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The orexigenic agouti-related protein (AgRP) and the anorexigenic pro-opiomelanocortin 
(POMC) are crucial players in the control of feed intake in vertebrates, yet their role in 
teleosts has not been fully established. Triplicate groups of Atlantic salmon (Salmo salar) 
post smolts were subjected to (1) fasting for 3 days (fast) and (2) normal feeding (fed), 
resulting in a significant (p < 0.05) upregulation of hypothalamic agrp1 transcripts levels 
in the fast group. Moreover, the mRNA abundance of agrp1 was significantly (p < 0.05) 
correlated with the stomach dry weight content. Corresponding inverse patterns were 
observed for pomca2, albeit not statistically significant. No significant differences were 
found for the other paralogues, agrp2 and pomca1 and b, between fed and fast groups. 
The significant correlation between stomach fullness and agrp1 mRNA expression 
suggests a possible link between the stomach filling/distension and satiety signals. Our 
study indicates that hypothalamic agrp1 acts as an orexigenic signal in Atlantic salmon.

Keywords: Atlantic salmon, hypothalamus, agrp, pomc, fullness, fasting, gastrointestinal tract

INTRODUCTION

Food intake and appetite are controlled by the integration of peripheral and central signals in 
the hypothalamus of vertebrates (Volkoff, 2016; Delgado et  al., 2017; Rønnestad et  al., 2017). 
Appetite-stimulating (orexigenic) and appetite-inhibiting (anorexigenic) factors are key drivers 
of feeding, and several studies have suggested that their functional role have been evolutionary 
conserved across vertebrates, including teleosts (Volkoff, 2016; Rønnestad et  al., 2017; Soengas 
et  al., 2018). In many teleost species, two agouti-related protein (agrp) paralogous genes (agrp1 
and agrp2) have been identified (Agulleiro et al., 2014; Shainer et al., 2019), including in Atlantic 
salmon (Salmo salar) (Murashita et  al., 2009a). In addition, the orexigenic role of hypothalamic 
AgRP appears to be  conserved in some of the teleost species studied, such as goldfish (Carassius 
auratus) (Cerda-Reverter and Peter, 2003), zebrafish (Danio rerio) (Song et  al., 2003; Shainer 
et  al., 2019), coho salmon (Oncorhynchus kisutch) (Kim et  al., 2015), and gilthead seabream 
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(Sparus aurata) (Koch et al., 2018). However, in Atlantic salmon, 
previous results indicated that agrp1 may have an anorexigenic 
effect based on analyses of the whole brain mRNA expression 
after 6  days of fasting, while agrp2 had no effect on the control 
of appetite (Murashita et  al., 2009a).

Proopiomelanocortin (POMC) is a precursor peptide which is 
post-transcriptionally cleaved into melanocyte-stimulating hormones 
(α-, β- and γ-MSH) and the adrenocorticotropic hormone (ACTH) 
(Castro and Morrison, 1997). In Atlantic salmon, three pomc 
paralogous genes (pomca1, pomca2, and pomcb) and one splice 
variant (pomca2s) have been previously identified and characterized 
(Murashita et al., 2011). In mammals, MSHs are involved in appetite 
control (Saneyasu et  al., 2011), while in teleosts their functional 
role in appetite control remains to be clarified. For example, fasting 
did not change pomc expression in goldfish (Cerdá-Reverter et al., 
2003), but intracerebroventricular administration of α-MSH showed 
an anorexigenic effect for this species (Matsuda et al., 2008; Kojima 
et  al., 2010). In zebrafish, a cyprinid species as goldfish, it has 
been shown that pomca expression decreased in starved larvae 
(Liu et  al., 2016). In salmonids, fasting has triggered a decrease 
in pomca1 (but not pomca2 or pomcb) expression in the hypothalamus 
of rainbow trout (Leder and Silverstein, 2006) and in whole brain 
of Atlantic salmon (Valen et al., 2011). These results are consistent 
with the anorexigenic role reported for mammals.

Signals from the gastrointestinal tract, such as sense of 
fullness, are important for appetite control and contribute to 
regulate food intake on a meal-to-meal basis (Sam et al., 2012). 
After a meal, the distension of the stomach and interactions 
between nutrients and the gut wall trigger the secretion of 
several peptide hormones, communicating the filling along with 
luminal nutrient status to the hypothalamus. This applies also 
to salmonids, as satiety signals from the gastrointestinal tract 
have a major impact on appetite (Grove et al., 1978). In rainbow 
trout, for instance, appetite returned (i.e., fish restarted feeding) 
when 80–90% of the stomach content from the previous meal 
was transferred downstream into the proximal gut (Ware, 1972).

In the Atlantic salmon aquaculture production, a period of 
fasting that lasts for 2–4  days is a common practice prior to 
handling, transportation, and harvest (Waagbø et  al., 2017). This 
practice allows complete evacuation of the gut and an empty 
digestive tract, which minimizes impacts on fish welfare and 
ensures proper hygiene after harvest (Einen et  al., 1998; Robb, 
2008). Fasting also suppresses any postprandial elevation of metabolic 
rate, thereby permitting the fish to allocate more energy towards 
swimming and stress handling (Waagbø et  al., 2017). Uncovering 
the impacts of these fasting periods on appetite and food intake 
control is therefore essential to optimizing their recovery. In this 
study, we investigated the effect of 3 days of fasting on hypothalamic 
agrp (1 and 2) and pomc (a1, a2 and b) and explored the 
relationship between appetite and gastrointestinal filling.

MATERIALS AND METHODS

Ethical Treatment of Animals
The research and sampling were conducted in accordance with 
the Norwegian Animal Research Authority regulations and was 

approved by the local representative of Animal Welfare at the 
Department of Biological Sciences, University of Bergen (Norway).

Experimental Setup and Sampling
We obtained Atlantic salmon individuals from Bremnes Seashore’s 
RAS facility (Trovåg, Norway). Fish were randomly assigned to 
tanks (5 fish per tank) and acclimatized to the experimental setting 
consisting of six freshwater indoor 150 L tanks and water temperature 
at 8.5°C. Continuous day light was used to mimic the standard 
commercial procedures and to stimulate optimal growth (Hansen 
et  al., 1992). During the 18  days of acclimation period, all tanks 
were fed daily ad libitum from 9:00 to 16:00  h with commercial 
dry fish pellets (Biomar 3  mm) using automatic fish feeders.

To evaluate the effect of the fasting, 14 Atlantic salmon 
post smolts (average body weight 214.7  ±  61.7  g and length 
26.8 ± 2.4 cm) were sampled from two groups that were either 
fed (sampled 2  h after feeding) or fasted for 3  days. In total, 
seven fish per group were sampled (2 or 3 fish per tank). 
Atlantic salmon were euthanized with a lethal dose of 200 mg/l 
of MS222 (Tricaine methanesulfonate, Sigma-Aldrich, MO, 
USA). The whole brain was removed from the skull, and the 
hypothalamus sampled and stored in RNAlater (Thermo Fisher 
Scientific, MA, USA). The Fulton’s condition factor (K) was 
determined at the sampling time using the equation:

  K
W

L
= æ

è
ç

ö

ø
÷100
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where, W is the weight (g) and L is the length of the fish 
(cm) (Froese, 2006).

Gastrointestinal Tract Compartments 
Filling
We dissected and carefully divided the gastrointestinal tract into 
three compartments (see Supplementary Figure  1A): stomach 
(ST), midgut (MG), and hindgut (HG), using surgical clamps 
to avoid loss or transfer of content between compartments. Next, 
each segment was emptied of food and digesta by gently stroking 
the content out onto pre-weighed pieces of aluminium foil. The 
weight of contents in each segment was first measured on a wet 
weight basis, and thereafter, dry weight was obtained after incubating 
in an oven at 110°C for at least 3 h, until it was completely dried.

mRNA Abundance Analysis by RT-qPCR
Total RNA was isolated from the hypothalamus using TRI 
reagent (Sigma-Aldrich) according to the manufacturer’s 
instructions. Samples were treated with TURBO DNA-free 
(Thermo Fisher Scientific) to eliminate possible genomic DNA 
contamination. Quality of DNase treated total RNA was 
assessed on all samples using an Agilent 2100 Bioanalyzer 
(Agilent Technologies, CA, USA). All samples had a RNA 
integrity number (RIN) equal or higher than 9 (scale 1–10). 
cDNA was synthesized from 1.0  μg of DNase treated total 
RNA using oligo (dT) primer from SuperScript III First-
Strand Synthesis system for RT-PCR kit (Thermo 
Fisher Scientific).
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Specific primers spanning an exon-exon junction were designed 
for all the target genes (Table 1). qPCR reactions were performed 
in duplicates using iTaq Universal SYBR Green Supermix 

(Bio-Rad, CA, USA) in a 20  μl final reaction volume. The qPCR 
reactions were performed in a Bio-Rad CFX96™ Real-Time System 
with the following cycling conditions: 95°C for 30  s; 40  cycles 

TABLE 1 | Sequence of the specific primers used for qPCR mRNA expression analysis. Primer sequences, amplicon sizes, R2, and qPCR efficiency are indicated for 
each primer pair.

Gene GenBank acc. no. Sequence (5′ → 3′) Amplicon (bp) R2 Efficiency (%)

agrp1 NM_001146677.1 F: ATGGTCATCTCAGTATTCCCAT 152 0.9995 93
R: AGAGAGCCTTTACCGATATCTG

agrp2 NM_001146678.1 F: TGTTTCGCCGAAGACCTGAA 142 0.9997 98
R: GTTTCTGAAATGCAACGTGGTG

pomca1 NM_001198575.1 F: ATACTTTTGAAACAGCGTGACGA 108 0.9997 101
R: CAACGAGGATTCTCCCAGCA

pomca2 NM_001198576.1 F: TTTGGCGACAGGCGAAGATG 91 0.9949 94
R: TCCCAGCACTGACCTTTCAC

pomcb NM_001128604.1 F: CAGAGGACAAGATCCTGGAGTG 182 0.9916 103
R: TTTGTCGCTGTGGGACTCAG

FIGURE 1 | Effects of 3 days of fasting on hypothalamic mRNA expression of agrp1, agrp2, pomca1, pomca2, and pomcb. Results are presented as mean ± SEM 
(n = 7). Asterisk (*) indicates statistically significant difference (p = 0.02). For detailed statistical information, refer to Supplementary Table 1.
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of 95°C for 5  s, 60°C for 25  s. Melting curve analysis over a 
range of 65–95°C (increment of 0.5°C for 2  s) allowed for the 
detection of possible nonspecific products and/or primer dimers.

Standard curves relating initial template quantity to 
amplification cycle were generated from the target gene 
cloned into pCR4-TOPO vector (Thermo Fisher Scientific) 
using a 10-fold stepwise dilution series. The standard curves 
were used to determine the qPCR efficiency for each assay 
(Table  1). The copy number was determined for each gene/
sample based on the respective standard curve, using the 
following equation:

  Copy number

Cq

slope =

-æ

è
ç

ö

ø
÷

10

Intercept

Statistical Analysis
All mRNA expression data were tested for normality using 
Shapiro-Wilk W-test and subsequently log-transformed to ensure 
that it followed a normal distribution. Correlation analyses were 
conducted with generalized linear models (GLM) assuming a 
normal distribution. The effects of treatment (fed versus fast) 
on condition factor (K) and on the mRNA expression levels 
(copy numbers of each transcript) were evaluated (n  =  7 fish 
per treatment group). It was also tested the effects of 
gastrointestinal dry weight contents (ST, MG, and HG) on the 
mRNA levels of each transcript. In addition, it was assessed 
the relationship between gastrointestinal dry weight contents 
and wet weight and tested for tank effects on mRNA expression 
levels by adding the tank as an interaction factor. All statistical 
analyses were carried out by RCoreTeam (2018), using the 
package ggplot (Wickham, 2016) to plot graphs. The plot bar 
graphs (Figure  1; Supplementary Figure  1) were produced in 
GraphPad Prism version 8.2.0 for Windows (GraphPad Software, 
CA, USA). Statistical significance was considered at p  <  0.05.

RESULTS

Gastrointestinal Tract Fullness and 
Condition Factor (K)
The condition factor significantly (p  =  0.01) decreased in the 
fast group (1.06 ± 0.03) compared to the fed group (1.11 ± 0.02). 
The content of the three different regions of the gastrointestinal 
tract (ST, MG, and HG) was significantly different between 
the fed and fast group (see Supplementary Figure  1). In fact, 
the fast group had no ST content, and both MG and HG 
content was much lower than in the fed group. The wet and 
dry content weight was highly correlated in all the three gut 
sections (Supplementary Figure  2).

Effects of Fasting on agrp and pomc 
mRNA Levels and Correlation With Gut 
Sections Fullness
Fasting significantly (p = 0.02) upregulated hypothalamic agrp1 
mRNA expression (Figure  1). Furthermore, pomca2 showed 

an opposite trend and appeared to be downregulated by fasting; 
however, the differences were not statistically significant 
(Supplementary Table 1). No other significant differences were 
observed for agrp2, pomca1, and pomcb between fed and fast 
Atlantic salmon (Figure  1). Moreover, agrp1 mRNA levels and 
stomach filling were significantly (p  =  0.03) correlated 
(Figure 2A; Supplementary Table 2), while no other statistically 
significant correlation was found between agrp2, pomca1, pomca2, 
and pomcb mRNA copy number and gastrointestinal 
compartments content (Figures  2B–E).

There were no statistically significant effects of the tanks 
on the expression levels of the target genes.

DISCUSSION

The present study adds to and partially revises the existing 
knowledge on neuroendocrine control of appetite in Atlantic 
salmon, which was based on analysis of whole brain instead 
of specific brain regions. Here, we focused on the hypothalamus 
that is considered the hub for the appetite control in vertebrates. 
As in mammals, the teleost feeding center seems to reside 
in the hypothalamic area (reviewed in Peter (1979)). 
Furthermore, several neuropeptides involved in appetite 
control, including AgRP and POMC, are present in the 
hypothalamus of teleost species (Cerdá-Reverter et  al., 2003; 
Cerda-Reverter and Peter, 2003; Otero-Rodiño et  al., 2019). 
Different nutrient status also modulate the expression of 
teleost hypothalamic neuropeptides (reviewed in Volkoff 
(2016); Delgado et  al. (2017); Rønnestad et  al. (2017)). 
However, we  cannot rule out that other areas of the brain 
might act as feeding centers in teleost fishes, as reviewed 
in Cerdá-Reverter and Canosa (2009) and Soengas et  al. 
(2018), emphasizing the importance to explore the role of 
each brain region in appetite control.

Our results show that 3 days of fasting significantly increased 
hypothalamic agrp1 mRNA expression, suggesting that agrp1 
acts as an orexigenic factor in Atlantic salmon. This contrasts 
previous findings for this species (Murashita et  al., 2009a), 
providing novel insights that may revise the current knowledge 
on orexigenic and anorexigenic factors in salmon. Our data 
are in agreement with the suggested AgRP orexigenic role 
for other vertebrates including several fish species, such as 
goldfish (Cerda-Reverter and Peter, 2003), zebrafish (Song 
et  al., 2003; Jeong et  al., 2018; Shainer et  al., 2019), seabass 
(Dicentrarchus labrax) (Agulleiro et  al., 2014), Ya fish 
(Schizothorax prenanti) (Wei et al., 2013), arctic char (Salvelinus 
alpinus) (Striberny et  al., 2015), and coho salmon (Kim et  al., 
2015). The discrepancies observed between the results obtained 
in the present study and the previous studies from Valen 
et  al. (2011), which indicated that agrp1 have an anorexigenic 
role, are most likely a result from hypothalamus versus whole 
brain analysis. It is possible that agrp1 is also abundant in 
non-hypothalamic regions of the brain (Kurokawa et al., 2006) 
and offers other functional roles than appetite control (Xiao 
et al., 2003). This denotes the importance of analyzing individual 
tissues/organs and the need to revisit previous data in a more 
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detailed manner. However, we  cannot rule out the hypothesis 
that the controversial findings may be  a consequence of the 
different sampling times, i.e., 3  days fasting in the present 
study versus 6  days (Murashita et  al., 2009a) or 30  min to 
24  h (Valen et  al., 2011) fasting periods. Therefore, a future 
detailed study including several sampling time points will 
be  necessary to ascertain the current hypothesis of this study. 
Furthermore, in situ hybridization and immunohistochemistry 
studies will be  essential to reveal the location of AgRP1 
expression within the hypothalamus and investigate its possible 
co-localization with other neuropeptides, such as neuropeptide 

Y (NPY), POMC or cocaine- and amphetamine-regulated 
transcript (CART).

We found a correlation between agrp1 mRNA levels and 
stomach filling content, which may support the hypothesis that 
agrp1 is also an important orexigenic factor in Atlantic salmon. 
Previous studies in rainbow trout (150–200  g) have shown that 
appetite and fullness had an almost perfectly inverse relationship, 
with appetite return reaching its maximum level when fullness 
approaches 0 and vice-versa (Grove et  al., 1978). Furthermore, 
ca. 50 h for a complete gastric emptying in fish with a 150–250 g 
of weight was indicated. Our study is in line with these results, 

A B

C

E

D

FIGURE 2 | mRNA expression levels versus content in the different compartments of the gastrointestinal tract (stomach, midgut, and hindgut). (A) agrp1, (B) 
agrp2, (C) pomca1, (D) pomca2, and (E) pomcb mRNA expression is presented as the log-transformed copy number (no) per nanograms (ng) of total RNA. Dots 
represent all individual fish (n = 14), while solid lines represent linear regressions estimated by the general linear model (GLMs). The weight of gastrointestinal tract 
content was standardized by the fish weight. For detailed statistical information, refer to Supplementary Table 2.
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as 3  days of fasting resulted in a complete empty stomach and 
increased levels of the orexigenic agrp1, supporting the hypothesis 
proposed by Grove et  al. (1978) that the return of appetite is 
proportional with the emptying of the stomach. In addition, 
it has been previously reported by Murashita et  al. (2009b) 
that 6  days of fasting induced upregulation of stomach ghrelin 
1 in Atlantic salmon. The orexigenic hormone ghrelin promotes 
the release of hypothalamic AgRP (reviewed in Nuzzaci et  al., 
2015). Therefore, we can hypothesize that also in Atlantic salmon 
fasting induces the increase of ghrelin levels, which, consequently 
triggers the increase expression of agrp1 in the hypothalamus. 
However, this hypothesis needs to be  further investigated, 
particularly because the current study is limited to only two 
very distinct phases, i.e., full versus empty stomach, and therefore 
other factors, such as nutritional conditions, may also contribute 
to the hypothalamic expression of the neuropeptides analyzed. 
For example, in mammals, it has been shown that increased 
glucose levels inhibit the NPY/AgRP neurons (reviewed in Marty 
et  al., 2007); however, it seems hypothalamic agrp mRNA 
abundance is not affected by hyperglycaemic treatment in rainbow 
trout (Otero-Rodiño et  al., 2015). The link between appetite 
(mRNA expression of orexigenic/anorexigenic factors) and 
stomach fullness, including peripheral hormones, and/or the 
role of the nutritional status are important issues that require 
further research.

The analysis of expression of agrp2 revealed that fasting 
has no effect on its mRNA levels, confirming the observations 
by Murashita et  al. (2009a). In addition, the hypothalamic 
agrp2 expression levels were much lower than the levels of 
agrp1 (Figure 1). All together, these results suggest that Atlantic 
salmon agrp2 may have other functional roles than controlling 
appetite. This would correspond to findings in zebrafish (Shainer 
et  al., 2017) suggesting that pineal agrp2 regulates background 
pigment adaptation for camouflage (Zhang et  al., 2010) and 
pre-optic agrp2 acts as a neuroendocrine modulator of the 
stress response (Shainer et  al., 2019).

Among the Atlantic salmon pomc genes analyzed in this 
study, only pomca2 appears to be  possibly downregulated after 
3 days of fasting, opposite to previous findings in Atlantic salmon 
whole brain analysis after 6  days of fasting (Valen et  al., 2011) 
where only pomca1 significantly decreased after fasting. The 
anorexigenic role of pomc have been reported for several fish 
species (reviewed in Volkoff, 2016), including salmonids, for 
e.g., in coho salmon intra-peritoneal injections of α-MSH 
suppressed feed intake (White et al., 2016). However, conflicting 
data have also been reported for other salmonids: in rainbow 
trout 14 days of fasting did not affect pomc transcripts expression 
levels, whereas 28 days of fasting resulted in a significant decrease 
of hypothalamic pomca1 but not for pomca2 or pomcb (Leder 
and Silverstein, 2006), and 4 months of fasting (118 days) resulted 
in a significant increase of both hypothalamic pomca1 and pomcb 
expression levels. The very low mRNA expression levels here 
reported for hypothalamic pomcb suggests that this gene may 
not serve as an appetite-controlling factor in the hypothalamus 
of Atlantic salmon. This hypothesis can be  also supported by 
the fact that intraperitoneal deliver of leptin, a strong anorexigenic 
hormone, did not affect pomcb mRNA expression in Atlantic 

salmon (Murashita et  al., 2011) or in rainbow trout (Murashita 
et  al., 2008). Taken together, it can be  hypothesized that 
hypothalamic pomca2 and possibly pomca1 (Valen et  al., 2011), 
but not pomcb function as an anorexigenic factor in Atlantic 
salmon; however, this needs to be  further investigated.

In summary, our study demonstrates for the first time a 
correlation between an appetite related neuropeptide, hypothalamic 
agrp1, and stomach filling in a teleost species. Three days of 
fasting upregulated hypothalamic agrp1 mRNA expression levels, 
suggesting an orexigenic role of this gene in Atlantic salmon 
and indicating a different role in appetite control than the one 
proposed for whole brain agrp1 by Murashita et  al. (2009a) 
and Valen et  al. (2011). The agrp1 response observed in this 
study suggests that this gene plays a role in the control of 
appetite in Atlantic salmon, enabling the fish to cope with 
short-term fasting periods and recovery after fasting. Our study 
provides a basis to form hypotheses about the differential 
expression patterns of appetite-controlling factors that need to 
be  further explored. Further research needs to focus on tissue-
specific analysis in Atlantic salmon, including central and 
peripheral signals, and how their interaction affects fish health 
and welfare during sensitive production stages, such as those 
requiring short-term fasting periods.
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