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A B S T R A C T

Thermal delousing is a new method for removing sea lice from farmed Atlantic salmon (Salmo salar L). We
investigated thermally-related tissue injuries in Atlantic salmon in a pilot laboratory trial to describe the acute
effect of high water temperatures (34–38 °C). Acute tissue injuries in gills, eyes, brain and possible also nasal
cavity and thymus were seen in salmon exposed to water temperatures of 34 - 38 °C in 72 to 140 s. This implies
that exposing salmon to such water temperatures is a welfare risk, not only due to the direct tissue injuries that
may also be dependent on exposure time, but also due to risk of thermal pain and aversion, including flight
reactions.

1. Introduction

Thermal delousing is a new method for removing sea lice from
farmed Atlantic salmon (Salmo salar L) (Grøntvedt et al., 2015). Al-
though launched as an environmentally and fish welfare friendly
technology, it can lead to injuries and acute fish mortality
(Hjeltnes, Bang-Jensen, Bornø, Haukaas, & Walde, 2018; Overton et al.,
2018). The salmon are crowded and pumped into a chamber with he-
ated seawater for about 30 s, before returning to the sea cage
(Noble et al., 2018). The treatment temperature varies between 28 and
34 °C, dependent on sea temperature and delousing effect
(Hjeltnes et al., 2018; Roth, 2016). However, extreme temperatures of
36 °C or higher have been reported in anonymous surveys
(Hjeltnes et al., 2018).

After commercial thermal delousing, pathologists have observed gill
and brain hemorrhages, scale and skin loss and affected thymic and
nasal tissues in salmonids in mortality diagnostics (Poppe, Dalum,
Røislien, Nordgreen, & Helgesen, 2018). Still, it may be hard to dis-
tinguish thermal injuries from other factors like pumping, crowding and
the panic reaction in salmon seen during thermal de-licing
(Hjeltnes et al., 2018; Noble et al., 2018; Poppe et al., 2018). It has been
debated whether it is the heat itself, or panic behavior and collisions in
the treatment chambers that causes the injuries. It is known that sal-
monids have nociceptors (pain receptors) that respond to heat.
Ashley, Sneddon, and McCrohan, (2007) reported an average heat
threshold temperature of ∼29 °C for polymodal and ∼33 °C for

mechanothermal nociceptors in rainbow trout.
High water temperatures are reported as strongly aversive and

mortal in salmonids (Beitinger, Bennett, & McCauley, 2000;
Elliott, 1991; Frechette, Dugdale, Dodson, & Bergeron, 2018). Lethal
water temperature for Atlantic salmon varies according to acclimation
temperature, exposure time and life stage (Elliott, 1991;
Huntsman, 1942). However, acclimation above ∼28 °C is not con-
sidered possible for salmon (Anttila et al., 2014; Elliott & Elliott, 2010).
In experiments, parr and smolts die within 10 min at 30 - 33 °C (Elliott
& Elliott, 2010). During thermal death of wild salmon, large salmon
died first while parr survived (Huntsman, 1942).

Basic knowledge of upper temperatures and holding times that may
give acute tissue damage in live salmon is lacking. Here, we investigate
thermally-related tissue injuries in Atlantic salmon to describe the acute
effect of high water temperatures (34–38 °C).

2. Material and method

The pilot was performed in connection with a behavior trial at the
Institute of Marine Research in Matre in May 2018 (reported in Nilsson
et al., 2019). The Atlantic salmon smolts were 234 ± 52 g (mean±
SD) and acclimated to 8.5 °C. In the behavior trial the salmon were
individually transferred by careful dip-netting to a treatment tank
(⌀ =1.5m) with different temperatures until they reached the beha-
viorally defined humane endpoint (laying on the side for two seconds).
At this point the salmon were picked up and euthanized by an overdose
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of tricaine methanesulfonate (Finquel vet.). At treatment temperatures
of 36–38 °C, tissue injuries were immediately examined as described
below. In addition to individually exposed salmon, the 34 °C group of
salmon in the pilot was treated simultaneously. As all individuals in this
group could not be netted out in the same netting event, exact exposure
times are not known at an individual level but were within 90–140 s for
all individuals. These individuals were euthanized and examined in the
same manner.

Ten salmon were scored for macroscopic injuries after hot water
(36–38 °C) exposure. As a control ten salmon kept at 8.5 °C were in-
dividually dip-netted, euthanized and macroscopically scored.
Temperatures and exposure time are given in Table 1, also showing the
key injuries discovered. The scoring was done on a 0–3 scale; none,
mild, moderate, severe (Gismervik, Nielsen, Lind, & Viljugrein, 2017;
Grøntvedt et al., 2015; Hjeltnes, Bornø, Jansen, Haukaas & Walde,
2017), for eye damage/bleeding, snout injury, scale loss, skin bleeding,
wounds, gill bleeding and paleness and fin injuries. Bleedings in brain,
thymus, and palate were scored as present or not. Eye opacity was
scored 0–4 (Bass & Wall, Undated; Wall & Bjerkås, 1999), total gill score
0–5 (Grøntvedt et al., 2015; Taylor, Muller, Cook, Kube & Elliott, 2009).

Histology examination and scoring was performed in fourteen
salmon exposed to hot water (34–38 °C), and five of the control fish.
The following organs were sampled and fixed in 10% phosphate-buf-
fered formalin: gills, left eye, thymus, skin and skeletal muscle, brain,

nasal cavity, pseudobranch, heart, liver, spleen, kidney, pyloric caeca
with pancreas. Skeletal muscle samples were obtained ventral to the
dorsal fin, by transverse section in the lateral line area, covering both
red and white muscle. Thymus and nasal cavity were not sampled in all
fish (see Table 1 for details). After formalin fixation, organs were pre-
pared for histology by standard paraffin wax embedding and stained
with haematoxylin and eosin. Pathological lesions were graded from
none detected, mild, moderate and severe by light microscopy. All
macroscopic and histological scorings were conducted by authorized
fish health personnel (Norwegian Veterinary Institute), including full
autopsy.

The experiment was approved according to the Norwegian animal
welfare act by the Norwegian Food Safety Authority, permit number
15,383.

3. Results and discussion

Key findings were that acute tissue injuries were seen in salmon
exposed to water temperatures of 34 - 38 °C in 72 to 140 s (Table 1). Gill
injuries were macroscopically seen as gill bleedings and coagulated
clots histologically seen as bleedings or congestions, epithelial damage
or edema and/or necrosis; the higher the temperature the more severe
damage (Table 1 and Fig. 1). That the gill tissue is most affected is not
surprising, as gills are extremely delicate, reacting quickly to an

Table 1
Overview over the key macroscopic and histological injuries of gills, eyes, brain, snout, nasal cavity and thymus in Atlantic salmon exposed to different water
temperatures. Macro; macroscopic bleedings or injuries scored directly after treatment. Opacity scored 0–4 according to Bass and Wall (Undated). Histology: gills;
sparse to severe bleedings or epithelial injuries/edema, and/ or epithelial cell necrosis, PGI=proliferative gill infection (non-specific) were seen in all samples
including controls, eye; partly to almost totally loss of corneal eye epithelium, brain; sparse to severe focal bleedings in brain and/or meninges, nasal cavity; sparse
blood congestion and focal/multifocal bleeding in lamina propria and/or edema in nasal cavity.

T reatments Gills Eye Brain Snout damage Nasal cavity Thymus

°C Sec. Macro Histology Opacity Hist. Macro Hist. Macro Hist. Hist.

PGI Left Right Left

34 90–140 – Spa. D – – ND – ND – D ND
34 90–140 – Spa. D – – Partly – ND – ND ND
34 90–140 – Spa. D – – ND – ND – ND ND
34 90–140 – Spa. D – – ND – Sev. – ND Spa. e. c. necrosis
36 99 Sev. Mod. D 1 1 Partly ND Spa. Mod. D ND
36 100 Sev. Mod. D 0 0 Partly D Mod. Mod. – Sparse bleeding
36 105 Sev. Mod. D 0* 1 ND D Spa. Mod. D ND
36 115 Sev. Spa. D 1 2 Partly D Spa. Mod. – ND
36 117 Sev. Spa. D 0 1 ND ND ND Sev. × ND
36 130 Sev. Mod. D 0 0 Partly ND ND Spa. × –
37 114 Sev. Sev. D 1 0 Partly ND Spa. Mod. D –
37 117 Sev. Mod. D 0 2 Partly ND ND Spa. D –
38 72 Sev+ Sev. D 1 0 Partly ND ND Spa. D –
38 95 Sev+ Sev. D 3 1 Total ND Spa. Mod × ×
8.5 0 ND ND D 0 0 ND ND ND ND – ND
8.5 0 ND ND D 0 0 ND ND ND Mod. – –
8.5 0 ND ND D 0 0 ND ND ND Spa. – ND
8.5 0 ND ND D 0 0 ND ND ND ND – ND
8.5 0 ND ND D 0 0 ND ND ND ND – ND
8.5 0 ND – – 0 0 – – – Spa. – –
8.5 0 ND – – 0 0 – – – Spa. – –
8.5 0 ND – – 0 0 – – – Spa. – –
8.5 0 ND – – 0 0 – – – Spa. – –
8.5 0 ND – – 0 0 – – – Spa – –

Spa.= sparse. Mod.= moderate. Sev.= severe. ND=not detected. D=detected. Spa. e. c. necrosis= sparse epithelial cell necrosis.×= sample not suitable for
analysis. - = not investigated. *Small bleeding/injury detected.
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Fig. 1. Gill tissue. (A and B) Normal gill tissue apart from non-specific multifocal proliferative gill inflammation (arrow) in Atlantic salmon in control group. (C and
D) Moderate lamellar bleeding in Atlantic salmon (arrow) exposed to 36 °C water. (E and F) Severe filamental (E) and lamellar congestion (F) (arrow) and severe
epithelial lifting/ edema (E, arrow head) and cellular necrosis of epithelial cells (F, arrow head) in Atlantic salmon exposed to 38 °C water. (H&E stain).
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unfavorable environment (Strzyzewska, Szarek, & Babinska, 2016).
Opacity in one or both eyes was seen in eight of the ten salmon

exposed to 36–38 °C. One salmon exposed to 38 °C had a score 3 in one
eye (Table 1 and Fig. 2). According to the histology, the opacity dis-
covered was not cataract (clouding) in the eye lens, which macro-
scopically easily can be a mix up (Bass & Wall, Undated), but partly or
almost total loss of the corneal eye epithelium assumed painful
(Ashley, Sneddon, & McCrohan, 2006). Eyes are vulnerable and can
also be damaged by dip-netting of the fish. Still, none of the ten controls
showed macroscopic eye damage, five of them also controlled to be
negative by histology.

Brain bleedings were discovered macroscopically in three of ten
salmon and by histology in seven of 13 salmon after hot water exposure
(Fig. 3). No brain bleeding was seen in controls. This pilot suggests that
hot water itself or the stress may give brain bleedings at the tempera-
tures and holding times examined (Table 1). Going through video re-
cordings from the 36–38 °C groups, collisions with the tank walls
cannot be ruled out for all salmon with brain bleedings. Still, one

salmon had no clear wall collisions, but a macro- and microscopic
bleed, and at least four individuals had no diagnosed brain bleedings
despite visible tank wall collisions, suggesting colliding with the walls
was not a major contributor to brain injuries in the experimental set up.
There was also no macroscopic skin bleedings or wounds detected on
the salmon body in either the treated or control group, with the ex-
ception of snout and fin damage seen in both groups. The most severe
damage appeared in the group exposed to warm water (Table 1).

At least one fish exposed to 38 °C water temperature showed mac-
roscopic bleedings in nostrils, but this was not registered systematically
on all. Histologically sparse blood congestion and focal or multifocal
bleeding were seen in lamina propria and/or edema in the nasal cavity
of fish exposed to water temperatures of 36–38 °C, and from one of four
salmon exposed to water temperature of 34 °C (Table 1 and Fig. 4).
Nasal cavity is an organ normally not sampled, so interpretations of the
results must be taken with care as it may be difficult to judge whether
the changes are artifacts associated with sampling, also since it was not
sampled in the controls. Sparse epithelial cell necrosis was found in the

Fig. 2. Eye. (A and B) Normal cornea of Atlantic salmon (arrow: epithelium) in control group. (C) Partial loss of corneal epithelium in Atlantic salmon exposed to
38 °C water. (arrow: normal epithelium; arrow head: loss of epithelium). (D) Partial loss of epithelial cells (arrow) of cornea. (H&E stain).
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thymus of one salmon, and sparse bleeding in another (Fig. 5). The
remaining fish, including four controls, showed no thymus pathology.

No histopathological changes were detected on pseudobranch,
heart, liver, spleen, kidney, pyloric caeca, pancreas or muscle from hot
water exposed fish or five controls. Concerning skin health, epidermis
was partly missing, scales exposed and/or edemas in scale pockets were
seen in almost all treated and control fish. This may be due to artifacts
during sampling or processing, but it was observed that the salmon
generally had “loose scales”.

We have here shown that a sudden exposure to water at 34–38 °C
can be lethal after 72 to 140 s in salmon acclimated to 8.5 °C. We used
equilibrium loss and cease of movements for two seconds as a humane
endpoint. Such behavior has also been suggested by others as a sign of
irreversible thermal shock (Beitinger et al., 2000; Elliot, 1991), and
wild salmon would be an easy meal lying on their sides. Still, we did not
check reflexes like the eye roll (Kestin, Van de Vis, & Robb, 2002).
Acute injuries, especially in gills but also eyes and other tissue, were

detected in the salmon. In humans, the cornea is acknowledged as the
most richly innervated body structure when it comes to nerves (Al-
Aqaba, Dhillon, Mohammed, Said & Dua, 2019), 40 times more sensi-
tive than dental pulp, 400 times more than the skin (Bonini, Rama, Olzi,
and Lambiase, (2003). Polymodal nociceptors in corneas of cats are
excited by temperatures over 37–38 °C, and are sensitized to repeated
heating (Belmonte & Giraldez, 1981; Gallar, Pozo, Tuckett, & Belmonte,
1993). Cats have a normal rectal temperature ranging from
36.7–38.9 °C (Levy, Nutt, & Tucker, 2015). Ashley et al. (2006) iden-
tified corneal nociceptors in rainbow trout, polymodal temperature
threshold 31.70 ± 2.09, still ranging from 21.4 °C. Ashley et al. (2007)
reported an average heat threshold temperature of ∼29 °C for poly-
modal and ∼33 °C for mechanothermal nociceptors on the head of the
rainbow trout, still ranging from 20.1–22.0 °C. Ashley et al. (2007)
argues that a lower noxious thermal level than mammals found in
rainbow trout, can be explained by the function nociception has, and
evolved to match habitat temperatures. Lethal limit for trout is

Fig. 3. Brain. (A) Normal brain of Atlantic salmon in control group. (B) Sparse focal bleeding (arrow) in meninges in Atlantic salmon exposed to 37 °C water. (C)
Sparse focal bleeding (arrow) in brain in Atlantic salmon exposed to 38 °C water. (D) Severe focal bleeding in meninges (arrow) and brain (arrow head) in Atlantic
salmon exposed to 34 °C water. (H&E stain).
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described to be >25 °C, where trout actively avoide such temperatures,
even at the risk of hypoxia (Matthews & Berg, 1997). Research on more
thermally tolerant fish species like the goldfish supports thermal noci-
ception levels in accordance with thermal limits.
Nordgreen et al. (2009) found a mean heat noxious level of 38 °C in
goldfish based on behaviour, that correspond to their critical maximal
limit of 37,5–38,3 °C (Ford & Beitinger, 2005). Adult wild Atlantic
salmon are found to maintain a narrow range of body temperatures
(16–20 °C) using behavioral thermoregulation via use of cool refuge in
rivers (Frechette et al., 2018). Elliot (2010) states that salmon will soon
die with water temperatures exceeding 22–28 °C.

Based on the biological function of nociception and pain keeping an
animal alive (Sneddon, 2017), it is likely that water at 34–38 °C, here
shown to give acute tissue injuries within minutes, also is potentially
painful and strongly aversive to Atlantic salmon. Fish pain in general is
reviewed elsewhere (ie. Chatigny, 2018; EFSA, 2009; Pouca &
Brown, 2017; Sneddon, 2009). The salmon showed immediate strong
aversive behaviors like bursts, colliding in tank walls, headshake and

increased swimming speed at these temperatures (reported in details in
Nilsson et al., 2019 and at ensured oxygen conditions). Others have
reported similar aversive behavioral responses to high water tempera-
tures (Elliot, 1991). Heat stress is also found to give physiological re-
sponses, like elevation of glucose and lactate when raising the tem-
perature from 15 to 26 °C over 15 h (Gallant, LeBlanc, MacCormack &
Currie, 2017).

4. Conclusion

Exposure to water at 34–38 °C in 72 to 140 s can lead to acute tissue
injuries in gills, eyes, brain and possible also nasal cavity and thymus in
Atlantic salmon. This implies that exposing salmon to such water
temperatures is a welfare risk, not only due to the direct tissue injuries
that may also be dependent on exposure time, but also due to risk of
thermal pain and aversion, including flight reactions.

Fig. 4. Nasal cavity. (A) Normal nasal cavity in Atlantic salmon. (B and C) Focal bleeding (arrow) in lamina propria of mucosa in Atlantic salmon exposed to 37 °C
water. (H&E stain).
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