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1  | INTRODUC TION

The interactions among species can shift repeatedly as a result of 
changes in the environment. While environment conditions are con-
tinually fluctuating (e.g. temperatures alternate from low to high at a 

seasonal basis), climate warming is creating a directional change (e.g. 
towards high temperatures). Since the early 1990s, global tempera-
tures have been steadily increasing, and these changes have been a 
major motivation for investigating a pletora of effects on biological sys-
tems, for example, distribution, behaviour, phenology and interaction 
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Abstract
Climate change has profound ecological effects, yet our understanding of how 
trophic interactions among species are affected by climate change is still patchy. 
The sympatric Atlantic haddock and cod are co-occurring across the North Atlantic. 
They compete for food at younger stages and thereafter the former is preyed by 
the latter. Climate change might affect the interaction and coexistence of these 
two species. Particularly, the increase in sea temperature (ST) has been shown 
to affect distribution, population growth and trophic interactions in marine sys-
tems. We used 33-year long time series of haddock and cod abundances estimates 
from two data sources (acoustic and trawl survey) to analyse the dynamic effect 
of climate on the coexistence of these two sympatric species in the Arcto-Boreal 
Barents Sea. Using a Bayesian state-space threshold model, we demonstrated that 
long-term climate variation, as expressed by changes of ST, affected species de-
mography through different influences on density-independent processes. The 
interaction between cod and haddock has shifted in the last two decades due to 
an increase in ST, altering the equilibrium abundances and the dynamics of the 
system. During warm years (ST over ca. 4°C), the increase in the cod abundance 
negatively affected haddock abundance while it did not during cold years. This 
change in interactions therefore changed the equilibrium population size with a 
higher population size during warm years. Our analyses show that long-term cli-
mate change in the Arcto-Boreal system can generate differences in the equilib-
rium conditions of species assemblages.
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of plants and animals (Durant, Krasnov, Nikolaeva, & Stenseth, 2012; 
Ives, 1995; Parmesan & Yohe, 2003; Rosenzweig et al., 2008). Recently, 
it was suggested that indirect effects of climate change, that is, altered 
species interactions, may be more important for population dynamics 
than the direct effects (Ockendon et al., 2014; Stige, Ono, Eriksen, & 
Dalpadado, 2019). For example, changes in temperature may alter the 
behaviour and productivity of organisms which, in turn, may alter spe-
cies interactions (Doney et al., 2012). Climate warming is thought to 
affect local populations in marine systems by altering the interaction 
between a species and its competitors, mutualists, predators, prey or 
even pathogens (Lubchenco et al., 1991). However, the strength of 
the interaction may vary through time particularly in changing envi-
ronement (Stenseth et al., 2002) due to, for example, changes in the 
resource availability (Lima, Previtali, & Meserve, 2006) and presence or 
absence of the interacting species.

High latitude regions are highly sensitive to climate change and 
the Boreal-Arctic seas are already changing drastically (Johannesen 
et al., 2012). According to the Intergovernmental Panel on Climate 
Change, the temperature in the Arctic increases faster than other 
areas and will likely continue to increase further in the future lead-
ing to a borealization of the system (Fossheim et al., 2015; Frainer 
et al., 2017). More specifically, in the Barents Sea, a marginal sea 
of the Arctic Ocean, summer temperature will possibly increase be-
tween 2°C and 4°C by the mid-21 century (Sandø, Johansen, Aglen, 
Stiansen, & Renner, 2020). High latitude regions are thus ideal sys-
tems to study the effect of climate change (e.g. warming) on species 
interaction. Atlantic haddock (Melanogrammus aeglefinus) and cod 
(Gadus morhua) are two gadoid species of high economic importance, 
closely related, that co-occur in many regions in the North Atlantic 
such as the Barents Sea (Jakobsen & Ozhigin, 2011), the North Sea 
(Hedger et al., 2004; Høines & Bergstad, 1999) and the Georges 
bank (Buckley, Calidarone, & Lough, 2004). Haddock and cod are 
potential competitors at the larval stage having an overlapping diet 
(Høines & Bergstad, 1999; Kane, 1984) but are more segregated 
when adults (Jakobsen & Ozhigin, 2011). Cod is, however, known to 
prey on haddock in the Barents Sea (Durant et al., 2014; Jakobsen 

& Ozhigin, 2011) where the weight portion of haddock in cod diet 
is about 6%–14% (Holt, Bogstad, Durant, Dolgov, & Ottersen, 2019; 
ICES, 2018).

Here, we explore the effect of year-to-year variation in climatic 
condition on the interaction between species using the Northeast 
Arctic (NEA) haddock and NEA cod stocks in the Barents Sea as an 
example. Both stocks are currently growing (ICES, 2018), expanding 
their distribution area northward (see Figure S1), and have a partially 
overlapping diet (Jakobsen & Ozhigin, 2011) which may affect the 
strength of their interaction and the resulting population dynamics. 
NEA haddock mature in the Barents Sea at age 4–7 years (Bergstad, 
Jørgensen, & Dragesund, 1987). The mature haddock migrate to 
spawn in March to June along coastal banks and on the slope be-
tween the continental shelf off north-western Norway and the deep 
Norwegian Sea from 62 to 70°N (Jakobsen & Ozhigin, 2011). The 
NEA cod mature at age 7–11 (Ottersen, Hjermann, & Stenseth, 2006) 
and migrate to the coast of Norway to spawn in February to early 
May (Langangen et al., 2019). Climate indices and regional scale hy-
droclimatic variables have previously been used as environmental 
drivers to explain gadoid population growth (Durant et al., 2013) 
and particularly in the Barents Sea for cod and haddock (Durant 
& Hjermann, 2017). Climate indices, such as the North Atlantic 
Oscillation index for the winter months (NAO; Hurrell & Deser, 2009), 
capture complex spatio-temporal variability into a simple metric and 
integrate larger-scale climate processes and their variability (Hallett 
et al., 2004). They have been shown to be good predictors for biolog-
ical processes (Stenseth, Ottersen, & Hurrell, 2003). In the Barents 
Sea, NAO was documented affecting different component of the 
system such as NEA cod (Hjermann et al., 2007).

Temperature is a regional hydro-climatic variable poten-
tially affecting the survival and growth of early life stages 
(Dingsør, Ciannelli, Chan, Ottersen, & Stenseth, 2007; Langangen 
et al., 2014) as well as their distribution (Hidalgo et al., 2012) and 
recruitment (Ottersen et al., 2013). In the Barents Sea, the Kola 
transect temperature is representative of the Atlantic water 
masses in the south-central Barents Sea (Ingvaldsen, Loeng, 

TA B L E  1   Summary of the equations

Equation formulation Eqn.

Theory ln(Ni,t+1) = ai0 + (1 + aii)ln(Ni,t) + aijln(Nj,t) T1

ln(Ni,t+1) = ai0 + (1 + aii)ln(Ni,t) + aijln(Nj,t) if θt < θ T2

bi0 + (1 + aii)ln(Ni,t) + bijln(Nj,t) otherwise

Model ln(Codt+1) = ac0(STt,NAOt) + (1 + acc)ln(Codt) + achln(Hadt) M1

ln(Hadt+1) = ah0(STt,NAOt) + (1 + ahh)ln(Hadt) + ahcln(Codt) if STt < θ M2

bh0(STt,NAOt) + (1 + ahh)ln(Hadt) + bhcln(Codt) otherwise

Note: The two first equations correspond to the theoretical reparametrized and log-transformed Gompertz model (see  Supporting Information 
model description) for equation T1 and the corresponding thresholded formulation (equation T2). The environmental variable θt is used as a threshold 
to partition the effect of ‘low’ or ‘high’ environmental regime (e.g. if θ interacts with Nj, (aij) will differ from (bij), as can ai0 from bi0 while aii will remain 
unchanged). The remaining two equations (equations M1 and M2) correspond to the models used for cod and haddock in the study, respectively, 
where ac0(STt, NAOt) = a'c0 + ac,ST STt + ac,NAO NAOt and ah0(STt,NAOt) = a'h0 + ah,ST STt + ah,NAO NAOt while bh0(STt,NAOt) = b'h0 + bh,ST STt + bh,NAO 
NAOt with in our case ah,ST = bh,ST and ah,NAO = bh,NAO. Codt and Hadt are the abundance for cod and haddock at time t, respectively, and θ is the 
threshold for ST = 4.05°C. Subscript ‘h’ is for haddock, ‘c’ for cod and ‘t’ for time/year.
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Ådlandsvik, & Ottersen, 2003) and explain the dynamics for NEA 
cod (Hjermann, Stenseth, & Ottersen, 2004) and northward pop-
ulation displacement in the Barents sea of both cod and haddock 
(Fall, Ciannelli, Skaret, & Johannesen, 2018; Landa, Ottersen, 
Sundby, Dingsør, & Stiansen, 2014). Both NAO and sea tempera-
ture (ST) are classically used in population dynamics studies for the 
cod and haddock and well documented as affecting the change of 
population in the studied system (Frainer et al., 2017; Johannesen 
et al., 2012), particularly at early life stages (Stige et al., 2010), and 
other fish (Ottersen, Kim, Huse, Polovina, & Stenseth, 2010).

We use a discrete-time Gompertz density-dependent 
model (Table 1), a model that is widely used across marine 
(Langangen et al., 2017; Myers & Cadigan, 1993; Myers, Mertz, & 
Barrowman, 1995) and terrestrial (Bjørnstad, Fromentin, Stenseth, 
& Gjøsæter, 1999; Durant et al., 2012; Stenseth et al., 1999, 2015) 
systems, where intraspecific and interspecific interactions affect 
each species’ population density. In particular, we use a Gompertz 
state-space model (Ono, Langangen, & Stenseth, 2019) and used 
two sources of population estimates: scientific bottom trawl sur-
veys and acoustic surveys.

Our aims are (a) to assess whether the interaction between cod 
and haddock is changing over time, (b) to establish, if this change is 
linked to any changes in climatic variables and (c) to understand what 
it means for the population dynamics in the system.

2  | MATERIAL S AND METHODS

2.1 | Data

The study was conducted on NEA haddock and NEA cod popula-
tions from the Barents Sea; the data (1981–2018) were extracted 
from fish stock assessments reported by the International Council 
for Exploration of the Seas (ICES; tables B1 and B3 for the had-
dock, tables A3 and A13 for the cod; ICES, 2018). The data are 
stock abundances estimated from the Joint winter Barents Sea 
acoustic survey in January–March and abundance indices from 
the winter bottom trawl surveys (1981–2018) in the Barents Sea 
for haddock. For cod, the data reported by ICES are the sum of 
acoustic abundance estimates from the Joint winter Barents Sea 
survey and the Norwegian Lofoten acoustic survey (1985–2018), 
and the abundance index from the Norwegian bottom trawl sur-
vey (1981–2018) in the Barents Sea in January–March (Figure 1). 
For both species, ICES reported yearly total abundance that cor-
responds to the sum of abundances for fish of age 1 and older 
(ICES, 2018).

Two climatic variables (the ST and the NAO) were used as poten-
tial environmental drivers of haddock and cod population dynam-
ics (e.g. Durant et al., 2013; Durant & Hjermann, 2017; Hjermann 
et al., 2007; Landa et al., 2014; Ottersen et al., 2013; Figure 1). 
The ST (1921–2017) is an aggregated average of several depths 
(1–200 m) at five stations on the Kola meridian transect (33°30′E, 
70°30′–72°30′N) in the Barents Sea (http://www.pinro.ru/). The 

NAO, calculated for the winter months (Hurrell & Deser, 2009), 
represents North Atlantic-scale climate effects (1964–2018).

We used the data from 1985 only (period 1985 to 2017; i.e. 
33 years) ensuring that we had each year both trawl and acoustic 
data for both species to model.

2.2 | Model description

We needed a model formulation that should be able to capture both 
the complexities of species interactions and density-dependent 
regulation and easily interpreted by a general readership. All subse-
quent analyses were based on Gompertz models that incorporated 
the effect of interspecific and intraspecific competition as well as 
environmental variables. The textbook example of the Gompertz 
model (Gompertz, 1825) is written as follows:

where ri is the maximum per-capita (intrinsic) growth rate for species 
i, Ki is the local equilibrium density in the absence of heterospecifics 
and αij represents the per-capita effect of species j on the growth rate 
of species i. Typically, K, r and α are considered constants for a given 
species, location and environmental condition, respectively.

Model (1) can be re-parameterized as follows:

where ai0 = ri, aii = −ri/Ki, and aij = −riαij/Ki, and where αii = 1. That is, 
the ecological parameters can be expressed as statistical parameters: 
ri = ai0, Ki = −ai0/aii, and αij = aij/aii.

Model (2) on the log-scale, and slightly rearranged becomes:

which is equation T1 (Table 1). This model expresses changes in 
log-population size for species i, ln(Ni,t), over annual time step t, as a 
function of its growth potential ai0, a density-dependent effect on 
population increase aii, and a competition/predation effect of species 
j on species i, aij.

2.3 | The Gompertz state-space model

For the Gompertz state-space model, a Gaussian distributed sto-
chastic term with variance �2

proc
 was added to the model to acknowl-

edge the lack of data availability and our imperfect understanding of 
the complex dynamics of the populations.

However, we can seldom observe the true population, but rather have 
an index of population abundance. We assumed that the abundance 
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indices (derived from the trawl and acoustic surveys) were normally 
distributed (in log scale) with variance term, �2

trawl
 (and �2

acoustic
) around 

the true log population values. We included a scaling coefficient β (on 
ln scale) for the trawl index to account for possible scaling issues be-
tween these two sources of data.

2.4 | Thresholded Gompertz state-space model

To detect possible nonlinear effect of climatic variable to the pop-
ulation dynamics, we tested for potential interactions between 
the explanatory variables using the Bürmann's expansion (Chan, 
Kristoffersen, & Stenseth, 2003) for the trawl data and acoustic data 
separately (Stenseth et al., 2015). When nonlinearity was detected, 
we included a threshold non-additive effect in the Gompertz state-
space model (Table 1, equation T2) where the species growth poten-
tial and the competition/predation effect (bj0 and bji, respectively) 
changed according to whether the climate covariate (ST) was above 
or below some threshold level θ (see Supporting Information for im-
plementation detail).

To detect possible threshold value, the model did as fol-
lows: (a) looped over each climate covariate value in the data 
and set it as the new threshold in the model and (b) estimated 
model parameters and calculated the corresponding process 
model log-likelihood. If any covariate values stood out as poten-
tial threshold values, the corresponding log-likelihood would be 
larger. In this search process, we only used climate covariate val-
ues within the 20 and 80 percentiles (19 values used out a total 
of 33) to remove any ‘border’ effect, that is, spurious result due 
to very unequal partition of climate condition (e.g. 95% below 
threshold vs. 5% above). The modelling approach only selects the 
threshold value from the available data, that is, T. The real thresh-
old value is therefore ≤θ and >θb; with θb being the first value 
lower than the selected θ.

2.5 | Parameters estimation and dynamics 
interpretation

We used a Bayesian Markov chain Monte Carlo (MCMC) approach 
to jointly estimate all parameters (for both haddock and cod) in 
the model for the period 1985–2017. For this purpose, we used 
the software Stan through the R packages rstan and shinystan (The 

(5)ln
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O
acoustic
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ln
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F I G U R E  1   Time series of population abundance of NEA 
haddock (a) and NEA Arctic cod (b), North Atlantic Oscillation 
(NAO) calculated for the winter months (c) and average sea 
temperature (ST) aggregated over several depths (1–200 m) (d). 
For plots (a) and (b), lines are abundance indices from bottom 
trawl surveys and dots are indices from acoustic survey. For 
NEA haddock, acoustic data are circled in blue for the years with 
temperature under the estimated threshold between >3.83°C and 
≤4.05°C. The blue bands are the 95% credibility intervals of our 
model for the years 1985–2017. Note that the abundance estimates 
(with the credibility intervals) cannot be directly be compared 
to the abundance indices as they do not take into account the 
observation errors nor the scaling coefficient (β, methods and 
Table 3; Figure S3). For plot (d), the threshold ST between >3.83°C 
and ≤4.05°C is shown with a dashed area. The red dots are the 
yearly value of ST over the threshold and the blue dots the yearly 
values under it
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Stan Development Team, 2014). A likelihood function was created 
based on the model and data (acoustic and trawl abundance esti-
mates at the same time), and in combination with the prior distribu-
tions of the parameters, the posterior distributions were estimated. 
Weakly informative priors were used to let the data drive the infer-
ences. We used three independent chains with 200,000 iterations 
each, where the first 120,000 iterations were used as ‘burn-in’ 
iterations to ensure that the chains had converged. In addition, 
we thinned the chains with a factor 10 to reduce autocorrelation 
in the posterior samples and to produce a reasonable amount of 
output. We used the Gelman and Rubin Ȓ convergence diagnos-
tics (Gelman & Rubin, 1992), visual inspection of the chains, and 
posterior predictive checks to ensure convergence and model fit. 
The R codes developed for the study are found in the Supporting 
Information.

Using the entire MCMC samples, we calculated the ecologi-
cal parameters and the associated uncertainty for species i from 
the estimated statistical parameters; ai0 = ri (maximum per-capita 
haddock growth rate), −ai0/aii = Ki (the local equilibrium density in 
the absence of heterospecific effect), and aij/aii = αij (interspecific 
per-capita effect). See Table 2 and Supporting Information for cor-
respondence between the ecological parameters and statistical 
parameters. We used the mean values of αij and Ki to plot the ze-
ro-growth isoclines (Stenseth et al., 2015) and calculated the equi-
librium abundances N*. We calculated two Jacobian matrices (under 
and over the threshold) and the corresponding dominant eigenval-
ues λ for each sample (Fowler, 2010). Using the eigenvalues, we 
classified the dynamical properties of the system above and below 
the threshold.

All analyses were conducted using the software R v.3.5.2 (R Core 
Team, 2018).

3  | RESULTS

For haddock, the Bürmann test indicated an interaction between 
the effect of cod abundance on haddock and ST for both trawl and 
acoustic data (p < .05). We thus modelled haddock with a non-addi-
tive model (Table 1, equation T2) with an interaction between the 
effect of cod abundance on haddock and ST (Table 1, equation M2). 
The model estimated a temperature threshold θ between >3.83°C 
and ≤4.05°C (Figure S2). For cod, the Bürmann test found no interac-
tion with any environmental variable and we used the additive model 
(Table 1, equations T1 and M1).

Visual inspection of the chains suggested that the model had 
converged; the three parallel Hamiltonian Monte Carlo chains were 
well mixed, had low autocorrelation after thinning and showed no 
trends after the burn-in iterations. There were no warnings of diver-
gent transitions in the chains. The Gelman and Rubin Ȓ convergence 
diagnostics were between >0.999 and <1.002 for all model parame-
ters, providing additional support for convergence. Additionally, the 
model captured the variability in the four observed time series well, 
with no systematic deviations between fitted and observed values 
(Figure S3).

Average parameter estimates from these models are given in 
Table 2 (Figure S4). Using these parameters, we calculated K and α 
which were used to plot the zero-growth isoclines (Figure 2).

For haddock, climate change, as expressed by ST, had a biologically 
important effect (Table 1, equation M2). The interspecific competition 
term—the effect of cod numbers on haddock per-capita growth rate—
was significantly negative (bhc) when ST was over the temperature 
threshold θ and significantly positive (ahc) under the threshold (Table 2). 
In years when ST were colder than the estimated threshold tempera-
ture, median αhc = −1.11; while in years in which temperatures were 

TA B L E  2   Average estimated parameter 
values for the haddock and cod models

Species Term
Mean 
estimate 5% 95% Sig

NEA haddock a'h0 = rh (STt < θ) −0.631 −3.250 2.384

b'h0 = rh (STt ≥ θ) 5.960 3.636 8.241 *

1 + ahh = 1 – rh/Kh 0.617 0.389 0.844 *

ahc = –rhαhc/Kh(STt < θ) 0.419 0.035 0.775 *

bhc = –rhαhc/Kh(STt ≥ θ) −0.445 −0.830 −0.052 *

ah,ST 0.219 −0.100 0.600

ah,NAO −0.025 −0.095 0.045

NEA cod a'c0 = rc 1.115 −0.728 3.025

1 + acc = 1 – rc/Kc 0.593 0.276 0.892 *

ach = –rcαch/Kc 0.233 −0.018 0.491 ·

ac,ST −0.082 −0.329 0.160

ac,NAO 0.047 −0.031 0.124

Note: In ‘term’ is also indicated the equivalence between the statistical parameters estimated and 
ecological parameters of the Gompertz model: r (maximum per-capita (intrinsic) growth rate), K 
(local equilibrium density in the absence of heterospecifics) and α (per-capita effect interaction) as 
described in the Supporting Information model description. Subscript ‘h’ stands for haddock and ‘c’ 
stands for cod. * indicates the parameters that are significant (i.e. the credibility interval does not 
include 0, see Figure S4). · indicates a p < .10.
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warmer αhc = 1.17 (Table S1). In addition, the maximum per-capita had-
dock growth rate (rh) increased on average from −0.631 to 5.960, when 
ST was over the threshold resulting in an increased intraspecific com-
petition. Therefore, ST changes are affecting both intraspecific and in-
terspecific competition for haddock. The environmental variables (ST 
and NAO) did significantly affect the haddock abundance only through 
the temperature threshold effect (Table 2).

For cod, the statistical parameter for the interspecific term ach, 
expressing the effect of haddock numbers on cod per-capita growth 
rate, was significantly positive indicating a covariation (Table 2). 
The corresponding ecological parameters median was αch = −0.57 
(Table S1). The environmental variables did not significantly affect 
the cod abundance in the studied years (Table 2).

Using the entire set of individual MCMC samples (24,000), the 
population stability for haddock and cod was then examined (equi-
librium abundances [Ni*] and eigenvalues [λi]) (Stenseth et al., 2015) 
and associated uncertainty calculated (Table S1). The equilibrium 
abundance Ni* being all positives indicated that the system was fea-
sible. For ST < θ, the two average eigenvalues of the Jacobian matrix 
were λHad = −0.08 and λCod = −0.71 indicating a stable node equilib-
rium (Edelstein-Keshet, 2005). For ST ≥ θ, λHad = λCod = −0.40 ± i0.32 
indicating a stable focus equilibrium which means that the pathway 
of approach to the equilibrium is oscillatory with a decreasing ampli-
tude (Table S1).

4  | DISCUSSION

Using long-term population time series coupled with environmental 
covariates in a state-space framework, we have demonstrated that 
climate change, that is, ocean warming, can alter the interaction 
between cod and haddock thus altering the equilibrium densities 

between the two species. The consequences of climate change on 
the strength of interaction between species are less studied than, 
for example, its direct effect on population dynamics (Bertness & 
Ewanchuk, 2002; Durant & Hjermann, 2017; Durant et al., 2019; 
Stenseth et al., 2004; Stige et al., 2014). Here we illustrated how spe-
cies interactions might be drastically modified with climate change. 
Notably, we found empirical evidence for nonlinear change in spe-
cies interaction (Table 1) directly linked to climate warming; that is, 
increase in the ST. This is consistent with studies suggesting that 
many marine ecosystems are increasingly susceptible to sudden 
nonlinear transformations due to climate warming (Hoegh-Guldberg 
& Bruno, 2010). Non-additive effect (e.g. threshold) of the environ-
ment (e.g. climate) on population dynamics has been observed in 
both terrestrial (Stenseth et al., 2004, 2015) and marine systems 
(Ciannelli et al., 2013; Dingsør et al., 2007; Lindegren, Checkley, 
Koslow, Goericke, & Ohman, 2018; Llope et al., 2011; Vasilakopoulos 
& Marshall, 2015) and may lead to different population equilibrium 
and dynamics (Stenseth et al., 2015). In our study, the nonlinearity 
did not lead to the exclusion of the predated species (i.e. the had-
dock; Figure 2) even if the abundance of the predator (i.e. the cod) 
was increasing. However, the nonlinear effect of long-term changes 
in ST interacted with population processes to swap the relative abun-
dances of haddock and cod (Figure 2): cod have higher equilibrium 
abundance in cooler years, while haddock have the higher equilibrium 
abundance of the two stocks in warmer years. Notably, while both 
estimated equilibriums are stable (Figure 2; Table S1), when tempera-
ture is over the threshold the system can show a damped oscillations 
in abundance for both species that add to the variability. In addition, 
with increase in temperature both species are predicted to reach a 
higher equilibrium abundance than under the threshold which makes 
trophic cascades (down the food chain starting from the cod through 
the haddock) and restructuring of the local food web less probable 
(as for cod in Canada; Frank, Petrie, Choi, & Leggett, 2005). However, 
any climate-induced shifts in competition and predation can be ex-
pected to filter through the whole ecosystem, driving direct and in-
direct changes across multiple trophic levels (Fowler, 2010, 2013). 
The threshold effect lead to a change in the local equilibrium point 
when ST is above the threshold in any year. While a temperature drop 
below the threshold in subsequent years should lead to a change in 
the equilibrium and dynamical behaviour of the system, this is im-
probable under the current global warming (Figure 1d).

The NEA cod is a predator of haddock as shown by cod diet stud-
ies (Durant et al., 2014; Holt et al., 2019) and is expected to nega-
tively affect the haddock stock. This is what we found for high ST. 
However, more importantly, our results indicated that cod effect on 
haddock that was positive becomes negative with the increase in 
ST, a trend of recent years (e.g. Gillett & Fyfe, 2013), suggesting a 
possible change in these species interaction. Indeed, recent analyses 
of Barents Sea cod stomach contents showed a significant increase 
in the proportion of haddock in their diet since 1984 (see Figure S5a; 
Holt et al., 2019). This change in diet may be linked to the distri-
bution change of the two species with climate warming (Fossheim 
et al., 2015). This is particularly the case for younger age-class of 

F I G U R E  2   Zero-growth isoclines for sympatric populations of 
Northeast Arctic (NEA) haddock (blue dashed lines) and NEA cod 
(bold red line). The haddock stock shows a threshold interaction 
with an environmental variable (ST) and has two isoclines (and 
equilibrium states) for ST below (a) and above (b) threshold 
between >3.83°C and ≤4.05°C, grossly corresponding to the 
historical situation and the present situation, that is, under climate 
warming. The dot shows the estimated stable equilibrium point N* 
and the ellipses illustrate the 95% deviation around the equilibriums 
calculated using all Markov chain Monte Carlo posterior values. For 
the purpose of comparison, the ellipse of plot (b) is presented in in 
grey shade in plot (a) and reciprocally
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haddock (<50 cm; Landa et al., 2014) that are the most frequent had-
dock in cod's stomach (Holt et al., 2019). This can also be related to 
the increase in the mean size of the NEA cod in recent years, the 
haddock being more present in the diet of larger cod than in smaller 
cod one (Holt et al., 2019). However, while the predation pressure 
from cod on haddock increases with temperature so does the had-
dock population growth (r in Tables 2 and 3). This indicates that the 
negative effect of increased cod predation on haddock is somehow 
compensated, maybe by the positive effect of the temperature in-
crease. Indeed, both stocks seem to covariate with climate as shown 
by the increase in recruitment with temperature increase (Bogstad, 
Dingsør, Ingvaldsen, & Gjøsæter, 2013) that may partially explain the 
observed positive effect of cod on haddock during cold years. The 
haddock equilibrium density is increasing from 23 million to 1725 
million individuals, the posterior mean population estimates for 
high ST being distributed around the equilibrium point (Figure 2). 
This situation may occur when the environmental conditions (in our 
case higher ST) are such that the productivity is more strongly in-
creased than the predation pressure (hence reducing the apparent 
predation). Indeed, we observed a higher representation of capelin 
(Mallotus villosus) in the cod diet during warmer years than during 
cool years (Figure S5b); capelin being a key species in the Barents Sea 
with a distribution affected by ST change (Hop & Gjøsæter, 2013). In 
other words, the years when cod has a negative effect on haddock 
population correspond to the years when capelin is also more abun-
dant in cod diet. This was confirmed when we explicitly included 
the effect of capelin abundance (as a covariate) on cod and haddock 
abundance in the Gompertz state-space model (Table S2). Capelin in 
the model had negligible effect for both cod and haddock and did not 
qualitatively change the estimates of other parameters. This means 
that while capelin is affecting the cod population, we did not find 
evidence that it is a proximate variable explaining the change of cod 
interaction with the haddock.

Similar to capelin, zooplankton biomass in the southern 
Barents Sea, preyed by both juvenile cod and haddock, is posi-
tively covariating with ST (Stige et al., 2014). With higher ST, the 

food availability for younger age fish is improving with expected 
increase in their growth (Langangen, Ottersen, Ciannelli, Vikebø, 
& Stige, 2016) and/or survival (Opdal, Vikebø, & Fiksen, 2011). 
Noteworthy is that the strength of the effect of haddock on itself 
is greater than the cod effect even during low ST periods (Tables 2 
and 3). Note that the abundance data reported by ICES are calcu-
lated on estimated abundances from age 1 and older (ICES, 2018) 
and that the total abundance variability is principally driven by the 
youngest age abundance (ca. 70%). This means that any change 
of species interaction that affects age 1 may have a strong ef-
fect on haddock dynamics. Notably, both stocks showed and in-
creased age/size structure during the last two decades (Durant & 
Hjermann, 2017; Ottersen et al., 2006) and particularly for cod that 
had a stock juvenation due to high fishing pressure towards the 
end of the 1970s (Ottersen, 2008). Increasing the mean size of the 
stock has an effect on the size spectrum of the prey eaten by the 
cod. For instance, 20 cm long cod feed on haddock up to ca. 12 cm 
long, whereas old 120 cm long cod can feed on up to 60 cm long 
haddock (Holt et al., 2019). Note that the proportion of haddock in 
the cod diet is also increasing with the cod size (Holt et al., 2019). 
However, while the age structure (i.e. size) changed in our study, 
the mean age of the spawning stock did not show any significant 
difference between cold and warm years (Figure S6) and may not 
explain the observed change of species interaction. On the other 
hand, cod being a generalist predator (Durant et al., 2014; Holt 
et al., 2019), the change of its diet (Figure S5) indicates a change in 
the community (Ellingsen et al., 2020). The species composition and 
abundance of cod prey vary over time in relation to environmental 
conditions and prey population dynamics (Durant et al., 2014). Cod 
follows the capelin northward with increase in temperature (Fall 
et al., 2018). The same increase in temperature positively affects 
the haddock stock size and lead young haddock northward in the 
Barents Sea (Landa et al., 2014) sustaining the overlap between the 
two species. At the same time, other prey are less represented in 
the cod diet such as shrimps Pandalus borealis (Holt et al., 2019) that 
may be remaining in the southern Barents Sea or undergo a slower 
poleward shifts in response to warming than the large, generalist, 
motile species, that are cod and haddock (Frainer et al., 2017).

In this study, we used a threshold model on two data sources 
to detect nonlinear responses in species interactions with climate 
change. Since the overlap between cod and haddock is widespread 
across the North Atlantic Ocean, our results may have important im-
plications for all the co-occurring cod and haddock populations. The 
novel approach we developed to address potential nonlinearity in 
species interactions may also be applicable to many other systems, 
beyond the studied species. Non-additive population dynamics, that 
is, change in spawning biomass, linked to temperature or fishing have 
been previously described for many species. Cod stocks have been 
particularly studied in this respect due to the availability of long-term 
time series (Fauchald, 2010; Frank, Petrie, Fisher, & Leggett, 2011; 
Scheffer, Carpenter, Foley, Folke, & Walker, 2001; Sguotti et al., 2019; 
Vasilakopoulos & Marshall, 2015) but these studies did not address 
the nonlinearity of interaction with another species. The fact that 

TA B L E  3   Average estimated parameter values for the models

Model Parameter Mean 5% 95%

Haddock Process error 0.449 0.312 0.609

Observation error 
(acoustic)

0.187 0.041 0.309

Observation error 
(trawl)

0.238 0.102 0.346

β = Scaling coefficient 
(trawl)

1.027 1.014 1.039

Cod Process error 0.527 0.388 0.694

Observation error 
(acoustic)

0.360 0.183 0.511

Observation error 
(trawl)

0.277 0.064 0.463

β = Scaling coefficient 
(trawl)

1.037 1.017 1.057
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climate condition also affects the species interaction in a nonlinear 
way has implication for management and in particular for the eco-
system approach to fishery management (FAO, 2008), that takes into 
account the knowledge and uncertainties about biotic (e.g. other spe-
cies abundance), abiotic (e.g. temperature) components of ecosys-
tems and their interactions. In the Barents Sea, stocks assessments 
currently use some environmental information (e.g. haddock abun-
dance, capelin abundance, cod predation and temperature; Skern-
Mauritzen et al., 2016). Given the implication this can have on stock 
management, our approach may be highly timely and necessary. In 
particular, we have illustrated how a predator–prey/competitors sys-
tem may change due to climate warming.
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