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2

16 Abstract

17 Square mesh panels (SMPs) are selective devices used extensively to supplement codend size selectivity in 

18 trawl fisheries. Therefore, predictions of the effect of mesh size in both SMPs and codends on size 

19 selectivity are valuable. Here, we established a framework to predict size selection of blue whiting through 

20 different SMPs and diamond mesh codends based on the morphological characteristics of this species. We 

21 hypothesized that size selection for a SMP is determined by different fish contact angles, whereas different 

22 mesh opening angles determine size selection for the codend. Based on these hypotheses, we first developed 

23 a model that enabled us to predict which sizes of blue whiting are able to pass through meshes of different 

24 sizes and shapes. We then tested whether the selectivity for blue whiting of the SMP, the codend, and the 

25 combination of both could be explained by the models. Finally, we predicted size selectivity of multiple 

26 combinations of SMPs and diamond mesh codends. The method presented here can potentially be applied 

27 to make predictions for species other than blue whiting.

28 Keywords: Square mesh panel (SMP); contact angle; opening angle; fish behaviour; Micromesistius poutassou
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29 Introduction

30 In many bottom trawl fisheries around the world, codend size selectivity is supplemented with additional 

31 devices such as square mesh panels (SMPs) (Özbilgin et al., 2005; Graham, 2010; STECF, 2012). Unlike 

32 in the codend, where the shape of the meshes can vary substantially (Robertson and Stewart, 1988; 

33 Herrmann, 2005a; Herrmann and O’Neill, 2005), SMPs maintain their shape and therefore provide mesh 

34 shapes that better support escape for non-targeted fish. SMPs were first introduced into legislation in the 

35 Northern European Nephrops fishery in 1992, primarily to improve the release of undersized gadoids 

36 (Merlangius merlangus) (Briggs, 1992). Since then, they have been introduced in some other crustacean 

37 (Broadhurst, 2000; Catchpole and Revill, 2007) and fish-directed fisheries (Regulation EU 2019/1241). 

38 Today, SMPs are compulsory when targeting specific species in some fishing areas (Regulation EU 

39 2019/1241), and their applicability and efficiency have been broadly studied (O’Neill et al., 2006; 

40 Herrmann et al., 2015; Brčić et al., 2016, 2018).  

41 Two conditions must be met for a fish to be able to escape through a SMP: the fish first needs to contact 

42 the SMP and then it needs to be able to pass through the meshes in the SMP (Herrmann et al., 2009; Sistiaga 

43 et al., 2011). A number of researchers have estimated contact probability and fish release efficiency of 

44 SMPs (e.g., Zuur et al., 2001; O’Neill et al., 2006; Herrmann et al., 2015; Santos et al., 2016; Krag et al., 

45 2017; Sistiaga et al., 2017; Brčić et al., 2018), and some have tried to improve this contact probability to 

46 increase SMP release efficiency (Cuende et al., 2020a; Cuende et al., 2020b). In addition to having 

47 estimated the contact probability of fish with the SMP, all of these studies investigated the size selectivity 

48 of those fish that contacted it. This size selectivity is quantified in terms of L50 (length of fish that has a 

49 50% chance of retention by the SMP assuming that contacts occurs) and selection range (SR) (= L75 – L25) 

50 (Wileman et al., 1996; Millar and Fryer, 1999; Sistiaga et al., 2010). However, when the experimentally 

51 obtained L50 and SR results are compared with the expected values based on fish morphology and SMP 

52 mesh size, the experimental L50s often are much smaller and the SRs much larger than the expected values 

53 (Alzorriz et al., 2016). No study to date has investigated in detail the reasons for this difference between 

54 the expected and obtained selectivity results. 

55 The overall size selectivity of the gear is determined not only by the properties of the SMP but also by the 

56 size selectivity of the codend used. The factors affecting diamond mesh codend size selectivity have been 

57 widely investigated, both theoretically and experimentally. Factors such as catch size (O'Neill and Kynoch, 
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58 1996; Herrmann, 2005b), netting orientation and twine thickness (Herrmann et al., 2013a), or the number 

59 of meshes in the circumference (Sala and Lucchetti, 2011) can affect codend size selectivity because they 

60 can alter codend shape and thereby mesh shape and opening angles (OAs) (e.g., O'Neill and Herrmann, 

61 2007; Herrmann et al., 2009; Sistiaga et al., 2011; Herrmann et al., 2012; Herrmann et al., 2013b; Tokaç 

62 et al., 2016, 2018). Several studies investigated the influence of fish morphology on codend size selectivity. 

63 However, no study has investigated the influence of fish morphology and mesh size on the overall size 

64 selectivity of a gear composed of a SMP together with a size selective codend.

65 Blue whiting (Micromesistius poutassou) is a globally important commercial fish species (FAO, 2018), 

66 with catches that, for example, exceeded 1.7 million tons in the Northeast Atlantic in 2018. However, little 

67 is known about its size selection in the commercial fishing gear. This species is mostly harvested with 

68 pelagic trawls, but its size selectivity is also relevant for bottom trawls, where it is discarded both in 

69 crustacean (e.g., Monteiro et al., 2001) and fish-directed mixed bottom trawl fisheries (Rochet et al., 2014). 

70 In the Basque bottom trawl fishery, mostly targeting anglerfish (Lophius spp.), megrim (Lepidorhombus 

71 spp.) and hake (Merluccius merluccius), blue whiting constitutes one of the main discarded species. In 

72 2006, a gear composed of a 100 mm SMP inserted in the upper panel of the extension piece of the trawl 

73 and a 70 mm diamond mesh codend was introduced as a regulation in this fishery (Regulation EC 51/2006) 

74 to increase the release efficiency of undersized fish. However, Rochet et al. (2014) estimated that during 

75 the period 2011-2013 ~98% of the blue whiting caught in this fishery was discarded. The gear used by the 

76 fleet today is still the same and despite the Landing Obligation (Regulation EU 1380/2013) discards of blue 

77 whiting are still likely. More recently, Cuende et al. (2020a) showed that a considerable percentage of the 

78 blue whiting entering the gear was able to contact the SMP, meaning that a properly designed SMP would 

79 substantially affect the overall trawl size selection. For these reasons, blue whiting is a relevant species to 

80 investigate the size selectivity of a trawl equipped with a SMP and a diamond mesh codend. 

81 The goals of this study were to investigate size selection of blue whiting through SMPs and diamond mesh 

82 codends and to predict the effect of SMP and codend mesh size and shape on the overall size selective 

83 properties of the gear for this species. 

84 Materials and methods

85 In the past, size selectivity studies of towed fishing gears have mainly been carried out at sea following a 

86 trial and error procedure (Kvamme and Isaksen, 2004; Jørgensen et al., 2006). However, as sea trials are 
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87 costly and time consuming, modelling, and predictive work have become more common in this field to 

88 supplement and assist experimental methods (Herrmann, 2005b; Herrmann et al., 2009). 

89 In this study, we applied a three-step approach to predict size selection of blue whiting for different 

90 combinations of SMP and codend mesh sizes:

91 1. We developed a model that enabled us to predict which sizes of blue whiting are able to pass 

92 through meshes of different sizes and shapes. To do this, we used FISHSELECT, which is a 

93 framework of tools, methods, and software developed to determine whether or not a fish is able to 

94 penetrate a certain mesh by comparing the morphology of the fish and the geometry of the mesh. 

95 The methodology was previously used to investigate size selectivity for numerous species in 

96 various fisheries (Frandsen et al., 2010; Sistiaga et al., 2011; Krag et al., 2011; Herrmann et al., 

97 2012, Herrmann et al., 2013b; Krag et al., 2014; Herrmann et al., 2016; Tokaç et al., 2016). It was 

98 applied to blue whiting for the first time in our study.

99 2. Based on selectivity results obtained from sea trials carried out with a gear configuration composed 

100 of a SMP and a diamond mesh codend (Cuende et al., 2020a), we tested whether the selectivity 

101 for blue whiting of the SMP, the codend, and the combination of both could be explained by the 

102 models obtained from the application of FISHSELECT. 

103 3. Provided that the experimental results obtained at sea (Cuende et al., 2020a) could be explained 

104 by the models obtained from the application of FISHSELECT, we predicted the size selectivity of 

105 multiple combinations of SMPs and diamond mesh codends.

106 Collection of morphology and mesh penetrability data of blue whiting using 

107 FISHSELECT

108 In October 2016, blue whiting individuals were collected onboard the pair-trawler “Aketxe-Gaztelugatxe” 

109 (26 m length overall; 270 HP) in the Bay of Biscay (ICES subdivision VIIIc) between 43º24’ N–43º30’ N 

110 and 1º48’ W–2º21’ W. A total of 55 blue whiting ranging from 14 to 32 cm in length were selected with all 

111 length classes being represented randomly with one to five individuals. FISHSELECT requires precise 

112 measuring of fish morphology, and it is important that the shape of the fish measured is not affected by 

113 dehydration, depressurization, rigor mortis, or any other factor that could alter the original shape of the fish. 

114 Therefore, the fish included in the experiment were selected from the last haul of the trip, when the transit 

115 time to port was ~1 hour. During transit, the fish were kept in seawater with ice to avoid damage or 
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116 deformation. FISHSELECT measurements of blue whiting were carried out on land at the harbor 

117 immediately after the fish were unloaded from the vessel. Details on the application of the standard 

118 FISHSELECT methodology to blue whiting are given in Supplementary Material.

119 Understanding SMP and diamond mesh codend size selection for blue whiting

120 Simulation of square mesh and diamond mesh selectivity

121 The virtual population and the compression model obtained (see Supplementary Material) were used to 

122 simulate SMP and diamond mesh codend size selectivity. Specifically, size selection for blue whiting was 

123 simulated for meshes of varying sizes and shapes in FISHSELECT.

124 In trawl codends, water flow decreases as fish approach the catch-accumulation zone (Jones et al., 2008). 

125 The decreased water flow and the more open meshes in this zone favors the active escape of fish swimming 

126 here (O’Neill et al., 2003). Therefore, fish are expected to have several chances to attempt escape through 

127 the codend meshes. Multiple attempts result in a higher probability that a fish will have at least one attempt 

128 with optimal orientation towards the mesh to escape through it. Thus, size selectivity in codends can be 

129 simulated considering only optimal fish contact angle (CA) towards the mesh (Herrmann and O’Neill, 

130 2005; Herrmann and O’Neill, 2006; Sistiaga et al., 2011; Tokaç et al., 2016). However, mesh openness is 

131 not constant in diamond mesh codends, and therefore it must be considered when simulating size selectivity 

132 (Herrmann, 2005a; O'Neill and Herrmann, 2007; Herrmann et al., 2009). For diamond meshes, mesh 

133 openness can be described by the OA (Herrmann et al., 2009). 

134 Using the penetration model and virtual population (see Supplementary Material), we simulated the size 

135 selectivity of blue whiting through individual diamond meshes of sizes between 50 and 150 mm in steps of 

136 5 mm and OAs between 10 and 90º in steps of 5º. These simulations resulted in artificial “covered-codend” 

137 size selectivity datasets with fish size distributions for the fish “retained” and the fish that “escaped” through 

138 each mesh (Wileman et al., 1996). Each dataset was subsequently analyzed by fitting a logit size selection 

139 model defined by the parameters L50 and SR (Wileman et al., 1996) to the data. The results of this process 

140 consist of associated mesh size and OA and L50 values summarized in a design guide (Herrmann et al., 

141 2009) showing L50 isocurves (lines with equal L50) dependent on mesh size and OA.

142 In contrast to diamond mesh codends, the mechanisms involved in the size selection through SMPs are not 

143 well understood. SMPs are usually installed at the upper panel of the extension piece of the trawl (Krag et 

144 al., 2008; Wienbeck et al., 2014; Nikolic et al., 2015) where they maintain an open mesh shape independent 
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145 of the tension in the netting (Graham et al., 2003). Therefore, SMP size selectivity can be simulated 

146 assuming fully open square meshes. However, at this position in the trawl, SMP meshes are not located in 

147 the natural swimming path of the fish (Briggs, 1992; Briggs and Robertson, 1993). Thus, in order to have 

148 a chance of escaping through the SMP meshes, most of fish need to actively change swimming direction 

149 and seek the SMP meshes (Briggs, 1992; Briggs and Robertson, 1993). Strong water flow relative to the 

150 gear in this area of the trawl makes it unlikely that every fish has multiple chances of having an optimal 

151 CA to escape through the SMP. For many blue whiting, it is likely that none of the few attempts would 

152 have an optimal CA (Fig. 1a) (i.e., perpendicular to the square mesh). For a specific mesh size, the closer 

153 the CA gets to 90º, the larger the projection of the mesh from the fish’s perspective and, consequently, the 

154 higher probability that a larger fish can pass/squeeze itself through the mesh (Fig. 1a). However, at low 

155 CAs, the projection of the mesh becomes narrower, meaning that the size of fish that can pass through it is 

156 smaller (Fig. 1a). Therefore, when simulating SMP contact size selection, we assumed that the CA needed 

157 to be considered (size selection of the fish that actually contact the SMP and are size-selected by the meshes 

158 in it (Sistiaga et al., 2010)). Specifically, we hypothesized that changes in the size and shape of the projected 

159 SMP meshes could be a major factor explaining the differences observed between simulated and 

160 experimentally obtained size selection results. This hypothesis is supported by underwater recordings from 

161 earlier sea trials (Cuende et al., 2020a), which revealed that blue whiting attempt escape through SMPs 

162 with different CAs (Fig. 1b).

163 FIGURE 1

164 Fig. 1. (a) Different contact angles (CAs) (ranging from 10 to 90º) for blue whiting attempting to escape 

165 through SMP meshes. The column to the right for each of the angles shows the shape of the projected mesh 

166 for the different CAs (green rectangle) and the cross-section of the largest blue whiting that would pass 

167 through it (blue circle). (b) Underwater recordings from experimental trials (Cuende et al., 2020a) showing 

168 fish trajectory (red arrow) for each escape attempt with different CAs through a SMP. 

169 To simulate SMP contact size selectivity dependent on fish CA, we first had to determine the size and shape 

170 of the mesh from the perspective of the fish. When the CA is lower than 90º, the projected mesh shape 

171 becomes rectangular because the mesh bars that are perpendicular with respect to the orientation of the fish 

172 keep their original length, while the bars that are longitudinal with respect to the orientation of the fish 

173 shrink (Fig. 2). The length of the mesh bars that are longitudinal regarding fish orientation is given by: 
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174 (1) 𝑝 =
m
2 × sin (CA)

175 where p is the projected length of the longitudinal bars of the mesh with respect to the orientation of the 

176 fish,  is the mesh bar length (equal to half mesh size), and CA is the contact angle (Fig. 2). 
𝑚
2

177 FIGURE 2

178 Fig. 2. (a) Blue whiting contacting the SMP with a specific contact angle (CA). The rightmost part of the 

179 diagram shows how to calculate the mesh size projection according to the CA. is the bar length of the 
𝑚
2  

180 square meshes (half mesh size), and p is the projected length of the longitudinal bars of the mesh with 

181 respect to the orientation of the fish. (b) Transformation from an original SMP mesh to the projected mesh 

182 based on the specific CA of a fish.

183 Using the penetration model and virtual population, we simulated the size selectivity of blue whiting 

184 through individual projected SMP meshes (rectangular meshes) resulting from CAs between 10 and 90º in 

185 steps of 5º. The simulations were carried out for mesh sizes between 50 and 150 mm in steps of 5 mm. As 

186 for the diamond meshes, a logit selection model was fitted to the size selection dataset simulated for each 

187 mesh. Results for the SMP meshes were summarized in a design guide showing L50 isocurves for different 

188 SMP mesh sizes and fish CAs. 

189 Comparison of simulated and experimental size selection

190 To investigate whether the experimentally obtained size selection curves for blue whiting (Cuende et al., 

191 2020a) could be explained by the simulated results obtained with FISHSELECT, experimental SMP and 

192 codend size selection results were compared with results simulated for different CAs and OAs, respectively. 

193 The mesh sizes for the experimental SMP and diamond mesh codend were 82.70 mm and 72.80 mm, 

194 respectively (Cuende et al., 2020a). Therefore, the size selectivity for blue whiting through SMP and 

195 codend meshes of these sizes was simulated first. The size selection of a SMP with square meshes of 82.70 

196 mm was simulated for CAs ranging from 10º to 90º in steps of 5º. Likewise, the size selection of a diamond 

197 mesh codend with meshes of 72.80 mm was simulated for OAs ranging between 10º and 90º in steps of 5º. 

198 Following the same procedure as that used in previous section, logit size selection curves were fitted to 

199 each of the simulated datasets derived from the 17 different square meshes considered and from the 17 

200 different diamond meshes considered. 
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201 The experimental SMP size selection curve from Cuende et al. (2020a) was plotted together with the size 

202 selection curves simulated for the square meshes derived from each CA and with the size selection curves 

203 simulated for the diamond meshes with different OAs. All fish entering the codend were assumed to have 

204 contacted the codend meshes and to have been subjected to a size-dependent escape probability through 

205 them. Therefore, we could directly compare the experimental curve for the diamond mesh codend from 

206 Cuende et al. (2020a) with the curves simulated in the present study for the meshes with different OAs. 

207 However, this direct comparison was not possible for the SMP, as experimental selection curves for the 

208 SMP in Cuende et al. (2020a) showed that only 27% of the blue whiting entering the gear in the sea trials 

209 contacted the SMP (Fig. 3a). 

210 For a SMP, the size selectivity curve estimated based on the entire population of fish entering the gear 

211 (those that contact the device and those that do not) is known as the available SMP selectivity curve (raSMP) 

212 (Fig. 3a), whereas the selectivity curve estimated based only on the fish that actually contact the device is 

213 known as the contact selectivity curve (rcSMP) (Millar and Fryer, 1999; Sistiaga et al., 2010) (Fig. 3b). The 

214 relationship between raSMP and rcSMP is described by Cuende et al. (2020b) as: 

215 (2) 𝑟𝑎𝑆𝑀𝑃(𝑙) = 1 ― 𝐶𝑆𝑀𝑃 + 𝐶𝑆𝑀𝑃 × 𝑟𝑐𝑆𝑀𝑃(𝑙)

216 FIGURE 3

217 Fig. 3. (a) Experimental available SMP retention probability curve (raSMP) (black line) with corresponding 

218 confidence intervals (dashed lines) and experimental rate (crosses). (b) Contact SMP retention probability 

219 (rcSMP) (black line) with corresponding confidence intervals (dashed lines). 

220 As CAs are only relevant for the fish that actually contact the SMP, it is the experimental rcSMP selection 

221 curve (Fig. 3b) that needs to be explained by means of different CAs.

222 The experimental rcSMP and codend size selectivity curves, with their corresponding confidence intervals 

223 (CIs) (Cuende et al., 2020a), were plotted together with the selection curves obtained from the 

224 FISHSELECT simulations for the different rectangular meshes representing the projected square meshes 

225 and the different diamond meshes, respectively. The purpose of the comparison between the experimental 

226 and simulated curves was to determine which range of CAs and OAs could contribute to explain the size 

227 selection curves experimentally obtained for the SMP and the diamond mesh codend, respectively. The 

228 ranges selected included all simulated selection curves corresponding to the different CAs and OAs that, at 
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229 least partially, were in between the CIs of the experimental rcSMP curve and experimental diamond codend 

230 size selection curve, respectively. 

231 Once the relevant ranges of CAs and OAs were identified, we estimated the contribution of each of the CAs 

232 and each of the OAs to the observed experimental SMP and codend size selection curves. The most likely 

233 combination of CAs for the SMP and OAs for the codend that could best reproduce the entire experimental 

234 selection curves were investigated for each of the cases. For this purpose, we first represented the entire 

235 experimental SMP and codend size selection by calculating L05 to L95 (length of fish with retention 

236 likelihood between 5% and 95%) in steps of 5% for each of the curves. These values were calculated as 

237 reference points in the curves and obtained by numerical methods implemented in SELNET (Herrmann et 

238 al., 2013b). Once the experimental L05,…, L95 were obtained for SMP and codend selection curves, we 

239 tried to reproduce them based on different combinations of contributions from the different CAs and OAs 

240 by simulation in FISHSELECT. Specifically, the contributions were expressed in terms of weight factors 

241 that summed up to 100%. The values of the weight factors were estimated by minimizing a penalty function. 

242 The penalty function quantified the difference in sum of squares between the experimental L05,…, L95 

243 and the obtained one based on the FISHSELECT simulations. This method was applied using the approach 

244 described by Herrmann et al. (2013b, 2016). Application of this method resulted in a list of relative 

245 contributions of the different CAs and OAs that most accurately reproduced the experimental SMP and 

246 codend size selection curves, respectively. CAs and OAs with contributions < 0.001% were considered 

247 negligible and not included further in the analyses.

248 The contributions of the different CAs and OAs were used to create size selection curves for the SMP, 

249 diamond mesh codend, and combination of the two. The curves obtained were then plotted and compared 

250 with results from the sea trials reported in Cuende et al. (2020a). For SMP size selection, rcSMP was 

251 converted to raSMP by means of Equation 2 using the CSMP estimated from the sea trials. The models used 

252 to create the SMP and codend size selection curves based on the different CA and OA contributions were 

253 the ones used to represent the experimental curves in each case: CGompertz for the SMP and Richard for 

254 the codend (Wileman et al., 1996). Equation (3) was used to create a combined retention probability curve 

255 for blue whiting based on the contributions of different CAs for the SMP selectivity and different OAs for 

256 the codend selectivity:

257 (3) 𝑟𝑐𝑜𝑚𝑏(𝑙) = 𝑟𝑎𝑆𝑀𝑃(𝑙) × 𝑟𝑐𝑜𝑑𝑒𝑛𝑑(𝑙)
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258 Prediction of size selectivity for different mesh size combinations of the SMP and 

259 diamond-mesh codend

260 Provided that the experimental results obtained at sea could be explained by the approach presented in the 

261 previous section, predictions to explore the potential of making gear design changes were carried out in 

262 FISHSELECT. Using the penetration model and virtual population (see Supplementary Material), the 

263 available SMP size selection of blue whiting was simulated for mesh sizes ranging from 50 to 150 mm with 

264 10 mm intervals and only considering CAs that contributed to reproduction of the experimental SMP size 

265 selection curve.  Likewise, codend size selection was simulated for mesh sizes ranging from 50 to 150 mm 

266 with 10 mm intervals and only considering the OAs that contributed to reproduction of the experimental 

267 curve. These simulations resulted in a “covered-codend” (Wileman et al., 1996) size selectivity dataset for 

268 each mesh size and CA or OA combination. We assumed that the contribution of the different CAs and 

269 OAs for all mesh sizes would be the same as the contributions previously estimated for the experimental 

270 SMP and codend size selection. Thus, we predicted the size selection for different SMP and codend mesh 

271 sizes by applying the contributions of the different CAs and OAs to all the SMP and codend mesh sizes 

272 simulated. The output of this procedure was a “covered-codend” dataset for each SMP and codend mesh 

273 size that considered the contribution of the different CAs and OAs, respectively. A logit size selection 

274 model was fitted to each of the resulting datasets. 

275 Predictions of the combined size selection for blue whiting were also made for different combinations of 

276 SMP and codend mesh sizes. To explore the consequences of potential mesh size modifications in the SMP 

277 or the codend for blue whiting selectivity, we investigated how mesh size modifications would alter the 

278 selective properties of the SMP + diamond mesh codend gear used in the Basque bottom trawl fishery. 

279 Using Equation 3 and the available predicted SMP and codend size selection results, the combined size 

280 selectivity of different SMP and codend mesh sizes relevant to the Basque bottom trawl fishery were 

281 predicted. Because the regulation for the fishery requires compulsory use of a 100 mm SMP and a 70 mm 

282 diamond mesh size codend, we first varied the SMP mesh size from 50 to 150 mm in steps of 10 mm while 

283 keeping the codend mesh size constant at 70 mm. We then varied the codend mesh size from 50 to 150 mm 

284 in 10 mm increments while keeping the SMP mesh size constant at 100 mm. Blue whiting does not have a 

285 minimum conservation reference size (MCRS), but it has a minimum marketable size of 30 individuals/Kg 

286 (Regulation EC 2406/1996), which is equivalent to 18 cm in length on average according to the weight-
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287 length ratio for this species (Dorel, 1986). This size was also taken into consideration when assessing the 

288 risk for catching or losing non-marketable and marketable blue whiting. 

289 We then produced a series of five design guides showing L05, L25, L50, L75, and L95 for combined SMP 

290 and diamond mesh codend results; these represent sizes of blue whiting with 5%, 25%, 50%, 75%, and 95% 

291 probability of being retained, respectively. Each design guide covered mesh sizes in the range of 50 to 150 

292 mm. The aim of the design guides was to show how the retention for blue whiting changes depending on 

293 the SMP and codend mesh sizes combined. These design guides provide a global picture of the selective 

294 potential of the gear and are a useful tool for identifying the best mesh size combinations for the gear. 

295 Given that the experimental CSMP for blue whiting was estimated to be 0.27 (Cuende et al., 2020a), we then 

296 explored the extent to which the raSMP size selectivity and combined size selectivity could be affected by 

297 increasing the CSMP value. We evaluated the selectivity of a 100 mm SMP and combined size selection of 

298 a 100 mm SMP and 70 mm codend for CSMP values of 0.40, 0.60, 0.80, and 1.00. 

299 Results

300 Morphological description of blue whiting based on FISHSELECT

301 Description of cross-section shapes 

302 The cross-section shapes of 55 blue whiting ranging from 14 to 32 cm in length were measured during the 

303 experimental data collection period. The analysis carried out in FISHSELECT for each of the two cross-

304 sections extracted from each individual showed that, based on R2 and AIC values, the Flexdrope and 

305 Flexellipse 1 models best fitted blue whiting cross-section 1 and 2, respectively (Table 1). 

306 Table 1. AIC values for the different models tested for each cross-section; the model that resulted in the 

307 lowest AIC value (best model) is in bold.

308 TABLE 1

309 Fall-through results and penetration model

310 We obtained 26,290 experimental fall-through results for blue whiting. Based on comparisons of the fall-

311 through results with the different compression models tested for cross-section 1 and 2, the best agreement 

312 was found for a model that considered both cross-section 1 and cross-section 2. For cross-section 1, this 

313 model had 8% mean lateral compression, 0% dorsal compression, and 20% ventral compression (Fig. 4). 
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314 For cross-section 2, this model had 16% lateral compression, 4% dorsal compression, and 20% ventral 

315 compression (Fig. 4). The model resulted in a 97.39% degree of agreement.

316 FIGURE 4

317 Fig. 4. Compression models for cross-section 1 (left) and cross-section 2 (right). Green inner curves 

318 correspond to the best compression model and red outer curves correspond to no compression for each 

319 cross-section of blue whiting.

320 Square and diamond mesh selectivity based on fish CA and mesh OA

321 Design guides for square and diamond meshes

322 With the optimal penetration model defined for each species and with the ability to produce virtual 

323 populations with defined cross-sections, we produced design guides for square and diamond meshes 

324 ranging from 50 to 150 mm size and from 5 to 90º CA and OA, respectively (Fig. 5). The square mesh 

325 design guide demonstrated that, for a given mesh size, the size selectivity of blue whiting depended greatly 

326 on the CA of the fish towards the SMP (Fig. 5a). This was especially true for the range of CAs between 10º 

327 and 40º, where L50 increased rapidly with increasing CA. For all mesh sizes with CA > 40º, L50 isocurves 

328 changed into nearly vertical lines, thus L50 rose much slower with increasing CA. L50 of codend diamond 

329 meshes depended greatly on the OA, especially when OAs were between 10 and 50º (Fig. 5b). For larger 

330 OAs, the influence of the angle on the L50 diminished, especially at smaller mesh sizes. 

331 FIGURE 5

332 Fig. 5. Design guide for (a) square and (b) diamond meshes showing L50 isocurves as a function of mesh 

333 size (mm), for sizes between 50 mm and 150 mm, and mesh CA and OA between 10º and 90º, respectively.

334 Explanation and validation of the size selection curve for blue whiting based on simulations

335 The size selection curves simulated for SMPs and diamond mesh codends for blue whiting based on 

336 different CAs and OAs were plotted together with the experimental rcSMP and codend size selection curves 

337 (Fig. 6). The results show that for both the SMP and codend, respectively, a range of CAs and OAs may 

338 contribute to the experimental size selection curves for blue whiting. Specifically, the CAs and OAs 

339 potentially involved in the selectivity process corresponded to 15º to 90º CAs for the SMP (Fig. 6a) and 

340 15º to 50º OAs for the codend (Fig. 6b). 
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341 FIGURE 6

342 Fig. 6. Grey curves show (a) the simulated SMP selectivity for different CAs and (b) codend selectivity for 

343 different OAs from 10º to 90º in steps of 10º. Black curves depict (a) experimental rcSMP and (b) 

344 experimental codend size selection curve with corresponding CIs (dashed lines).

345 Table 2 shows the average contribution of the different CAs and OAs considered to be potentially involved 

346 in reproducing the experimental rcSMP and diamond mesh codend curves. Among the CAs, the relative 

347 contributions of the angles between 55º and 75º were below 0.001% and therefore were not considered 

348 relevant to the results for the experimental rcSMP. In contrast, all OAs that could potentially contribute to 

349 the experimental codend selectivity curve contributed more than 0.001% and were considered relevant.  

350 Table 2. Contribution (%) of the considered SMP CAs and codend mesh OAs as potentially involved in 

351 reproducing experimental rcSMP and codend size selection curves. *: could not contribute due to no overlap 

352 with experimental selectivity curve.

353 TABLE 2

354 Using the CAs and OAs with contributions > 0.001% from Table 2, SMP, codend, and combined size 

355 selection curves were simulated. A comparison between the experimental and simulated size selectivity 

356 curves showed that the simulated SMP, codend, and combined size selection curves reproduced the 

357 experimental raSMP, codend, and combined size selection curves accurately (Fig. 7). These results 

358 demonstrated that SMP, diamond mesh codend, and combined size selection can be understood by the 

359 contribution of the different CAs and OAs.

360 FIGURE 7

361 Fig. 7. Experimental (black line) and simulated (yellow line) size selection curves are shown for (a) SMP, 

362 (b) codend, and (c) combined SMP and codend. Experimental 95% CIs are shown (dashed lines). 

363 Prediction of size selectivity for different SMP and codend mesh size combinations 

364 Because the contributions of the CAs and OAs in Table 2 could explain the experimental SMP, codend, 

365 and combined size selection, we predicted size selection for different SMP and codend mesh combinations 

366 (Fig. 8). Results show that given the low contact probability of blue whiting with the SMP (CSMP = 0.27), 

367 the retention probability of the SMP was high (i.e., there was low escape probability through it no matter 
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368 how much the SMP mesh size is increased) (Fig. 8a). Limited effects of changing SMP mesh size were also 

369 evident in the combined selectivity analysis (Fig. 8c), as L50 values were very similar for all mesh sizes (in 

370 between 20.15 and 21.20 cm). The low contact probability between the SMP and blue whiting implies that 

371 mesh size modifications affected only the upper part of the curve, which led to a low efficiency of increasing 

372 SMP mesh size. Nevertheless, individuals of blue whiting below marketable size (18 cm) had high escape 

373 probability (81.85–82.20%) through the whole predicted mesh size range (Fig. 8c). In contrast to the SMP, 

374 codend mesh size modifications affected the entire selectivity curve (Fig. 8b). Therefore, they may be a 

375 useful approach to regulating gear size selectivity, as all blue whiting entering the trawl, except for those 

376 few escaping through the SMP, were size selected by the codend meshes (Fig. 8d). However, Figure 8d 

377 also shows that for small codend mesh sizes (50 and 60 mm), the 70 mm SMP had the potential to release 

378 individuals that would be retained by codend meshes. 

379 FIGURE 8

380 Fig. 8. (a) Predicted aSMP for the mesh size range of 50 to 150 mm with 10 mm increments. (b) Predicted 

381 codend retention probability for the same mesh size range. (c) Predicted combined retention probability of 

382 the gear by maintaining codend mesh size mandated by regulation (70 mm) and changing SMP mesh size 

383 for the same mesh size range. (d) Predicted combined retention probability of the gear by maintaining SMP 

384 mesh size mandated by regulation (100 mm) and changing codend mesh size for the same mesh size range. 

385 Thick black lines correspond to the current SMP and codend mesh sizes used by the fleet (100 and 70 mm, 

386 respectively). Vertical dashed lines correspond to the minimum marketable size of blue whiting: 18 cm. 

387 Additionally, design guides for different combinations of SMP and codend mesh sizes were created (Fig. 

388 9). Design guides for L05, L25, L50, L75, and L95 showed the length at which blue whiting had 5%, 25%, 

389 50%, 75%, and 95% probability of being retained, respectively. Specifically, the isocurves in each design 

390 guide followed different patterns; some were vertical lines with little curvature (Fig. 9a,b,c), whereas those 

391 for L75 (Fig. 9d) and L95 (Fig. 9e) showed much more curvature. At low retention probabilities (≤ 50%, 

392 Fig. 9a,b,c), gear size selection was mainly governed by codend meshes, whereas the SMP contributed to 

393 the gear size selection to a greater extent at higher retention probabilities (≥ 75%) (Fig. 9d,e). The low 

394 curvature of the L05, L25, and L50 isocurves was directly related to the low contact probability of blue 

395 whiting with the SMP (CSMP = 0.27). Considering this contact factor, changing SMP mesh size will have 

396 very little effect on the overall retention probability until L73 is reached, because when retention 

Page 59 of 79

http://mc.manuscriptcentral.com/icesjms

Manuscripts submitted to ICES Journal of Marine Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

16

397 probabilities were lower than that the fish did not contact the panel. Therefore, at L75, the contribution of 

398 SMP to the gear size selection and the curvature of the isocurves becomes greater due to dependency not 

399 only on codend mesh size but also on SMP mesh size. These curves become even more curled at L95 (Fig 

400 9e). At this point, small changes in SMP mesh size create bigger changes in the retention length of fish 

401 compared to modifications of codend mesh size.

402 FIGURE 9

403 Fig. 9. Design guides showing L05, L25, L50, L75, and L95 isocurves as a function of different 

404 combinations of SMP and codend mesh sizes (mm) for blue whiting.

405 Predictions of aSMP and combined retention probability for different values of CSMP were also made (Fig. 

406 10). As contact probability increased, the SMP retention probability for small fish decreased (Fig. 10a). 

407 Likewise, increasing contact probability led to an important improvement of the overall size selection of 

408 the gear, which highlights the potential of the SMP as a size selection device (Fig. 10b).

409 FIGURE 10

410 Fig. 10. (a) Predicted aSMP retention probability assuming different values of CSMP (0.27, 0.40, 0.65, 0.80, 

411 and 1.00). (b) Predicted combined retention curve assuming different values of CSMP (same as (a)). Thick 

412 black lines correspond to the current SMP and codend mesh sizes used by the fleet (100 and 70 mm, 

413 respectively). Vertical dashed lines correspond to the minimum marketable size of blue whiting: 18 cm.

414 Discussion

415 Different studies have reported that for SMPs, the experimental L50s are much smaller and SRs much larger 

416 than theoretically expected (e.g. Alzorriz et al., 2016). The results of the present study offer an explanation 

417 for the differences observed between the theoretical and practical selective performance of SMPs and show 

418 that they are related to the ability of fish to contact SMPs at a more or less optimal CA. Furthermore, the 

419 results of this study demonstrate that it is possible to predict size selection processes in gears composed of 

420 SMPs and diamond mesh codends based on fish morphology and behaviour. 

421 Previous research identified fish CA and orientation towards the mesh as factors that influence size 

422 selection in codends and sorting grids. For example, Herrmann et al. (2013b) demonstrated how different 

423 flatfish orientations towards a sorting grid could create considerable differences in the selective properties 
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424 of the gear. Krag et al. (2014) showed that krill selectivity could be explained assuming optimal orientation 

425 and CA. Regarding SMPs, the results of the present study show that different CAs lead to different size 

426 selection for blue whiting. Based on fish and mesh morphology, we identified which CAs led to successful 

427 reproduction of the experimental selection curves presented in Cuende et al. (201920a). The CAs 

428 implicated in reproducing the experimental SMP contact size selection were between 15 and 50º and 80 

429 and 90º, whereas CAs between 55 and 75º barely contributed to the contact size selection. Video 

430 observations made by Cuende et al. (2020a) reported that blue whiting exhibit active and erratic behavior 

431 towards SMPs, whereby they turn and swim quickly either towards the panel or the codend. Based on this 

432 behavior, we speculated that most individuals contact the SMP from less optimal angles (< 50º). This may 

433 mean that the low size selection efficiency of SMPs reported in different fisheries may not be due only to 

434 low contact rates between fish and SMP meshes (Herrmann et al., 2015; Nikolic et al., 2015; Alzorriz et 

435 al., 2016; Santos et al., 2016; Brčić et al., 2018) but also to non-optimal fish CA towards the device. These 

436 differences in fish CAs could be caused by many factors, such as towing speed (which allow more or less 

437 time for fish to attempt an escape), the swimming ability of fish, or densities of fish entering the SMP 

438 section. Many of these factors are not easy to control at sea and can affect the ability of the fish to contact 

439 the SMP or to orientate well enough to have a good chance to escape through it. 

440 Regarding codend size selection, our results for blue whiting are in line with those of previous studies in 

441 which diamond mesh codend size selection can be explained by means of mesh OAs (Sistiaga et al., 2011; 

442 Herrmann et al., 2012, 2013b; Tokaç et al., 2016, 2018). Mesh openness is driven by factors such as mesh 

443 size (Herrmann et al., 2013a), number of meshes in the circumference (Sala and Lucchetti, 2011), and the 

444 size of the catch accumulated in the codend (Wileman et al., 1996). Herein, the experimentally obtained 

445 codend size selection was entirely reproduced by the mesh OAs between 15 and 50º. This result emphasizes 

446 the importance of understanding the mechanisms affecting codend mesh OAs under commercial fishing 

447 conditions in order to optimize codend design and make proper size selectivity predictions. 

448 Our results show that codend mesh OAs together with fish-SMP CAs can explain the overall size selection 

449 of a gear composed of a SMP and a diamond-mesh codend. Therefore, we were able to predict gear size 

450 selection for different combinations of SMP and codend mesh sizes for blue whiting. Even though codend 

451 meshes determine the overall size selection of the gear to a great extent due to the limited escape of blue 

452 whiting through the SMP (Cuende et al., 201920a), the design guides showed that when accounting for the 

453 fish that actually contact the SMP, small variations of its mesh size result in big changes for SMP size 
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454 selection. This indicates that when SMP contact probability increases, the probability of fish contacting the 

455 SMP from an optimal angle increases as well. Thus, modifying SMP mesh size can lead to greater changes 

456 in the overall gear selectivity than modifying codend mesh size, which highlights the potential of SMPs as 

457 size selection devices. Therefore, in addition to changes in SMP mesh size, we also considered changes in 

458 SMP contact probability when making SMP size selection predictions for blue whiting. Our results showed 

459 that increasing SMP contact probability without modifying its mesh size may result in great changes in gear 

460 selectivity. Additionally, these results suggest that increasing SMP contact probability and favor an optimal 

461 CA of fish towards the SMP meshes may be good strategies for improving size selection, especially in 

462 multispecies fisheries for which increasing codend mesh size may involve less retention of valuable species. 

463 In this context, research in fisheries around the world has focused on designing stimulating devices to 

464 increase contact probability between fish and SMPs with different degrees of success (Glass and Wardle, 

465 1995; Kim and Whang, 2010; Herrmann et al., 2015; Grimaldo et al., 2018). Regarding blue whiting, 

466 Cuende et al. (2020a) showed that floating ropes attached to the lower panel beneath the SMP significantly 

467 increased contact probability with the SMP and consequently the release efficiency for this species.

468 Finally, in agreement with results of previous studies reporting on the experimental suitability of SMPs for 

469 blue whiting release (Briggs and Robertson, 1993; Campos and Fonseca, 2004), we found that blue whiting 

470 is a species with high potential for being released by SMPs in trawl gears. Its active behaviour, which results 

471 in more escape attempts, can lead to high contact rates with the SMP (Cuende et al., 2020a), thereby 

472 increasing the chances of contact with an optimal CA. As blue whiting is a relevant species for fisheries 

473 worldwide, both as a target and bycatch species, SMPs may be a useful selection device for the management 

474 of this species in fisheries of interest, especially since the creation of the new Common Fisheries Policy 

475 (Regulation EU 1380/2013).

476 Supplementary material

477 The following supplementary material is available at ICESJMS online. It includes a short description of the 

478 standard FISHSELECT methodology applied for collection of morphology and mesh penetrability data of 

479 blue whiting. 
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Figures

Fig. 1. (a) Different contact angles (CAs) (ranging from 10 to 90º) for blue whiting attempting to escape 

through SMP meshes. The column to the right of each of the angles shows the shape of the projected mesh 

for the different CAs (green rectangle) and the cross-section of the largest blue whiting that would pass 

through it (blue circle). (b) Underwater recordings from experimental trials (Cuende et al., 2020a) showing 

fish trajectory (red arrow) for each escape attempt with different CAs through a SMP. 
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Fig. 2. (a) Blue whiting contacting the SMP with a specific contact angle (CA). The rightmost part of the 

diagram shows how to calculate the mesh size projection according to the CA. is the bar length of the 
𝑚
2  

square meshes (half mesh size), and p is the projected length of the longitudinal bars of the mesh with 

respect to the orientation of the fish. (b) Transformation from an original SMP mesh to the projected 

mesh based on the specific CA of a fish.
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Fig. 3. (a) Experimental available SMP retention probability curve (raSMP) (black line) with 

corresponding confidence intervals (dashed lines) and experimental rate (crosses). (b) Contact SMP 

retention probability (rcSMP) (black line) with corresponding confidence intervals (dashed lines). 
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Fig. 4. Compression models for cross-section 1 (left) and cross-section 2 (right). Green inner curves 

correspond to the best compression model and red outer curves correspond to no compression for each 

cross-section of blue whiting.
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Fig. 5. Design guide for (a) square and (b) diamond meshes showing L50 isocurves as a function of mesh 

size (mm), for sizes between 50 mm and 150 mm, and mesh CA and OA between 10º and 90º, respectively.
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Fig. 6. Grey curves show (a) the simulated SMP selectivity for different CAs and (b) codend selectivity for 

different OAs from 10º to 90º in steps of 10º. Black curves depict (a) experimental rcSMP and (b) 

experimental codend size selection curve with corresponding CIs (dashed lines).
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Fig. 7. Experimental (black line) and simulated (yellow line) size selection curves are shown for (a) SMP, 

(b) codend, and (c) combined SMP and codend. Experimental 95% CIs are shown (dashed lines).
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Fig. 8. (a) Predicted aSMP for the mesh size range of 50 to 150 mm with 10 mm increments. (b) Predicted 

codend retention probability for the same mesh size range. (c) Predicted combined retention probability of 

the gear by maintaining codend mesh size mandated by regulation (70 mm) and changing SMP mesh size 

for the same mesh size range. (d) Predicted combined retention probability of the gear by maintaining 

SMP mesh size mandated by regulation (100 mm) and changing codend mesh size for the same mesh size 

range. Vertical dashed lines correspond to the minimum marketable size of blue whiting: 18 cm.
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Fig. 9. Design guides showing L05, L25, L50, L75, and L95 isocurves as a function of different 

combinations of SMP and codend mesh sizes (mm) for blue whiting.
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Fig. 10. (a) Predicted aSMP retention probability assuming different values of CSMP (0.27, 0.40, 0.65, 0.80, 

and 1.00). (b) Predicted combined retention curve assuming different values of CSMP (same as (a)). Thick 

black lines correspond to the current SMP and codend mesh sizes used by the fleet (100 and 70 mm, 

respectively). Vertical dashed lines correspond to the minimum marketable size of blue whiting: 18 cm.
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Tables
Table 1. AIC values for the different models tested for each cross-section; the model that resulted in the 

lowest AIC value (best model) is in bold.

Ellipse Flexdrope Flexellipse 1 Ship Superdrope

AIC 173.07 143.13 144.53 157.05 235.04
Cross-section 1

R2 0.94 0.96 0.96 0.95 0.91

AIC 200.90 168.32 165.44 183.66 226.89
Cross-section 2

R2 0.93 0.95 0.95 0.95 0.93
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Table 2. Contribution (%) of the considered SMP CAs and codend mesh OAs as potentially involved in 

reproducing experimental rcSMP and codend size selection curves. *: could not contribute due to no overlap 

with experimental selectivity curve.

Contribution (%)

CA and OA (º) SMP
Diamond codend 

meshes

5 * *

10 * *

15 0.419 1.422

20 5.040 7.222

25 18.097 27.599

30 18.508 45.361

35 18.053 14.519

40 14.217 0.400

45 3.968 0.374

50 0.851 3.104

55 0.001 *

60 0.000 *

65 0.000 *

70 0.001 *

75 0.001 *

80 1.821 *

85 9.704 *

90 9.320 *
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