k-means clustering, as
well as to show the more general trend of k-means classes across
the study area. This representation of the k-means classification

was polygonised and exported to a shapefile for later use in the
implementation of the sampling strategy (Figure 3).

Allocation of Sampling Sites: GRTS
Generalised random tessellation strategy (GRTS, Stevens and
Olsen, 2004) was used for spatial allocation of sampling sites
within the study area. This strategy creates a collection of
sample sites that are spatially balanced, i.e., more or less evenly
distributed over the area of interest. When combined with a
stratification of the study area, GRTS allocate sampling sites in
a way that is in between what a conventional random, stratified
sampling strategy and a regular grid (i.e., systematic) strategy
would produce. This is more efficient in terms of capturing
the spatial variability of a natural resource than a conventional
random sample strategy (Stevens and Olsen, 2004).

Using the spsurvey package (Kincaid and Olsen, 2018)
we applied a random stratified GRTS implementation with
unequal inclusion probability. The 15 clusters from the k-means

FIGURE 3 | Map of stratification result from kmeans analysis. The stratification resulted in 15 strata that were used in the planning of sampling strategy. In an attempt
to describe the environmental conditions of each stratum, the strata exhibited a code with combinations of four letters C (bottom Currents), D (Depth), E (wave
Exposure/height), and H (proportion Hard substrate); and four numbers taking the values 1 (representing values between the 0 and 20 percentile for the
environmental covariate in question), 2 (21 and 40 percentile), 3 (41 and 60 percentile), 4 (61 and 80 percentile), and 5 (81 and 100 percentile).
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stratification were used as strata while the inclusion probability
was calculated for each stratum based on their extent and
their environmental variability. The extent of each stratum was
calculated by summing the number of raster pixels within each
stratum and then divide this sum by the total number of pixels
in the study area. This gave us the proportional extent of each
stratum. The environmental variability within each stratum was
calculated by taking the coefficient of variation (CV = standard
deviation/mean) for each covariate raster. We summed the CV
for all the covariate rasters for each of the strata getting a total
CV for each stratum, and this total was again summed to get a
total CV for the whole dataset. Having this total CV we could
calculate the proportional variability each stratum contributed
to the whole. Both the proportions of extent and proportions of
variability each summed to one.

Having these two proportions, we could calculate the inclusion
probability for each stratum. This was done by giving the
two proportions equal weight (50% each), which was simply
achieved by summing the two proportions and divide the sum
by two (Table 2). The importance of calculating this inclusion
probability is to make sure that strata with larger extents get
proportionally more samples allocated than strata with smaller
extents and that strata with higher environmental variability get
proportionally more samples allocated than strata with lower
environmental variability.

Field Observations of Kelp Biomass
Observations of kelp biomass were made between depths of 3
and 35 m using a cable connected underwater drop camera (UVS
5080, 700 TVL), with a built-in depth sensor, sensitive to the
nearest 0.1 m, deployed from a boat (Steen et al., 2016). A total
of 154 sites were visited, but 9 had to be excluded based on
them being marginally located outside the final study area, as

TABLE 2 | Calculated inclusion probability per stratum.

Inclusion probability

Stratum Area Variability Overall

1 0.072 0.070 0.071

2 0.095 0.058 0.076

3 0.044 0.067 0.056

4 0.058 0.047 0.053

5 0.059 0.046 0.052

6 0.035 0.083 0.059

7 0.077 0.033 0.055

8 0.064 0.107 0.085

9 0.093 0.057 0.075

10 0.068 0.099 0.084

11 0.070 0.065 0.068

12 0.060 0.106 0.083

13 0.041 0.040 0.040

14 0.099 0.078 0.088

15 0.064 0.043 0.054

Area and Variability have been given equal weight in calculating the Overall
inclusion probability.

defined by the area covered by the rasters of the predictors. An
independent dataset of 80 sites surveyed across the study area for
the Norwegian Programme for Mapping of Marine Habitats was
analysed for kelp biomass and used for model evaluation.

The field work was carried out between April and June 2017.
At each site, the camera was lowered onto the seabed to observe
the kelp coverage, density and height (Steen et al., 2016). Kelp
coverage was estimated as percentage kelp coverage of the seabed,
from camera views above the kelp canopy layer. The average
height of L. hyperborea kelp plants was measured as the depth
difference, read from the depth sensor measurements when the
camera was moved vertically between the seabed and the top of
the kelp fronds. Density estimates were obtained by counting the
number of L. hyperborea canopy plants per m2 (fitted by eye)
from horizontal camera views beneath the kelp canopy lamina
layer. If kelp plant numbers were high and frond height low,
density was classified in groups (e.g. 10, 12.5, 15, 20 kelp plants
per m−2). The height and density estimates were later used to
estimate the biomass of L. hyperborea [kg FW/m2] by multiplying
density [in kelp plants per m2] with fresh weight [in kg per kelp
plant]. Kelp plant weight (in kg) were related to kelp plant height
(in m) by the conversion formula:

Weight = 0.94× Height1.62

This formula has a correlation of 0.88 obtained from correlating
fresh weight and height measurements of kelp plants collected by
dredging (Steen et al., 2016).

In order to verify the accuracy of this method for estimating
biomass of L. hyperborea, divers revisited a selection of the
same sites that had been observed by camera. A total of 11
of the 145 sites were randomly selected within a stratification
based on observed biomass, significant wave height and depth.
At each of these eleven sites, all plants within 1 m2 were
collected and subsequently counted, measured, and weighed. The
biomass estimated from the two methods were found to be highly
correlated (correlation of 0.77).

Statistical Analyses
Generalised additive models (GAMs, Hastie and Tibshirani,
1990) were applied to model the relationship between the
biomass of Laminaria hyperborea and the environmental
predictors. The biomass of L. hyperborea was considered to
follow a mixed compound Poisson–gamma distribution which
has positive mass at zero but otherwise is continuous. This
formulation belongs to what is known as the Tweedie family
of distributions (Tweedie, 1984; Jorgensen, 1987; Foster and
Bravington, 2013) and can handle the combination of a large
number of zero observations and strictly positive biomass
observations well. With biomass of L. hyperborea as the response
variable, the selection of the GAM smoothing predictors was
carried out with MGCV package (Wood, 2011) in the R
statistical software (R Core Team, 2018). In each fitted model,
a double penalty is applied to the penalised regression solved
by MGCV, which allows variables to be solved out of the model
entirely (Marra and Wood, 2011), being more robust to identify
important features. The degree of smoothing was chosen based
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on the observed data and the restricted maximum likelihood
(REML) with the maximum degrees of freedom (measured as the
number of knots, k) allowed to the smoothing functions limited
to 5 to avoid over-fitting.

The following main-effects-only model was initially fitted:

Biomassi = α+ f
(
depthi

)
+ f

(
prop hard substratei

)
+f

(
bottom current speedi

)
+f

(
bottom wave exposurei

)
+ εi (1)

where i denotes observation sites, and a backward model
selection was carried out to find the most parsimonious model
formulation. We did not include any first-order interactions in
our models to allow for easier interpretability of the models.
Model validation plots (e.g., residuals versus fitted values, QQ-
plots and residuals versus the original explanatory variables) were
used to explore for model misspecification. Residuals were also
checked for spatial autocorrelation by visually inspecting for
patterns in the 2D space, as well as with semi-variogram plots.
The output of the final selected GAMs is presented as plots of the
best-fitting smooths.

FIGURE 4 | Environmental covariate space plots. Depth is used as the base covariate for which each of the remaining covariates are plotted against. The black dots
represent the realised environmental combinations in the study area of the two covariates in question. The red dots represent the values at the sampled sites. The
black dots are plotted with a transparency of 0.1.

TABLE 3 | Statistical summary of fitted GAM models and their predictive performance.

Model Res. Df Deviance AIC REML Range spatial Corr indep Est standing
explained % preds [kgm-2] dataset stock [tonnes]

s(depth)+ s(hardsubstr)+ s(bottomSpeed)
+ s(bottomWaveExposure)

133.6 83.3 408.9 208.4 0 – 30.4 0.84 460654

s(depth) + s(hardSubstr)
s(bottomWaveExposure)

134.4 83.1 408.2 207.9 0 – 26.6 0.85 457279

s(depth) s(bottomWaveExposure) 137.2 73.4 449.7 227.9 0 – 26.2 0.79 433353

s(depth) + s(hardSubstr)
+ s(waveHeight)

136.3 77.4 435.2 219.4 0 – 103.6 0.76 521018

The models are compared regarding deviance explained, AIC, REML, range of spatial predictions, correlation with the independent evaluation data set, and their predicted
standing stock of Laminaria hyperborea.
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FIGURE 5 | GAM response curves of the biomass of Laminaria hyperborea
for the model containing the predictors bottom wave exposure, depth, and
proportion hard substrate. The y-axis indicates the relative influence of each
predictor on the biomass. The fitted line is in red with blue lines representing
1 SE. Grey, hollow circles represent observation points.

All resulting statistical models were used to predict to the
whole study area. For this exercise, all the predictors were
aggregated or disaggregated to a common resolution resulting in
a spatial biomass model of L. hyperborea with 20 m resolution.
Subsequently, the model evaluation was carried out using the
independently collected dataset from the same study area and
correlating it with the predicted biomass values from the different
statistical models.

RESULTS

An environmental covariate space analysis is done by plotting all
potential combinations of pixel values for two or more covariates
against each other and then plotting the field observations on
top. This was done between depth and the covariates used to
plan the sampling strategy and used in the GAM modelling. By
visually inspecting these plots (Figure 4), we can see that the
145 observations to a large degree cover the whole environmental
covariate space.

We fitted a total of three GAM models that were assessed
based on their REML and AIC values. An additional fourth model
was fitted in order to test whether the bottom wave exposure
covariate provided a model improvement over the conventional
significant wave height covariate. The model containing depth,
proportion hard substrate, and bottom wave exposure had the
lowest REML and AIC values, although only marginally lower
than the model containing bottom current speed in addition to
the three aforementioned covariates. These two models explained
about 83% of the deviance. A third model containing only
depth and bottom wave exposure led to a large increase in
both REML and AIC values as well as a decrease in deviance
explained (Table 3).

As we removed covariates in the models, bottom wave
exposure became increasingly more important. The response
curve for this covariate, based on the model with the lowest
REML and AIC values, shows that bottom wave exposure below
0.3 ms-1 has a negative impact on the biomass of L. hyperborea.
Between 0.3 ms-1s and 0.8 ms-1 bottom wave exposure has an
increasingly positive impact on the biomass. For values above
0.8 ms-1, the impact of bottom wave exposure reaches a plateau
but continues to have a positive impact on biomass, even in
very exposed areas (Figure 5). It is important to note here that
there are very few observations with bottom wave exposure
values above 1.5 ms-1. This is a consequence of this covariate
not being available when the sampling strategy was planned.
Depth, being a proxy for light primarily, seemed to be the
second most important covariate in explaining the variance in
kelp biomass. The response curve of depth has an optimum
at around 10 m. Below 20 m depth, depth starts to have an
increasingly detrimental effect on the biomass. For proportion
hard substrate, the response curve suggests there is a threshold
around a proportion of hard substrate of 0.5 in which below this
value biomass is decreasing and above biomass is increasing.

We decided to perform spatial predictions based on all models.
This allowed us to later compare their spatial predictions to
our independent evaluation dataset. The range of the values of
spatial predictions of biomass for L. hyperborea had minimum
values at zero whereas the maximum values ranged between
26.6 (model with depth, proportion hard substrate, and bottom
wave exposure) and 30.4 (model with all four covariates) kgm-
2 (Table 3). The spatial predictions of all three models were
highly correlated with our independent evaluation dataset with
Pearson’s correlation coefficient R ranging between 0.79 and 0.85
(Table 3). We consider the model containing depth, proportion
hard substrate, and bottom wave exposure the best, balancing
model complexity and predictive power very well (see Figure 6
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FIGURE 6 | Map of the spatial predictions of biomass of Laminaria hyperborea in kgm-2. Predictions are based on the model containing the predictors bottom wave
exposure, depth, and proportion hard substrate.

for its spatial prediction and Figure 7 for its correlation with the
independent evaluation dataset). It is important to note though,
that the three main models differed very little in predictive
performance. The total predicted biomass of L. hyperborea for
the selected model in the study area (∼1,150 km2) was 457,000
tonnes (Table 3).

The fourth model was identical to the model we considered
the best, except that the bottom wave exposure was exchanged
with the significant wave height (i.e., wave exposure on the sea
surface). This model had a large increase in both REML and
AIC values and a reduction in deviance explained (Table 3).
In addition, this model predicted a much higher maximum
value for biomass (103.6 kgm-2) and it also predicted a much
higher standing stock, 521,000 tonnes. Even though it had a high
correlation coefficient (R = 0.76) with the independent evaluation
data set, it clearly often overpredicts biomass.

DISCUSSION

By use of explicit measures of biomass (in kg FWm-2) of
Laminaria hyperborea and statistical modelling, we were able to

predict direct and accurate estimates of its spatial distribution
and standing stock within our study area. We achieved a
very good correlation between our spatial predictions of kelp
biomass and an independent evaluation dataset. Having such an
independent evaluation dataset is a more robust way to really
test the performance of a statistical model and the accuracy
of spatial predictions. Furthermore, we argue that through
obtaining such a good correlation between predicted biomass
and the evaluation dataset, our results clearly demonstrate the
importance of a well-thought sampling strategy that optimises
the coverage of the environmental covariate space as well as
the inclusion of covariates that have a direct effect on the
response. Our modelling approach also allows for an accurate
quantification of the uncertainty in the final biomass estimations.
Traditionally, uncertainty in model performance is mostly
assessed by dividing a data set in a training and a test data
set or by cross-validation. These traditional methods have only
limited predictive power because they perform accurately for
the provided dataset but usually provide poor predictions when
new datasets are fed into the models. The commonly used
covariate for kelp distribution modelling, wave exposure at the
sea surface (Bajjouk et al., 2015; i.e., wave exposure at the sea
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FIGURE 7 | Plot showing the correlation between observed biomass of
Laminaria hyperborea in the field at sites in the independent evaluation
dataset and the predicted biomass at these sites by the model containing the
predictors bottom wave exposure, depth, and proportion hard substrate. Red
line is the line of best fit and the shaded blue area represent 95% confidence
intervals.

surface; Bekkby et al., 2009; Gorman et al., 2012; Gregr et al.,
2018), did not perform as well as bottom wave exposure in
predicting the spatial distribution of L. hyperborea in our study.
Interestingly, the model containing significant wave height (i.e.,
wave exposure at the sea surface) appeared to perform quite well
in the statistical modelling. Only when predicting to new data
and when comparing those predictions with the independent
evaluation dataset did it become apparent that this fourth model
underperforms substantially compared to the same model but
with bottom wave exposure substituting wave exposure at sea
surface. Hence, an independent evaluation data set is crucial
in order to properly address the variance-bias trade-off in a
model (Friedman et al., 2001); to identify the appropriate model
complexity (Gregr et al., 2018); and to assess the accuracy and
uncertainty in model predictions.

Wave exposure, either in the form of wind fetch or significant
wave height, is used as a covariate in all published kelp models.
However, kelp is affected by the wave energy at or near the sea
floor. The wave energy is thus interacting with depth in a manner
that in general reduces it with increasing depth. The importance
of this interaction has also been recognised by other researchers

(Bekkby et al., 2008; Bajjouk et al., 2015). Without its inclusion,
our statistical model of kelp biomass faced problems in deep areas
where the surface wave energy (i.e., significant wave height) is too
high (i.e., not enough light available) for the kelp to thrive.

However, a simple statistical interaction between those two
covariates was insufficient to describe their joint effect on kelp
biomass. The interaction between the two was better explained
by the implementation of a new covariate (i.e., bottom wave
exposure) based on linear wave theory, similar to the methods
applied in Rattray et al. (2015). Rattray et al. (2015) presented
a method for extending wave exposure from a surface covariate
to a seabed covariate. They used estimations of wave-induced
orbital velocities at the seabed from wave models as a surrogate
for wave exposure. For instance, at equal depths, waves with
approximately similar significant wave heights will differ with
respect to exposure on the seabed if the wavelengths (wave
periods) are different. Long waves, typically induced by offshore
swells, will have a larger impact on the seabed than shorter
waves, often associated with wind-induced waves. The covariate
representing the maximum wave-induced orbital velocity on
the seabed, explained in Rattray et al. (2015) as a function of
wave height, wavelength, and ocean depth, became a crucial
covariate in our model.

In addition to bottom wave exposure, our results show there
are important relationships between the biomass of L. hyperborea
and the predictors of depth and the proportion hard substrate.
While depth is often used in similar studies (Bekkby et al.,
2009; Young et al., 2015; Gregr et al., 2018), both proportion
hard substrate and bottom wave exposure are less often used
because they are rarely available. The two latter covariates are
of particular interest because they represent more direct (i.e.,
proximate) effects on kelp biomass. Often, researchers do not
have access to processes directly influencing biological responses,
and often use proxies that to a varying degree are correlated with
the covariates that directly explain this variance.

As with altitude in terrestrial studies, bathymetry or depth is
often used as a covariate in marine studies. Both altitude and
ocean depth are often statistically important covariates since they
act as proxies for many unmeasured proximate factors. As such,
depth can act as a proxy for temperature, salinity, nutrient and
particle concentrations, change in wave energy, and light, with
light being the most important as light is the energy source for
kelp growth (Gattuso et al., 2006).

In our study, the depth covariate primarily acts as a proxy
for light and wave energy, which both decrease with increasing
depth. Regarding depth as a proxy for light in our study area, light
conditions are assumed to exhibit little spatial variation given
that the study area is far out in the archipelago with clear water
and there are no major rivers or other factors that are expected
to introduce significant variability in water transparency, hence
light conditions. Other studies modelling the spatial distribution
of kelp (Bekkby et al., 2009; Gorman et al., 2012; Young et al.,
2015) also report the importance of depth, often being the
most influential covariate. In this study we have high-resolution
bathymetry at our disposal, however, due to military restrictions,
this is not the case in most areas along the Norwegian coast where
50 m resolution is the norm.
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Kelp species such as L. hyperborea require hard substrate
to anchor their holdfasts and develop (Kain and Jones, 1971).
Given the statistical importance of proportion of hard substrate,
our study and the one by Young et al. (2015), underpins the
value of accurate substrate maps when modelling the spatial
distribution of kelp forests. A good model of hard substrate can
explain as much as or more of the variance as depth can do
(Young et al., 2015; Gregr et al., 2018). However, most studies
do not have access to a raster of hard substrate and need to
use terrain variables such as slope (Bekkby et al., 2009; Gorman
et al., 2012; Rattray et al., 2015; Gregr et al., 2018), curvature
(Bekkby et al., 2009; Rattray et al., 2015), or rugosity (Rattray
et al., 2015) as proxies instead. While such proxies to a varying
degree seem to pick up some of the variance explained by
the hard substrate, future studies should strive to include hard
substrate directly.

There is an increasing need for reliable predictions of the
spatial distribution of kelp biomass. Recently, the potential
of kelp forests in capturing and storing carbon from the
atmosphere has been recognised (Krause-Jensen and Duarte,
2016). Most of the kelp production is not consumed inside
the kelp forest but exported. An unknown part is transported
to deep water where it is fuelling communities or buried
and thereby removed from the quick carbon cycle. The
significance of this role is more or less unknown and has
therefore been referred to as “the elephant in the blue carbon
room” (Krause-Jensen and Duarte, 2016). To increase the
understanding of the role of kelp forests in the larger coastal
ecosystem, data on biomass, production, spatial distribution,
transport processes, and consumption are all of principal
importance. Our model can be applied to larger areas and
is a step forward filling gaps with regard to biomass and its
spatial distribution.

Kelp is harvested by humans and some 160,000 tonnes are
being harvested in Norway annually. The importance of kelp
forests as feeding and nursery areas for coastal fish and seabirds
and lack of quantitative knowledge about resource sizes generate
conflicts between different stakeholders. To ensure an improved
harvesting regime it will be important to quantify the available
resources and address how much of the standing stock is
harvested in different areas. A spatial biomass model, like the one
developed in this study, in combination with good harvest data is
crucial to address this question.

This study provides a snapshot in time of the standing stock
of L. hyperborea in the study area. The temporal variability of
the spatial distribution and its standing stock remain largely
unknown. The presented modelling framework can be used both
on a regional and national scale, although data available at these
scales have a lower quality (i.e. lower resolution) compared to the
data available in this study. Future biomass assessments should
strive to apply more efficient remote sensing techniques (Bell
et al., 2015; Nijland et al., 2019), although these techniques will
not work properly for L. hyperborea that often form canopies
way below the surface and out of reach for those sensors. Such
techniques, however, are more readily replicated in time and
have the potential to provide crucial insights into the temporal
dynamics of kelp forest biomass over larger areas.
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