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The sound energy from marine mammal populations vocalizing over extended periods of time adds

up to quasi-continuous “choruses,” which create characteristic peaks in marine sound spectra. An

approach to estimate animal distribution is presented, which uses chorus recordings from very sparse

unsynchronized arrays in ocean areas that are too large or remote to survey with traditional methods.

To solve this under-determined inverse problem, simulated annealing is used to estimate the distribu-

tion of vocalizing animals on a geodesic grid. This includes calculating a transmission loss (TL)

matrix, which connects all grid nodes and recorders. Geometrical spreading and the ray trace model

BELLHOP [Porter (1987). J. Acoust. Soc. Am. 82(4), 1349–1359] were implemented. The robust-

ness of the proposed method was tested with simulated marine mammal distributions in the Atlantic

sector of the Southern Ocean using both drifting acoustic recorders [Argo (2018). SEANOE] and a

moored array as acoustic receivers. The results show that inversion accuracy mainly depends on the

number and location of the recorders, and can be predicted using the entropy and range of the esti-

mated source distributions. Tests with different TL models indicated that inversion accuracy is

affected only slightly by inevitable inaccuracies in TL models. The presented method could also

be applied to bird, crustacean, and insect choruses. VC 2019 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/1.5139406
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I. INTRODUCTION

Passive acoustic monitoring (PAM) is increasingly used

to study the distribution and migration of vocalizing animals

that are otherwise difficult to observe, such as marine mam-

mals (Rogers et al., 2013), birds (Dawson and Efford, 2009),

fish (Wall et al., 2013), insects, and amphibians (Pijanowski

et al., 2011). Most methods estimate population density and/

or spatial distribution based on the detection of transient

vocalizations (Marques et al., 2013) recorded by single hydro-

phones or small-scale arrays. Here, we present an approach to

estimate the distribution of vocalizing animals that utilizes

ambient sound spectra from widely spaced recorder arrays

(>100 km distance) and the cumulative sound energy emitted

by a population, rather than signals from individual vocaliza-

tions. We developed this method to interpret recordings of

low-frequency and far-ranging marine mammal vocalizations

in the Southern Ocean, but it could also be applied to other

situations involving a large number of signal sources, such

as bird, crustacean, and insect choruses, which create a

quasi-continuous chorus that is observed with a sparse array

of receivers.

In the ocean, ambient sound (also often termed “ambient

noise” or “soundscape”) stems from sea surface motion, pre-

cipitation, sea ice motion, glacier calving, shipping, seismic

surveys, marine mammals, fish, and crustaceans (Carey and

Evans, 2011; McDonald et al., 2008; Nieukirk et al., 2012).

The cumulative sound energy of a marine mammal popula-

tion vocalizing during extended periods adds up to a

“chorus-like” quasi-continuous signal, which can dominate

ambient sound over certain frequency bands (Curtis et al.,
1999; Leroy et al., 2018b; Seger et al., 2016). Throughout

the remainder of this paper, these parts of the ambient sound

are referred to as marine mammal choruses (MMCs), though

strictly speaking, they also contain energy from single, dis-

cernable calls. Hence, MMCs more accurately represent the

acoustic power contributed in specific frequency bands by

the target species. A recording containing Antarctic minke

whale calls and the Antarctic minke and blue whale MMCs

is shown in Fig. 1.

The contribution of the various sources to ambient

sound can be determined by analyzing characteristic peaks

and slopes in ambient sound spectra. The temporal variabil-

ity of these spectra can be visualized with long-term spectral
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averages (LTSA), which display the average power spectral

density (PSD) of each recording over the recorder’s deploy-

ment period. An example LTSA from the Southern Ocean is

displayed in Fig. 2(a) (Menze et al., 2017). The contribution of

the air–sea–ice interaction to ambient sound can be seen as

vertical lines, and the contribution of Antarctic blue whales

(Balaenoptera musculus intermedia), fin whales (Balaenoptera
physalus), Antarctic minke whales (Balaenoptera bonaeren-
sis), and leopard seals (Hydrurga leptonyx) can be seen as hor-

izontal lines in the LTSA (Menze et al., 2017). The spectral

peaks in Southern Ocean ambient sound related to Antarctic

blue whales, fin whales, and Antarctic minke whales are dis-

played in Figs. 2(b)–2(d). The MMC sound energy can be cal-

culated by subtracting fitted functions from the measured

spectra, resulting in time series of MMC received levels

(RLMMC). Figure 2(e) compares Antarctic minke whale

RLMMC recorded at 66�S and 69�S; the time series show dis-

tinct north-south differences and co-varying patterns. MMCs

have also been observed from fin whales in the Mid and North

Atlantic (Nieukirk et al., 2012), fin and blue whales in the

North Pacific (Burtenshaw et al., 2004; Curtis et al., 1999) and

Indian Ocean (Leroy et al., 2018a), Pygmy blue and Antarctic

blue whales around Australia (McCauley et al., 2018), and fin

and possibly Bowhead whales in the Arctic (Ahonen et al.,
2017), and exhibit extensive spatial as well as inter- and intra-

annual variation. In this study, we explore how the information

in such MMC patterns can be used to estimate the spatial dis-

tribution of a population of vocalizing animals.

Most approaches to estimate animal distribution or den-

sity from acoustic recordings focus on the detection of tran-

sient vocalizations, which can also be used to localize

individual animals. The spacing, geometry, and clock accu-

racy of a recorder array, as well as the nature of the sound

source, sound speed profile, and bathymetry, determine if

and how accurately individual sound sources can be local-

ized. If only a single hydrophone is present, it is often only

possible to detect the number of calls per unit time (often

termed call rate or acoustic activity) and RLMMC at the

hydrophone’s location (Haver et al., 2017; Van Opzeeland

et al., 2013; Van Parijs et al., 2009). In shallow water with a

dispersive waveguide and impulsive calls, range estimation

is possible on a single hydrophone (Bonnel et al., 2014;

Marques et al., 2011). In cases where the vocalizations prop-

agate in a way that allows the identification of multipath

arrival patterns or modes, it is also possible to estimate the

call source level (SL), the distance from the recorder and

source depth, in addition to the number of calls per unit time

(Mouy et al., 2012; Newhall et al., 2012; Valtierra et al.,
2013). When arrays with small to medium spacing are used,

it is possible to calculate the distance, bearing, and SL of

transient sounds via time-difference-of-arrival (TDOA) or

beamforming methods (Harris et al., 2018; �Sirović et al.,
2007; Urazghildiiev and Clark, 2013; Urazghildiiev and

Hannay, 2018; Wang et al., 2016). However, when the array

spacing becomes so large that a signal is no longer recorded

by at least three hydrophones, or individual calls cannot be

associated, tracking individual sound sources becomes chal-

lenging, and analysis is often limited to comparing the num-

ber of calls per unit time and RLMMC at the different

locations (Risch et al., 2014; Thomisch et al., 2016).

It is important to note the difference between density

and distribution. In this study, we define density as the aver-

age number of vocalizing animals per km2 within the entire

study area, and we define spatial distribution as the number

of animals per grid cell for a grid that tessellates the study

area. The two most promising methods for estimating animal

density from the detection of vocalizations are distance sam-

pling and spatially explicit capture recapture methods

(Harris et al., 2013; Harris et al., 2018; Kusel et al., 2011;

Kyhn et al., 2012; Marques et al., 2013; Martin et al., 2013;

Thomas and Marques, 2012; Ward et al., 2012). However,

due to their reliance on individual call detections, they work

best on spatial scales smaller than ocean basins, and require

an extensive recorder array (Carl�en et al., 2018; Harris et al.,

FIG. 1. (Color online) Spectrogram showing Antarctic minke whale calls and “chorus” (MMC) and Antarctic blue whale chorus (MMC). Recorded by a

moored Aural M2 recorder (Multi-Electronique, Quebec, CA) on 5 September 2008 at 66�01.130S and 0�04.770E (sample rate, 32 768 Hz; spectrogram set-

tings: fast Fourier transform (FFT), 8000 points; Hanning window, 50% overlap). The recordings are described in Menze et al. (2017).
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2018). In this paper, we estimate the spatial distribution of

acoustic sources instead of the density of acoustic sources in

the study area.

Due to the complex and cumulative nature of the MMC

to ambient sound, RLMMC data have been rarely used to esti-

mate animal distribution. Seger et al. (2016) combined

MMC recordings and line transect surveys to investigate the

spacing among singing Humpback whales. Mellinger et al.
(2014) discussed an approach to estimate the density of

vocalizing fin whales in a reference area around a single

hydrophone using acoustic propagation modelling. The diffi-

culty with interpreting the spatial and temporal patterns in

RLMMC is that a higher RLMMC does not necessarily imply a

higher density of animals due to the nonlinearity of underwa-

ter sound propagation and the large and unknown number

and location of sources involved. For a given location,

increased RLMMC can be caused by a combination of

processes: an increase in the number of vocalizing animals,

an increase in SL, an increase in call rate, a decreasing dis-

tance to the vocalizing animals, or a decreasing TL between

the vocalizing animals and the recorder. We address these

issues by using a set of RLMMC recordings in combination

with acoustic propagation models and a parameter estima-

tion algorithm to estimate the distribution of sound sources,

which would generate the observed set of RLMMC record-

ings. With additional information about the animals’ SLs

and call rates, it should then be possible to extend the pre-

sented approach further and provide an estimate of the num-

ber of animals per grid cell. As with any PAM method, we

only estimate the distribution of vocalizing animals, while

non-vocalizing animals present in the area cannot be

detected.

This paper is structured into six sections. Section I is the

Introduction and Sec. II describes the inversion method.

FIG. 2. (Color online) Ambient sound recordings from the Southern Ocean containing marine mammal contributions as described in Menze et al. (2017). (a)

LTSA of recordings from 66�S, marine mammal contributions visible as horizontal streaks. (b),(c),(d) Marine mammal contribution peaks in example ambient

sound spectrum. The black lines represent the measured PSD (at 66�S on 25 May 2008 12.00 h), the colored lines are three fitted interpolation functions and

the colored areas are the frequency bands used to calculate the PSDMMC. (e) Comparison of the Antarctic minke whale chorus (PSDMMC) time series (low-pass

filtered with a seven-day window Butterworth filter) between 66�S (red) and 69�S (blue).
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Section III describes simulated scenarios to test the robustness

of the inversion method and how we quantified inversion

accuracy. Section IV presents the results of the simulated test

scenarios and relations between inversion accuracy and sev-

eral metrics. Section V discusses these results and the feasibil-

ity of the inversion method. Conclusions are summarized in

Sec. VI.

II. THE INVERSION METHOD

Estimating the spatial distribution (location and ampli-

tude) of sound sources from a finite set of RLMMC observa-

tions is an under-determined, non-linear inverse problem.

Similar RLMMC values could be caused by different source

numbers, locations, and amplitudes, and the number of

unknown parameters (location and amplitude) is much larger

than the number of observations. Following the notation of

the Bayesian geophysical inverse problem theory

(Mosegaard and Sambridge, 2002; Tarantola, 2005), the

RLMMC observations form the data set d, which is connected

to the parameter set m through the forward model d ¼ g(m).

Here, the forward model g(m) simulates the ambient sound

created by a set of acoustic sources for which spatial distri-

bution is described by the parameter set m. To solve the

inverse problem, we are sampling the joint posterior distribu-

tion that combines flat prior distributions over the parameters

m and the least squares misfit between d and g(m).

For inverse problems with a small number of parame-

ters, the misfit function can be sampled using a grid search,

i.e., calculating the misfit of all possible parameter combina-

tions (also termed the search space). In our case, this is

impossible since the number of parameters is in the hundreds

to thousands, rendering the search space too large for a grid

search. We therefore developed a parameter estimation algo-

rithm that uses a Markov chain Monte Carlo (MCMC) algo-

rithm to sample the misfit function and find the parameters

with least misfit between observed and modelled RLs. This

is a first exploration of the inverse theory approach toward

estimating marine mammal distribution from chorus record-

ings. Sections II A–II C describe the different parts of the

inversion method: the architecture of the forward model,

prior estimates, assumptions, and the parameter estimation

algorithm.

A. The forward model and a priori assumptions

Estimating RLMMC requires knowledge about the num-

ber or sources (vocalizing marine mammals), their SL, loca-

tion, and the TL between the source and recorder locations.

The TL is not only influenced by the distance between the

source and receiver, but also by the sound speed field, sea

floor shape and properties, sea surface roughness, sea ice,

and bubble clouds. Since it is computationally very costly to

include all these parameters in a forward model, we make

several assumptions to expedite the calculations.

Our first simplification of the forward model is neglect-

ing time; since we are modelling the contribution of marine

mammals to ambient sound, which is quasi-continuous on

the scales of minutes to hours, we can simulate the transient

vocalizations by a set of continuous sources of identical

frequency. The continuous nature of ambient sound, and the

marine mammal contribution to it, arises due to the many

sources involved, the multipath propagation that spreads

impulsive signals over time, and the repetitive and monoto-

nous nature of many marine mammal vocalizations.

Multipath propagation of underwater sound renders initially

impulsive signals (such as the Antarctic minke whale calls in

Fig. 1) into a quasi-continuous signal (such as the Antarctic

minke whale “chorus” in Fig. 1) due to sea floor, internal,

and surface reflections. We simulated this process for fin

whale vocalizations and found that the pulse train can

become a quasi-continuous signal at distances around

100 km away from the source (supplemental Figs. 1 and 2).1

Since we assume a steady-state situation in our forward

model, we observe the time scale so that our model is valid.

We aim to estimate source distribution on a basin scale

(thousands of km), where the signal travel times between

source and recorder are on the scale of minutes to tens of

minutes (an underwater sound signal needs approximately

11 min to travel 1000 km). Thus we assume that the SL, call

rate, and location of the vocalizing marine mammals and TL

are approximately constant on the time scale of 10–30 min.

This implies that RLMMC should be measured on the scale of

minutes, ideally between 10 and 30 min, and the time steps

between estimates of distribution need to be on the scale of

hours. It is unlikely that the large-scale marine mammal dis-

tribution and TL change significantly on smaller time scales.

The second assumption is to neglect source depth in the

forward model. This is deemed appropriate since the source

depth mainly affects TL in the first tens of km

(Weirathmueller et al., 2013). Tagging of vocalizing blue

whales indicated that calling occurs mainly at depths below

30 m (Lewis et al., 2018).

The third assumption is to discretize and reduce the search

space that is sampled by the parameter estimation algorithm.

Since we neglect depth and time, the parameter set m only

needs to describe the source locations and levels. Allowing

arbitrary locations, SLs, and number of sources would require

an overwhelming computational effort. We reduce the possible

source locations to grid nodes. This grid is termed the simu-

lated source grid. Using a rectangular latitude-longitude grid

will result in an uneven distribution of nodes across ocean

basin scales. Therefore, we calculated node positions with a

geodesic algorithm that approximates the shape of a sphere

using an icosahedron (Teanby, 2006). It is available as

MATLAB code (MathWorks, Natick, MA), and was imple-

mented into the forward model. The estimated received level,dRLi , at each recorder, i, is calculated as the (incoherent) sum

of the acoustic power from all source grid nodes,

g mð Þ ¼dRLi ¼ 20 log10

Xnnodes

j¼1

10ðSLj�TLijÞ=20

 !
;

where j is the source grid node index, nnodes is the number of

grid nodes, SLj ¼ 20 log10ðSPjÞ is the SL at each node, and

TLij is the TL between a recorder i and the source at grid

node j. For efficient computation, the TL between all grid

nodes and recorders is calculated into a lookup TL matrix

4702 J. Acoust. Soc. Am. 146 (6), December 2019 Menze et al.



using a sound propagation model. The two acoustic propaga-

tion models implemented for this study are presented in Sec.

II B. The parameter estimation algorithm then needs to deter-

mine the source pressure at each node SPj that produces the

least misfit between model and observations. For this it is

necessary to reduce the degrees of freedom of the inverse

problem to allow the parameter estimation algorithm to find

the best SPj quickly. Instead of performing a grid search for

the best SPj (calculating the misfit of all possible parameter

combinations), a fixed number of equally loud simulated

sources is moved across the grid nodes. The number of simu-

lated sources is set the same as the number of grid nodes

nsources ¼ nnodes. This allows all source location combinations

ranging from one simulated source at each node to all simu-

lated sources being at one node. The parameter set m is then

defined as a vector containing the node index that describes

where each simulated source is located. The source pressure

at a given node is then defined as the sum of all simulated

sources (animals) assigned to that node. The sound pressure

of each source (animal) is defined as a fraction of the

unknown cumulative source pressure (CSP, the total sound

energy emitted by all vocalizing animals of the population)

and nsources. The source pressure SPj at a given node j is thus

calculated as the product of the number of simulated sources

located at that node and the fraction of the CSP

SPj ¼
X

j 2 m
� � CSP

nnodes

:

The true value of the CSP is unknown, thus, it needs to be

estimated on the basis of typical SLs, population sizes, and

call rates as given in the literature. We assume that this could

take any value (uniform distribution) between the extreme

cases of CSPmin (only one animal volcanizing sporadically)

and CSPmax (all possible existing animals volcanizing

constantly).

We then solve the inverse problem (searching the mini-

mum of the misfit function) for a predefined number nSA

chains of CSP values between CSPmin and CSPmax indepen-

dently. The SPj estimate is then calculated as the median of

the three best (smallest misfit) SA chains to smooth out

potential artifacts of a single solution. For small sample sizes

(small nSA chains), taking the posterior median is a robust esti-

mator of the parameters (Cronin et al., 2009). The result of

the inversion is the estimated source pressure grid, a map

that shows where and how much sound pressure is emitted

to create the recorded RLMMC. We did not attempt to calcu-

late animal densities from the estimated source pressure

grid, but in cases where reliable estimates of animal call rate

and SL are available, it should be possible to formulate mul-

tipliers that convert source pressure per area to number of

animals per area. Conversely, for regions and species where

population size is known with reasonable certainty, the

migration of the entire vocalizing population could possibly

be tracked. Figure 3 shows a flowchart of the inversion

method, divided into knowns, prior, and posterior (after

inversion) estimates. The inversion method was developed

and tested with MATLAB2016a (MathWorks, Natick, MA)

and Python2.7 (Python, Fredericksburg, VA).

B. Sound propagation models

The TL between the recorders, source grid nodes, and

test scenario sources was calculated using two methods, geo-

metrical spreading (Lurton, 2010) and raytracing, using the

BELLHOP (Porter, 1987) model, although any other under-

water sound propagation model may be used as well.

Geometrical TL was calculated using a critical radius of

4000 m, where a transition from spherical to cylindrical

propagation is assumed, as this value roughly represents the

average ocean depth of the study area. For distances shorter

than the critical radius, TL was calculated using spherical

spreading and absorption only,

TL rð Þ ¼ 20 log rð Þ þ ar;

where r is the distance from the source, and a is the absorp-

tion coefficient from the empirical equations of Francois and

Garrison (1982). For distances larger than the critical radius,

the equation

TL rð Þ ¼ 20 log rcriticalð Þ þ 10 log
r

rcritical

� �
þ ar

was employed, with rcritical being the critical radius. The dis-

tances between the source and receiver pairs were calculated

using great circle lines to account for the curvature of the

Earth.

Raytracing TL was calculated using the two-

dimensional (2D) range dependent sound propagation model

BELLHOP. Instead of calculating the TL between all source

and receiver pairs, we simulated the three-dimensional (3D)

sound field using a 2 � N-dimensional (2 � N-D) approach,

rotating a set of 2D slices (range and depth) in 5� steps, 360�

degree around each source location. The bathymetry for

each slice was obtained from the ETOPO-1 topography data-

set (Amante and Eakins, 2009). The sound speed over range

and depth for each slice was interpolated from the world

ocean atlas mean annual climatology dataset (Dushaw et al.,
2013). The sea floor was assumed to be an elasto-acoustic

half-space with a pressure wave sound speed of 1800 m s�1

and a density of 2.0 g cm�3. Each acoustic source (i.e.,

whale) was assumed to be at 10 m depth, and all recorders

were assumed to be at 100 m depth. Raytracing TL was only

calculated for 150 Hz, and sea ice was not accounted for.

The implications of these constraints will be discussed in

Sec. V. We interpolated a latitude-longitude grid containing

the TL at 100 m depth from the 72 range and depth slices for

each source. The TL between each source and recorder was

then retrieved from this grid. Example slices and interpo-

lated TL values are shown in supplemental Fig. 3.1

The two TL models are compared to each other using

source and recorder locations in the Weddell Sea (maps of

the locations can be found in Secs. IV A–IV D) in Fig. 4.

They show a robust correlation, but for close ranges and TL

values less than 100 dB the geometrical spreading model

overestimates TL in relation to the raytracing model, while it

underestimates TL at far ranges and TL values higher than

100 dB. This is also illustrated in supplemental Fig. 4,1

J. Acoust. Soc. Am. 146 (6), December 2019 Menze et al. 4703



which compares the two models over a 1300 km section. It

shows that geometrical spreading overestimates the TL in

the first 500 km compared to BELLHOP. However, both the

geometrical spreading and raytracing models provide a very

similar logarithmic TL dependency. The performance and

shortcomings of the two models are evaluated in Sec. V

(Discussion).

C. Parameter estimation

The parameter set m is defined as a vector containing the

node indices that describe where each simulated source is

located. Depending on the size and resolution of the grid, there

are hundreds to thousands of grid nodes (¼parameters). We

sample the misfit function with a MCMC algorithm to find the

global minimum within the search space. The movement of the

algorithm through the search space is defined in the following

manner: initially the simulated sources are distributed ran-

domly (uniform distribution) over the grid nodes. Then, for

each iteration, a simulated source is chosen randomly and

moved to a random new grid node. Whether a move is

accepted or rejected is governed by an acceptance rule. After

the decision has been made, a new random move is generated.

In this fashion, the algorithm moves through the search space

for a fixed number of iterations.

Compared to the large number of parameters, the num-

ber of RLMMC observations is very small (on the order of

tens to hundreds). This implies that the inverse problem is

highly under-determined, and the misfit function has many

local minima. The local minima and the size of the search

space render it challenging for the minimization algorithm to

reach the global minimum. An algorithm that only follows

FIG. 3. (Color online) Flowchart of the inversion method and simulated annealing (SA) parameter estimation algorithm. Input variables are marked green, the

output variables are marked red. Grey round boxes represent the computational parts of the method. k is the SA “temperature” parameter that steers how much

of an increase in misfit is tolerated at each iteration, and x is a random variable from the distribution f ðk; xÞ ¼ ð1=kÞe�x=k.

FIG. 4. Comparison of geometrical and raytracing TL models using source

and receiver pairs in the Weddell Sea at 150 Hz. Detailed information on the

receiver and source locations is given in Sec. III.

4704 J. Acoust. Soc. Am. 146 (6), December 2019 Menze et al.



decreases in misfit may get trapped at a local minimum,

while an algorithm that equally follows decreases and

increases in misfit may not converge (get lost in the search

space). Therefore, a suitable acceptance rule is essential for

finding the global minimum.

We choose the simulated annealing (SA) acceptance

rule (Kirkpatrick et al., 1983). The SA algorithm always

accepts decreases and increases in misfit with an exponential

probability, which is reduced as the number of iterations

increases. The probability to accept an increase in misfit is

determined by the exponential probability density distribu-

tion f ðx; kÞ. An increase in misfit is accepted when a random

number x, drawn from f ðx; kÞ is larger than one. For each

iteration, a new random number x is drawn from f ðx; kÞ,

f x; kð Þ ¼ 1

k
e�x=k;

where k (termed the SA “temperature”) is the mean of

f ðx; kÞ, and the random variable x can range from 0 to 1.

With each iteration, k is reduced following an exponential

function:

k ¼ 1� iiteration

niterations

� �e

;

where e is the SA “cooling” exponent (e > 0), iiteration is the

number of the current iteration, and niterations is the total

number of iterations. The cooling exponent e determines

how fast k decreases with increasing numbers of iterations,

i.e., it controls the speed of the transition from randomly

accepting increases in misfit to always rejecting increases in

misfit. We found that a cooling exponent between two and

six works well, and use e ¼ 2 for all inversions in this study.

A flowchart of the SA parameter estimations algorithm is

displayed in Fig. 3. Given a sufficient number of iterations,

the SA algorithm will converge toward the global minimum

of the misfit function (Granville et al., 1994).

To illustrate the parameter estimation process, Fig. 5

shows how k is reduced over the iterations and how the mis-

fit of the different SA chains is reduced over time. Each

black line represents a solution (SA chain) moving through

the search space. Each solution has a different CSP, which is

the reason for the misfit offset between the different solu-

tions already at the start of the iterations. Solutions with very

large or very small CSP show large misfits between simu-

lated and true RL over all iterations, whereas solutions with

a fitting CSP converge toward lower misfit values after a few

thousand iterations.

Figure 6 shows snapshots of the source pressure grid at

different iteration stages for the same example scenario with

20 000 iterations and 13 recorders with an average distance

of 300 km between the recorders. Initially, the simulated

sources are distributed randomly (upper left panel). With

increasing iterations the simulated sources are moved across

the grid nodes, rendering the simulated source pressure grid

increasingly similar to the true source pressure grid (lower

right panel). The final estimate resolves the source distribu-

tion pattern well considering the small number of recorders

used. The gradient of incorrect sources in the upper left cor-

ner of the estimated source distribution represents excess

sound energy in the forward model that is moved toward the

boundaries of the search space to reduce the misfit between

received and modelled RL, and will be discussed in Sec. V.

III. TEST SCENARIOS

The reliability and sensitivity of the inversion method was

investigated using a set of test scenarios. All scenarios were

created and analyzed using MATLAB2016a (MathWorks,

Natick, MA) on a standard laptop, whereas the SA parameter

estimation algorithm was executed on a high-performance

computing cluster using 32 central processing units (CPUs) per

scenario, computing each SA chain in parallel. The inversion

and test scenario codes are available in the supplemental mate-

rials and a github repository.1 The test scenarios were posi-

tioned in the Atlantic sector of the Southern Ocean between

45�S and 80�S and 65�W and 25�E. In all but the last test sce-

nario, the simulated recorder array was a widely spaced moor-

ing array identical to the HAFOS array of the Alfred Wegener

Institute Helmholtz Centre for Polar and Marine Research

(AWI; Van Opzeeland et al., 2014; triangles in Fig. 6). The

average array spacing, i.e., the distance between neighboring

recorders, was 300 km. We plan to apply the inversion method

to recordings from this array once they become available in the

coming years. Detailed information on the inversion parame-

ters and TL models used for each scenario are given in Table I.

We quantified the accuracy of each test scenario inver-

sion using a metric similar to the simple matching coefficient

(SMC; Sepkoski, 1974), which divides the sum of true posi-

tives and true negatives (number of matches) by the total set

size. A SMC of zero means no overlap between two sets,

and a SMC of one means a perfect match. We compared the

true and estimated source pressure grids using two metrics:

normalized accuracy (An) and binary accuracy (Ab). The

FIG. 5. (Color online) Misfit (SSE ¼ sum of squared errors) between mea-

sured and modelled RLs over the iterations of the parameter estimation algo-

rithm (black lines). The different black lines represent different SA chains

(nSA chains ¼ 32, CSP between 1011 and 1013 lPa). The red line represents k,

the SA temperature [mean of P(i,k)] over the iterations (SA cooling expo-

nent e ¼ 2).
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binary accuracy compares only presence-absence informa-

tion, comparing two binary sets (truth and estimate) that are

zero where the source pressure is zero, and one where the

source pressure is greater than zero. The accuracy is then

Accuracy ¼ true positivesþ true negatives

Number of nodes

¼ Number of matching nodes

Number of nodes
:

To compare not only presence/absence but also scalar pat-

terns (ratio scale data), the normalized accuracy compares

the true and estimated source pressures after normalizing the

source pressure at each node into 50 different bin values

between 0 and maximum true source pressure. Identical to

the binary accuracy, the normalized accuracy is then defined

as the number of matching nodes divided by the number of

nodes but with 50 instead of 2 classes.

A. Random source distributions

The first test scenario’s objective was to investigate the

reliability and feasibility of the inversion method and find a

metric that correlates with inversion accuracy and can be

used when the method is applied to real data. Therefore, we

applied the inversion method to 250 random source distribu-

tions, an array of 13 recorders with a spacing of approxi-

mately 300 km between adjacent recorders and a source

pressure grid with 1328 nodes and 111 km distance between

adjacent nodes. To simulate the patchy nature of marine

mammal distributions, we created a latitude-longitude grid

with a resolution of 0.1 arclength (11 km) and randomly

assigned SLs to the grid bins of this fine scale source grid.

This was realized in a three-step process: first, random noise

with an f�5 spectrum was created (normalized between zero

and one) and bins (output of the random number generator)

with values below 0.75 set to zero, and bins with values

above 0.75 were randomly assigned a value between 0 and 1

with an f�1 noise spectrum. The distribution was then

thinned by setting bins back to zero where random noise

(normalized between zero and one) with an f�2 spectrum

was below 0.6. The resulting random distributions (an exam-

ple distribution is shown in Fig. 7) show combinations of

patchy and filamentous patterns not unlike the modelled hab-

itat suitability distributions for Antarctic minke whales

(Bombosch et al., 2014; Herr et al., 2019). We chose the

spectral slope of the random distributions manually, yet

other exponents or ways of simulating random source distri-

bution to test the inversion method could be used equally

well. To simulate source pressure distributions somewhat

realistically, the normalized grid was then multiplied with a

call rate of 0.5 (animals vocalizing 50% of the time) and

source pressures of 109 lPa (180 dB re 1 lPa; �Sirović et al.,
2007). For each scenario, the respective “true” source pres-

sure SPj at each source pressure grid node (best possible

inversion results) was calculated from the fine scale source

grid by smoothing the fine scale grid with a 2D circular aver-

aging filter, the radius of which is the average distance

between the nodes (111 km), and then extracting the pressure

value at each node’s location from the smoothed grid. The

node locations and true SPj values of the source pressure

grid are shown in Fig. 7(b), which also shows the location

and RL of the recorder array. RLs at the recorder array were

calculated using geometric spreading TL (the true TL),

which was also implemented as the TL model for the

inversion.

FIG. 6. (Color online) Schematic view of source pressure grid change during SA over 20 000 iterations. Colored dots represent the source pressure at each

node in lPa (yellow to red hues, normalized for each panel). Lower right plot shows the true source pressure grid and recorder locations where the RLs in dB

re 1 lPa are marked by blue and pink triangles. The color scales are only valid for the panels that show the estimated and true source pressure grid.
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B. Inaccurate TL model

The second test scenario’s objective was to investigate

the effect of an incorrect and uncertain TL model on inver-

sion success. We created 100 random source distributions

using the same recorder array and random fine scale source

grid generation as for the previous scenario (Sec. III A), but

limited the source distribution to grid nodes between 62.5�S
and 72�S and �49�E and 14�E to reduce the computational

effort of the raytracing modelling. For each of the 100 distri-

butions, 2 inversions were calculated. The first inversion was

calculated with perfect TL knowledge, where both the true

and forward model TLs were calculated using geometrical

spreading. The second inversion was calculated with a

flawed forward model TL, where the true TL was calculated

using raytracing (as described in Sec. II A), but the forward

model TL was calculated using geometrical spreading.

C. Robustness of inversion

We tested the robustness of the inversion method toward

the number of SA chains and iterations, and the effect acous-

tic frequency has on inversion accuracy. We used geometri-

cal spreading as the true and forward model TL and the

same recorder array and source grid as for the previous sce-

narios. For a random distribution created by the methodT
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FIG. 7. (Color online) Example test scenario in the Weddell Sea. (a) shows

the fine scale source grid where color indicates the amplitude of the acoustic

sources (virtual whales) used to calculate the recorded RL (cyan-magenta

triangles mark recorder location and respective RL). (b) shows the corre-

sponding true amplitude of the source pressure grid nodes (best possible

inversion result).
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described in Sec. III A, we ran 8 inversions using between 5

and 40 SA chains covering a CSP range between 1011 and

1013 lPa (with the true CSP being 2.3 � 1012 lPa). For the

same distribution and CSP values, we ran 6 inversions with

32 SA chains and between 1000 and 25 000 iterations. The

effect of acoustic frequency on inversion success was tested

using the same distribution and CSP values and the acoustic

frequencies 27, 98, 150, and 270 Hz, since they are the char-

acteristic contributions of marine mammals to the Southern

Ocean acoustic environment (Menze et al., 2017).

D. Simulation of drifting recorders using Argo float
tracks

The last scenario tested the feasibility of using drifting

platforms, such as Argo floats (Argo, 2018), as a receiver array.

We extracted the tracks of all Argo floats within the study area

(between 45�S and 80�S and �65�E and 25�E) between the

1.1.2013 and 29.5.2013 from the Coriolis Global Data

Assembly Center.2 The Argo tracks are displayed in supple-

mental Fig. 5.1 We created a random distribution using the

method described for the previous scenarios. For each day

between 1 January 2013 and 29 May 2013, we used the posi-

tions of the available Argo float profiles as recorder locations

and ran an inversion using 20 000 iterations and 32 SA chains.

IV. RESULTS

A. Random source distributions and inversion
accuracy

We estimated the area in which the inversion method

produced reliable results by correlating the true and esti-

mated source pressure at each node over the 250 random

source distributions. The resulting map of correlation coeffi-

cients is displayed in Fig. 8. Correlation coefficients are high

(>0.5) within an oval area centered around the recorder

location. This area roughly corresponds to the area we

termed the “trust zone,” which we defined as the area where

more than one recorder is present within a 1000 km radius.

The trust zone could be defined equally well using other defi-

nitions, but we choose our approach as a first conservative

approximation of the area in which we expect the recorder

setup and inversion algorithm to produce reliable results.

This choice is discussed in more detail in Sec. V. The heter-

ogenous patterns in correlation are likely artifacts caused by

the small number of test scenarios.

We calculated the normalized and binary accuracy of

the 250 inversions. The inversions proved remarkably suc-

cessful given the small number (13) of recorders in the array,

and accuracy values ranged between 0.2 and 1 with a median

An of 0.7 and median Ab of 0.8 for nodes within the trust

zone. Simulations confirmed that the An expected by chance

is 0.3, and the Ab expected by chance is 0.5. Both the binary

and normalized accuracies show a decreased inversion suc-

cess when SPj is calculated from only the best SA chain

(solution) instead of the median of the three best SA chains.

This is shown in Fig. 9(a), which compares the cumulative

density function (CDF) of the normalized and binary accura-

cies for the 250 random source distributions. As indicated by

the correlation map in Fig. 8, inversions were most success-

ful within the trust zone. The CDF of accuracy within the

trust zone and entire grid are compared in Fig. 9(b), confirm-

ing that the inversion was more accurate within the trust

zone than across the entire grid. Hereinafter, all An and Ab

values in the paper are calculated using only nodes within

the trust zone if not stated otherwise.

The true and estimated CSPs within the trust zone are

compared in Fig. 10. They agree well with a correlation coeffi-

cient of 0.9. To show example source distributions, Fig. 11

compares example true and estimated source distributions from

the test scenario, sorted from best to worst normalized accu-

racy. The inversion method managed to estimate the presence

and absence of sources well in most cases, even when no

source was present in the trust zone or sources were distributed

across multiple clusters. In some of the estimated source pres-

sure grids, a gradient of sound sources is present at the bound-

ary of the search space in the general direction of the true

source distribution. As will be shown later, this represents

excess sound energy in the forward model that is moved

toward the boundaries of the search space to reduce the misfit

between received and modelled RLs.

To investigate why some of the random source distribu-

tions could be estimated successfully while others could not,

we compared the effect of several metrics on inversion accu-

racy and found that information entropy is one of the most

useful metrics to predict inversion accuracy. Information

entropy (Shannon, 1948) is a measure of information content

(Borda, 2011), which reaches its maximum when the ele-

ments of the set are uniformly distributed. Using only nodes

within the trust zone, the entropy HðPð SPjÞ Þ of the esti-

mated and true SPj was calculated from the sample distribu-

tion P( SPj) of the SPj values in the following manner:

H P SPjð Þð Þ ¼ �
X

P SPjð Þlog P SPjð Þð Þ:

Source pressure distributions with high entropy contain a

large variety of different SPj values, whereas distributions

with low entropy contained many similar SPj values, mostly

a high number of empty nodes with SPj ¼ 0.

Figure 12(a) shows how inversion accuracy varies with

the RL range of each source distribution and the misfit

FIG. 8. (Color online) Map showing the correlation (red hues) between true

and estimated source pressure over the 250 random distributions. Blue trian-

gles mark recorder location. The black contour encircles the trust zone

(more than one recorder present within a 1000 km radius).
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between true and simulated RL. Two clusters can be identi-

fied: a group of distributions with a RL range below 20 dB,

which contains both low and high An values (0.4–1), and a

cluster with RL ranges above 20 dB, which contains mainly

high An values (0.6–0.9). Figure 12(c) shows that the cluster

with RL ranges above 20 dB represents distributions closer

to the recording array, which create a correspondingly larger

RL range. The blue hues in the right cluster indicate a

smaller average distance between sources and receivers

(<2000 km). It is also separated from the other distributions

through higher misfit values [yellow hues in Fig. 12(a)]. The

cluster with RL ranges below 20 dB shows a large gradient

of An values that corresponds to the gradient of true source

pressure entropy (supplemental Fig. 6).1 Accuracy shows an

inverse relation to the entropy of the true source pressure

[Fig. 12(b)], which also corresponds to an increase in CSP.

This means that the inversion works best for distributions

with low variance (such as many empty nodes) and less well

for distributions with high variance. Accuracy is increasing

with increasing misfit between true and estimated RLs [Fig.

12(e)] for misfit values between �100 and �50 dB, which

also exhibit high estimated source pressure entropy values

(yellow hues) and shows no clear relationship for misfit val-

ues above �50 dB. The entropy of the estimated source

FIG. 9. (Color online) Comparison of the cumulative density functions (CDFs) of the accuracy values of the 250 random source distributions. (a) compares

the accuracy of the best (black) and median of the three best SA chains (red). (b) compares the accuracy of the entire source grid and the source grid nodes

within the trust zone.

FIG. 10. (Color online) Comparison of the true and estimated CSPs in lPa.

Each dot represents 1 of the 250 random source distributions. The red line is

a linear fit to the data.
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pressure shows a marked relationship to accuracy [Fig. 12(f)]:

accuracy decreases with increasing entropy of the estimated

source pressure following a linear function (r¼ 0.87).

However, the relationship between the entropy of the true and

estimated source pressure is not linear and shows only limited

correlation [Fig. 12(d)]. Another metric of the quality of the

estimate is the width (variance) of the estimated source

pressure distribution for each node. We compared the mean

(averaged over all nodes) range of the best three source pres-

sure estimates to normalized accuracy in Fig. 12(g). We used

the range as an indicator of the variance due to the small

number of solutions. Estimates with a small range (below

109 lPa) between the three best solutions show the highest

accuracy, whereas estimates with a range larger than 109 lPa

show a large spread in accuracy. This spread corresponds to a

gradient in the entropy of the estimated source pressure

(color). When only estimates with low entropy are considered

(blue dots), a robust relation between the range of the esti-

mates and accuracy exists.

The scatterplots in Fig. 12 show that the entropy and

spread (variance) of the estimated source pressure can be

used as a metric for inversion accuracy when no other infor-

mation is available. The best inversion accuracy was

achieved for estimated source distributions with low entropy,

meaning that many nodes have similar values (are empty)

and distributions were patchy; however, inversion was also

successful for distributions with high entropy when the RL

gradient/range was sufficiently high.

We also analyzed the true and false positive rates of the

estimated source pressure grids, considering only source

presence/absence information (supplemental Fig. 71), and

found that an increasing true positive rate corresponds to

decreasing misfit and RL range, whereas an increasing false

positive rate corresponds to increasing entropy of the esti-

mated source pressure.

B. Effect of inaccurate TL model

The effect of a flawed TL model on inversion accuracy

was tested by using 100 random distributions with the ray-

tracing and geometrical spreading TL models. Figure 13

compares the inversion accuracy for inversion with a perfect

and inaccurate TL model. Both the binary and normalized

accuracies show a clear but small negative offset in the CDF

(mean offset is 0.06) when the TL model is inaccurate com-

pared to the perfect TL model. The inversion method still

produced reliable source pressure grid estimates when com-

plex multipath propagation of sound was approximated with

a simple geometrical spreading model, at least for the deep

ocean with upward refracting sound speed profile in the

study area.

C. Sensitivity tests

Inversion accuracy was not impacted by changes in fre-

quency. No significant change was detected among 27, 98,

150, and 270 Hz, and the binary accuracies were 0.83, 0.85,

0.85, and 0.87, respectively. However, inversion accuracy

showed a marked relationship with the number of SA chains

(solutions), which determines the resolution with which the

CSP range is sampled. Figure 14 shows how inversion accu-

racy increases with an increasing number of SA chains.

Within the trust zone, accuracy increases until around 20 sol-

utions, whereas the accuracy of the entire grid increases con-

tinuously up to 40 solutions. This can also be seen when

visually comparing the true [Fig. 14(b)] and estimated source

pressure grids from inversions with an increasing number of

SA chains [Figs. 14(c)–14(j)]. Five SA chains proved way

too little to approximate the source distribution adequately,

whereas inversions using 10–25 SA chains resolved the cen-

tral cluster of sources but showed excess sound sources at

the northern search space boundary. Inversion using more

than 30 SA chains resolved the central cluster of sources and

did not show excess sound sources at the search space

boundaries. These results indicate that the inversion algo-

rithm stores excess sound energy at the search space

FIG. 11. (Color online) Various examples of true and estimated distributions

sorted from the most accurate inversion (rank 1, An ¼ 0.996) to the least

accurate inversion (rank 250, An ¼ 0.162). Maps in the left columns show

the modelled source pressure grid and recorder locations (triangles, color

indicates RL), and maps in the right columns show the estimated source

pressure grid. Node color indicates the source pressure in lPa, normalized

for each scenario (row). The black contours encircle the trust zone (more

than one recorder present within a 1000 km radius).
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boundaries when the CSP distribution is too coarsely sam-

pled (too few SA chains). The number of iterations to

achieve successful inversion proved to be remarkably low

(Fig. 15) in the test scenario. For the scenario described in

Sec. III C, the increase in inversion accuracy flattened out

after approximately 5000 iterations.

D. Simulation of drifting recorders using Argo float
tracks

The suitability of Argo floats as drifting ambient sound

recorders was tested using a random source distribution and

the location of Argo float profiles over 71 days. The true

source distribution, estimated source distribution, and

recorder locations for six example days (sorted after inver-

sion accuracy) are displayed in Fig. 16. When a sufficient

number of Argo profiles (recorders) were present and their

locations were spread evenly over the grid, inversion was

successful with normalized accuracies up to 0.7 for the entire

source grid. But, on days with very few or less evenly dis-

tributed floats, the inversion was unsuccessful. To investi-

gate the necessary conditions for successful inversion, the

scatterplots in Fig. 17 compare normalized accuracy over the

number and location of recorders and the node entropy of

FIG. 12. (Color online) Scatterplots comparing the normalized inversion accuracy (An within the trust zone) and several metrics. Each dot represents 1 of the 250

random source distributions. (a) The range of RLs and the misfit between true and simulated RL (colors), (b) entropy of the true source pressure (SP) and true CSP

(colors), (c) the range of RLs and the average distance between the true sources and recorders (colors), (d) entropy of the true and estimated SP (colors indicate accu-

racy), (e) misfit between true and estimated RL and entropy of the estimated source pressure, (f) entropy of the estimated source pressure, where the black line repre-

sents fitted linear function, and (g) the mean range of the three best estimated source pressure estimates and entropy of the estimated SP (color).
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the estimated source pressure. Whereas the entropy

HðPðSPjÞ Þ quantifies the flatness of the source pressure sam-
ple distribution, the node entropy HðSPjÞ determines the flat-

ness of the source pressure grid directly by summing over

the nodes

H SPjð Þ ¼ �
X

SPj log SPjð Þ:

Both entropy metrics are low when the source pressure dis-

tribution has a low variance (many similar values, mainly

empty nodes) and high when the source pressure distribution

has a high variance.

We found that when less than 15 recorders were present,

inversion accuracy ranged between 0.4 and 0.75, whereas

accuracy was between 0.6 and 0.75 when more than 15

recorders were present. We found a close and almost linear

relationship between the RL range and inversion accuracy,

independent of the number or recorders. This indicates that

inversion accuracy depends on both the number of recorders

and the RL gradient (range). As for the 250 random source

distributions in the first test scenario, we found a close rela-

tionship between inversion accuracy and the entropy of the

estimated source pressure. In this scenario, the relationship

between node entropy and accuracy was linear. Normalized

accuracies were above 0.7 on 45% of the simulated days.

V. DISCUSSION

The test scenarios showed that it is possible to estimate

the distribution of sound sources from ambient sound using

widely spaced recorder arrays, but also demonstrated the

limitations of the method and explored the prerequisites for

successful inversion. Sections V A–V D interpret the results

of the test scenarios and discuss the feasibility to apply this

inversion method to real ambient sound data.

FIG. 13. (Color online) Comparison of the CDFs of accuracy (red, normal-

ized accuracy; black, binary accuracy) of the 100 random source distribution

estimates within the trust zone. The dashed lines show the accuracy for

inversions with a perfect TL model, where the true and forward model TLs

were both calculated using geometrical spreading. The solid lines show the

accuracies for inversions with a flawed TL forward model, where the true

TL was calculated using raytracing with BELLHOP, whereas the forward

model TL was calculated using geometrical spreading.

FIG. 14. (Color online) The effect of the number of SA) chains on inversion accuracy. (a) shows how binary accuracy in the trust zone and entire grid

increases with increasing number of SA chains. (b) shows the test scenario source distribution (green hues) and RL (blue-pink hues). (c)–(j) show the estimated

source pressure grid for inversion using 5–40 SA chains.

FIG. 15. (Color online) Binary inversion accuracy over the number of itera-

tions for the test scenario.
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A. Accuracy and reliability of the inversion method

The random distribution and Argo float test scenarios

showed that inversion accuracy can be predicted using the

entropy and spread of the estimated source pressure grid

[Figs. 12(f) and 17(b)] and range or gradient of the RLs

[Figs. 12(c) and 17(c)]. Both the test scenarios with fixed

recorders and random source distributions, and Argo float

scenario with variable recorders and a fixed source distribu-

tion, indicated that an inversion is likely inaccurate when the

estimated sources distribution has a high entropy and accu-

rate when the source distribution has low entropy (many

empty nodes and a patchy distribution). The reason for this

is likely that the misfit function does not have a pronounced

global minimum when the inversion algorithm does not have

sufficient information (too few recorders or too small RL

gradient), forcing the parameter estimation algorithm to

spread the sources over the search space. The comparisons

between accuracy and RL range [Fig. 12(c) and 17(c)] dem-

onstrated that an increased RL gradient, and resulting

increase in RL information, benefits inversion accuracy, but

inversion can also be successful with small RL gradients

when the true source distribution contains no sources in the

trust zone or has a low entropy (many empty nodes).

The test scenario with fixed recorders and random

source distributions showed an inverse relationship between

inversion accuracy and true source pressure entropy [Fig.

12(b)], indicating that the recorder array used in this scenario

is most suitable to locate clustered distribution and regions

with no sources. This could be related to a lack of gradients

in the RL dataset for more uniform source distributions.

Adding more recorders to the array and adjusting the spacing

of the array would increase the information present in the

RL dataset and, thus, improve the inversion accuracy. The

effect of recorder array geometry on inversion accuracy will

be studied with further simulations that would extend the

scope of this paper.

It was crucial to test the effect of an inaccurate TL

model on inversion accuracy, since TL models are only,

more or less, a rough approximation of the true TL as it is

challenging to model underwater sound propagation cor-

rectly. Most available models are only 2D, do not include

FIG. 16. (Color online) Example true and estimated distributions, sorted from

best inversion to worst (rank 71) using normalized accuracy over the entire

grid. Maps on the left show the true source pressure grid and recorder (Argo

float) locations (triangles, color indicates RL), and maps of the right show the

estimated source pressure grid. Node color indicates the source pressure in lPa,

normalized for each scenario (row). The black contours encircle the trust zone

(more than one recorder present within a 1000 km radius).

FIG. 17. (Color online) Scatterplots comparing normalized inversion accu-

racy over the entire grid for several metrics. (a) Number of recorders (Argo

floats), (b) node entropy of the estimated source pressure, (c) range of RL

values and number or recorders (color). Red dots indicate inversions with a

node entropy of the estimated source pressure below 5.65.
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sea ice, and are computationally expensive. In high latitude

oceans, such as the Weddell Sea, the effect of sea ice on TL

can be profound, but few operational TL models that include

TL from sea ice exist. We therefore compared the inversion

accuracy of 100 random distributions with a perfect and a

flawed TL model (Fig. 13). When using a flawed TL model,

by approximating the true raytracing TL with a geometrical

spreading model, the accuracy of the CDF shifted, on aver-

age, 0.06 toward smaller values. This means that inversion

accuracy is only slightly affected by the flawed TL model in

our study area (open upward refracting ocean), and thus sim-

ple TL models (such as geometrical spreading) could be

used for inversions based on real data. This is likely the case

due to the long distances and many source-receiver pathways

of the inverse problem. Since the recorder array is widely

spaced, small-scale variations in TL are not resolved, and

the many pathways likely average out TL errors. As long as

the TL model resolves the non-linear gradient of the TL on

the scale of hundreds to thousands of km (supplemental Fig.

41), inversion accuracy is only slightly decreased when

approximating true TL with the geometrical spreading

model. If this holds for ocean areas with more complex prop-

agation characteristics than the deep offshore Southern

Ocean remains to be studied with further simulations. Ocean

areas with waveguides or complex topography will likely

need more sophisticated TL forward models for successful

inversion.

The area in which the inversion produces reliable esti-

mates, the trust zone, was approximated by studying the cor-

relation between the true and estimated source pressures of

hundreds of random source distributions (Fig. 8). Such an

approach could also be applied to estimate the trust zone

when real data are used. The size and shape of the trust zone

depends on the number and location of recorders; placing a

large number or recorders uniformly over the study area is

likely the best way to record a suitable dataset for inversion.

This is supported by the results of the ARGO float simula-

tions (Fig. 17). Within the trust zone, the inversion algorithm

successfully estimated the CSP for most of the 250 random

source distributions (r ¼ 0.9; Fig. 10). It is important that the

pressure values are not biased since the source pressure at

each node is the basis of eventually estimating the number of

animals per area by multiplying source pressure per area

with (yet unknown) species specific coefficients. Increasing

the number of SA chains, which determines how many dif-

ferent CSP samples are calculated, can likely increase this

correlation even more.

The sensitivity tests (Figs. 14 and 15) showed that suc-

cessful estimates of source distribution can be computed

with reasonable effort (�10 000 iterations and 30 SA chains

for the Weddell Sea test scenario). As expected, the more

SA chains are used for the inversions, the better the estimate

becomes. Using too few SA chains under-samples the CSP

distribution, resulting in estimates with either a too low or

too high CSP. The parameter estimation algorithm stores

this excess sound energy (which cannot be located suffi-

ciently) at the boundaries of the search space to match the

general gradient of RL in the recorder array (Fig. 14). It was

expected that accuracy increases with an increasing number

of iterations until a certain value is reached; however, the

comparatively small number of iterations needed to calculate

accurate inversions was smaller than expected. This means

that the source grid size and resolution and the number of

recorders can be increased with realizable computational

effort.

Another important aspect is that that the recorders need

to be calibrated sufficiently because biases in the RL data

could affect inversion accuracy, and the inversion method

relies on absolute RL values and small gradients. However,

the inaccurate TL test scenario (Fig. 13) showed that small

errors in the forward model are tolerated by the inversion

method, thus, small errors in RL should be tolerated simi-

larly by the inversion method. Ideally each recording device

should be calibrated before deployment. If this is not possi-

ble, the gain should be chosen so that part of the recorded

spectra hit the noise floor of the recording device. This noise

floor can then be compared to the factory calibration values

of the hydrophone and recording device, and eventual offsets

detected. An example of this post-deployment calibration

check can be found in Menze et al. (2017). It is also a suit-

able way of quantifying the recorders self-noise. If it is too

high, faint MMC peaks in the ambient sound might not be

detected.

B. Requirements for successful inversion

To apply the inversion method to real MMC data and

get reliable source pressure distribution estimates, several

perquisites need to be fulfilled. First, the number of recorders

needs to be large enough, and they need to record a large

enough RLMMC gradient. For the Weddell Sea scenario,

already up to ten recorders can be sufficient, but more are

preferred (Figs. 12 and 17). The recorders are best spread

evenly over the study area to record as much RL gradient

(large range of RL values) as possible to maximize the infor-

mation content of the RL dataset. One of the most important

requirements is that the MMC to ambient sound should be

detectable in the first place. This depends not only on the

number of vocalizing animals in the area but also on noise

from shipping, seismic surveys, and sea surface motion. In

regions with high marine traffic, the MMC peaks are likely

masked by shipping noise, leading to a lack of RLMMC mea-

surements and low inversion accuracy. The inversion

method is thus most suitable in remote regions far away

from anthropogenic activity, which are also difficult to sur-

vey with traditional methods due to their remoteness. The

inversion method is based on minimizing the misfit between

recorded and modelled RLMMC, thus, offsets and biases in

the recorded RLMMC can lead to erroneous inversion results.

The recorders need to be properly calibrated to provide reli-

able RLMMC data. Second, the number of iterations and solu-

tions needs to be sufficiently high. Third, the source pressure

grid should be large enough to cover all possibly expected

source locations and have an adequate resolution (distance

between grid nodes). Fourth, the TL matrix between the

recorders and grid nodes should be calculated as accurately

as possible.
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C. Argo floats as ambient sound recorders

The Argo float test scenario showed that ambient sound

data from drifting recorders could successfully be used for

inversion (Fig. 17). However, the test also showed that success-

ful inversion in the study area was only possible on approxi-

mately 45% of the simulated days, and on the other days there

were too few profiles or profiles at unfavorable locations. This

is related to the sparse number of Argo floats in the Southern

Ocean (Reeve et al., 2016); mid latitude areas have much bet-

ter Argo float coverage than high latitude areas, thus, Argo

floats are likely suitable for inversions in most of the world’s

oceans with the current Argo float array.

To obtain ambient sound data suitable for MMC inver-

sion from Argo floats, several specifications need to be ful-

filled. The location of the float needs to be known [the float

needs to surface to get a global positioning system (GPS) fix

or be localized acoustically]. The float needs to be able to

record 5–30 min of sound in the right frequency band and

sufficient dynamic range with a calibrated hydrophone.

Furthermore, the floats would need to be able to calculate

and transmit a power spectrum of the recording. Finally, all

floats need to record at approximately the same time and

date. The timing does not need to be accurate on the scale of

seconds but should agree on the scale of minutes to ensure

that only spatial variability of the MMC is recorded. To

ensure consistency, the float should also stay at a fixed depth.

It is likely most practical to record ambient sound for 10 min

at the floats drifting depth (approximately 1000 m) before

the float surfaces to measure a temperature and salinity pro-

file. The technology to record ambient sound and transmit

spectra with Argo floats has already been developed and suc-

cessfully tested (Matsumoto et al., 2013; Nystuen et al.,
2011), but a large transnational effort is necessary to create

and deploy an Argo float array sufficient for MMC inversion.

We propose that the scope of future Argo float deployments

not only contain oceanographic and bio-geo-chemical sen-

sors but also a calibrated hydrophone and necessary data

processing capabilities, which cannot only be used to study

marine mammal distribution but also rain fall rate and air–-

sea–ice interaction (Cazau et al., 2018; Ma et al., 2005).

D. Application of the inversion method

We could demonstrate that successful inversion off

MMCs is possible with the HAFOS mooring array (Van

Opzeeland et al., 2014). Inversion should be possible with

all four MMCs (Blue, fin, and Antarctic minke whales, and

leopard seals) and could allow year-round monitoring of the

distribution of vocalizing marine mammals in the Weddell

Sea. To obtain values of animal distribution and density

(average number of animals in study area), the source pres-

sure (SP) per area values needs to be multiplied with the

population specific call rate (CR) and SL values

nanimals

area
¼ SP

area
CR 10SL=20:

Reliable values for CR and SL are very difficult to obtain

and, therefore, we did not investigate such density estimation

yet. These multipliers are likely not constant with time and

region and similar to the multipliers used in call detection

estimation methods (Thomas and Marques, 2012). In addi-

tion to MMCs in the Southern Ocean, the inversion method

could be applied to the MMC of fin whales in the Mid and

North Atlantic (Nieukirk et al., 2012), fin and blue whales in

the North Pacific (Curtis et al., 1999), fin and possibly

Bowhead whales in the Arctic (Ahonen et al., 2017), and fin

and blue whales in the Indian Ocean (Leroy et al., 2018a).

Data from the widely spaced recorder arrays used in these

studies show temporal and spatial patterns in RLMMC sug-

gestive of seasonal migration.

VI. CONCLUSION

We presented and tested an approach to estimate the dis-

tribution of vocalizing marine mammals based on inverse

modelling and the spatial variation in ambient sound spectra

instead of the detection of individual, transient vocalizations.

Despite the under-determinedness of this inverse problem,

the parameter estimation algorithm successfully estimated

the spatial distribution of sound sources in a set of test sce-

narios, which showed that inversion accuracy depends on the

number (and gradient) of RL observations, number of SA

chains, and sound source distribution entropy. The accuracy

of the estimates is only slightly affected by inevitable inac-

curacies in the TL model. Test simulations indicated that

drifting platforms, such as Argo floats, can be suitable to

gather MMC data. Applying the method to ambient sound

recordings from the Southern Ocean renders it possible to

study the distribution and migration of vocalizing marine

mammals on unpreceded spatial scales and temporal resolu-

tion, and compliments existing visual and acoustic estima-

tion methods. The approach we explored in this paper could

also be applied to recordings of other species that generate

chorus-like sounds, e.g., insects, amphibians, and birds, pro-

vided that the sounds propagate far enough and are generated

often enough to form a chorus. Calibrated recorders are

used, and the TL between the recorders and sound sources

can be sufficiently modelled.
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