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Globally, hake species are commercially valuable fishes 
targeted by demersal fisheries and are important components 
of ecosystems (Arancibia 2015). Two hake species inhabit 
the southern Benguela upwelling ecosystem: deepwater 
Cape hake Merluccius paradoxus Franca, 1960 and shallow-
water Cape hake Merluccius capensis Castelnau, 1861. 
This study considered the habitat of different life-history 
stages of M. paradoxus in the southern Benguela, which 
extends south of 27° S on the west coast of South Africa 
to 36° S (near Cape Agulhas) and eastwards to Port Alfred 
(Hutchings et al. 2009). Our study focused on the region 
from Cape Agulhas to the northern tip of the Orange Banks 
(Figure 1), where key life events are located for M. paradoxus 
(Grote et al. 2007, 2012; Stenevik et al. 2008; Garavelli 
et al. 2012; Strømme et al. 2015). Physical features that 
characterise this region are wind-driven coastal upwelling 
concentrated in upwelling cells, a shelf-edge Benguela 

jet current flowing northwards and a subsurface poleward 
countercurrent (Kirkman et al. 2016). 

Merluccius paradoxus occurs off Namibia and South 
Africa but mainly spawns in South African waters (Crawford 
et al. 1987; Grote et al. 2007; Strømme et al. 2015), 
between the western Agulhas Bank and St Helena Bay 
(Jansen et al. 2016) (Figure 1). It spawns all year round, 
with most spawning activity from August to October on the 
western Agulhas Bank (Durholtz et al. 2015; Jansen et al. 
2015, 2016; Strømme et al. 2015), although individuals of 
M. paradoxus with mature gonads have been found as far 
north as 25° S (Jansen et al. 2015). During summer, when 
much larval transport of Cape hakes occurs, alongshore 
southeasterly winds on the west coast are important for 
transport success (Stenevik et al. 2008; Garavelli et al. 2012; 
Grote et al. 2012). Wind strength influences the vertical 
movement of larvae as they passively disperse to surface 
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Generalised additive models (GAMs) were applied to survey data to assess the influence of dissolved oxygen, water 
temperature and year of sampling upon the presence/absence of small (≤15 cm TL), medium (16–34 cm TL) and 
large (≥35 cm TL) size classes of deepwater Cape hake Merluccius paradoxus captured off the west coast of South 
Africa. Data were obtained from surveys using the RV Dr Fridtjof Nansen conducted in 2003 and from 2005 to 2013 
during summer (January–February). Among the variables investigated, oxygen was the most important for the small 
size class (juveniles), with both low and high constraints (two-sided, ‘just right’ option), whereas for the medium 
and large size classes the oxygen effects were one-sided (avoiding lows). This finding, in combination with other 
published information, suggests that the Orange Banks is a nursery ground for juvenile M. paradoxus and that the 
area covered by this nursery ground can vary with the optimal oxygen concentration. The temperature constraint 
was generally wider and weaker than that for oxygen, being two-sided for the small and medium hake and one-sided 
(avoiding highs) for the large hake. The medium hake displayed the greatest tolerance to the investigated variables, 
which resulted in the widest distribution for this size class. Temperature, oxygen and sampling year play an important 
role in determining the distribution of M. paradoxus, but details of the biology (life cycle) of the species, such as its 
pelagic–demersal transition and associated movements, are no less important. 
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layers (Shannon et al. 1988), and large variability in wind 
forcing can have an effect on larval loss (Sundby 2016).

Local currents associated with upwelling favour retention 
of M. paradoxus juveniles in the lee of the Cape Columbine 
headland, within the shallow St Helena Bay (31–33° S, Figure 
1). This area is a major nursery ground for many ecologically 
and commercially important fish species (Hutchings et al. 
2002). However, most M. paradoxus eggs and larvae drift 
northwards towards the Orange Banks (Figure 1), growing 
into juveniles along the way (Stenevik et al. 2008; Grote et al. 
2012; Jansen et al. 2015; Strømme et al. 2015). The Orange 
Banks are located between the Hondeklip Bay/Namaqualand 

upwelling cell and the large, permanent Lüderitz upwelling 
cell. Moreover, the upwelling plumes in the southern Benguela 
also have a major effect on food availability for juvenile hakes 
since they control the cross-shore exchanges and spatial 
distribution of plankton (Barange et al. 1992). Upwelled water 
from Hondeklip Bay (Ostrowski et al. 2011) can enhance 
successful feeding of the juvenile hake on these nursery 
grounds. However, in contrast to the well-studied St Helena 
Bay nursery area (Hutchings et al. 2002), the Orange Banks 
area has not been intensively studied, and there are limited 
data on environmental variables influencing the distribution 
and abundance of M. paradoxus on these nursery grounds.
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Figure 1: Schematic map of the west coast subsystem of the southern Benguela, showing the locations of key events in the life cycle of 
deepwater Cape hake Merluccius paradoxus, modified from the findings of Grote et al. (2007), Stenevik et al. (2008), Garavelli et al. (2012), 
Grote et al. (2012), Strømme et al. (2015), and Kirkman et al. (2016)
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Hake juveniles and adults often have different temperature 
tolerances and preferences (Olivar et al. 1988). This might 
also apply to salinity and oxygen (e.g. Singh and Lamont 
2016). In the west-coast region of the southern Benguela, 
particularly in St Helena Bay, low levels of dissolved 
oxygen can induce stress in Cape hakes (Roel and Bailey 
1987). Unlike adult M. capensis, which can survive in low 
oxygen concentrations, M. paradoxus adults have not been 
found in oxygen-deficient waters (Millar 2000; Sundby 
et al. 2001). Hake catches have been found to depend on 
bottom temperature, oxygen and salinity (Botha 1986), 
but temperature and oxygen are believed to have stronger 
influences than salinity on hake distribution and abundance 
(Olivar et al. 1988). Singh and Lamont (2016) mostly found 
M. paradoxus juveniles in moderately oxygenated waters 
(2–3.5 ml O2 l–1) and it appeared that temperature was 
more important than oxygen in determining the distributions 
of M. paradoxus juveniles. Kainge et al. (2017) found that 
juveniles of M. capensis were more sensitive than juveniles 
of M. paradoxus to dissolved oxygen concentrations. 

This study aims to link the occurrence of different size 
classes of M. paradoxus to two important environmental 
variables that influence them: near-bottom dissolved 
oxygen and water temperature. More specifically, the study 
aims to identify the ranges of these environmental variables 
within which M. paradoxus is found and to assess temporal 
stability of this environmental window by investigating 
interannual variability. Finally, we assess the importance 
of the Orange Banks as a nursery habitat for this species, 
taking into consideration all available evidence.

Materials and methods

Data sources
Data were obtained from demersal surveys by the RV Dr 
Fridtjof Nansen, conducted from 2003 to 2013 (Strømme 
et al. 2015) under the Ecosystem Approach to Fisheries 
(EAF)-Nansen Programme, through the NANSIS database 
at the Institute of Marine Research in Bergen, Norway. 
Technical details of the trawls used, methods of surveying, 
processing of the catch and processing of the data of these 
surveys are summarised in Axelsen and Johnsen (2015). 
Surveys were all geo-referenced and fish data and physical 
data were collected at each sampled station. Demersal 
surveys were mostly conducted in summer (January–
February), but a few were carried out in May and October. 
The demersal trawling surveys followed a systematic 
transect design, with emphasis on estimating the distribution, 
abundance and biological condition of M. paradoxus, 
although the surveys also monitored M. capensis and other 
demersal fishes and invertebrates. Strømme et al. (2015) 
provided a framework to explain abundances, catch rates, 
distributions, size classes and the life cycle of M. paradoxus, 
including for the length class <15 cm TL. In this study we 
analyse the presence and absence in trawls of M. paradoxus, 
in terms of water temperature and dissolved oxygen 
concentrations, for each of three size classes defined by 
Strømme et al. (2015): small (juveniles, ≤15 cm TL), medium 
(recruits, 16–34 cm TL) and large (adults, ≥35 cm TL).

Hydrographical data on water temperature and 
dissolved oxygen were collected with a Seabird 9plus 

CTD (conductivity–temperature–depth) probe between the 
surface and 10 m off the bottom. CTD casts were made 
prior to each trawl station. The CTD dataset comprised 
1 666 stations sampled over 11 years. Of these, CTD data 
for 2004 and 2007 were excluded from further analysis 
because of, respectively, incomplete coverage of the spatial 
domain of the study and the absence of nearshore CTD 
stations in important nursery areas. The statistical analyses 
were based on 1 412 trawl stations with data on presence 
and absence of the three size classes of M. paradoxus.

All samples of small-sized hake were checked for 
species identity using counts of vertebrae (usually 3–7 fish 
were examined in each sample, following the rule: ‘larger 
sample – more fish checked’; samples larger than this were 
impractical, for logistical reasons). Trawls in which a mix of 
juveniles of both hake species was theoretically possible 
(in the depth range 151–190 m: Strømme et al. 2015) 
and trawls where large numbers of juveniles (>100) were 
encountered were relatively rare (about 14% of all trawls 
with juveniles; the mean number of juveniles in other trawls 
was 29). Therefore, the probability of misidentification was 
relatively small in the total sample of trawls used for this 
study. Details about the separation of juvenile hake species 
using combinations of depth, vertebral count and distribution 
had been further investigated during dedicated cruises of the 
RV Dr Fridtjof Nansen (Stenevik et al. 2009; Strømme et al. 
2012). During these cruises covering the Orange Banks, 
clear depth stratification was found between M. capensis 
and M. paradoxus, with no overlaps between species in 
single trawls. With the vast majority of trawls in the present 
study having only a few juveniles in the catch, it is unlikely 
there was serious misrepresentation of the area in which 
M. paradoxus was present. Overall, catches of juveniles of 
M. capensis constituted 6% of all juvenile individuals of hake 
caught. Validity of the vertebral count method was verified 
by Matthee and Gopal (2004), who performed blind genetic 
identification of 41 individuals of both species. 

Data analysis
The analysis of the demersal survey data involved the 
following steps: (i) interpolation of the environmental data; (ii) 
matching biological stations to the interpolated environmental 
data and extracting values of environmental variables at 
each station; (iii) modelling the influence of the environmental 
variables on hake presence and absence using eight 
different generalised additive models (GAMs); (iv) assessing 
model performance; (v) selecting the best-performing model; 
and (vi) generating a map of habitat suitability based on the 
best model. These steps are described below in more detail.

Spatial interpolation
The fisheries surveys of the RV Dr Fridtjof Nansen covered 
the west coast with a dense grid (15 × 15 nautical miles) of 
CTD stations at fixed locations, revisited each year. The 
oceanographic data were used to produce maps describing 
interannual variability of near-bottom temperature and 
dissolved oxygen using an objective interpolation method, 
applicable to regularly sampled oceanographic fields 
(Bretherton et al. 1976). For each survey, we derived such a 
map using a method equivalent to optimal interpolation: kriging 
with moving neighbourhood (Chilès and Delfiner 1999). The 
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experimental variograms used a combination of spherical 
and linear models. The interpolation was carried out on a grid 
with the nominal 4 x 4 km pixel resolution, a subset of the 
global area coverage (GAC) grid used in the 4-km MODIS 
Aqua satellite products (https://oceancolor.gsfc.nasa.gov/). 
Supplementary Figure S1 presents the composite maps 
over the studied domain, which represent the climatologies 
characterising the mean bottom temperature and dissolved-
oxygen conditions during the austral summers of 2003–2013.

Generalised additive modelling
To allow for non-linearity between the occurrence of hake 
and the environmental variables, GAMs were applied to 
the data. The form of the GAM, assuming the data yi were 
generated by a Bernoulli process, is yi ~ Bernoulli(pi), where 
pi is the probability of occurrence and has a mean µi = pi 
and variance σ2 = pi(1 – pi). Thus:

 
1

,( ) ( ) logit ( )
1

N

n
i ni i i

piE y p f X
pi =

 
∑= η = = α + + ε  − 

where E(yi) is the expected value of yi; η(pi) is the link 
function, which in this case is a logit link function; α is the 
intercept term; f(Xi,n) indicates the smoothing spline for 
each variable (n) at observation i, for n = 1 to N (number of 
variables); and εi is the residual.

Eight different GAMs were fitted to the data (Supplementary 
Table S1), using the ‘mgcv’ package (Wood 2011, 2017) 
in R (R Core Team 2019). In each case the occurrence 
of each M. paradoxus size class was linked to the sets of 
environmental variables (temperature and oxygen) from 2003 
to 2013, but excluding 2004 and 2007. Variance-inflation 
factors for the environmental variables were less than three, 
indicating that collinearity of these variables was not an issue. 
A number of other R packages were used for data processing 
and visualisation (Bivand et al. 2013; Bache and Wickham 
2014; Hijmans 2017; Wickham 2017; Bivand and Rundel 
2018; Henry and Wickham 2018; Pebesma 2018).

Assessing model performance 
The ability of the eight different GAMs to correctly classify 
presence for each of the three size classes of hake was 
assessed using the area under the curve (AUC) of the receiver 
operating characteristics curves. AUCs measure how often a 
randomly chosen true presence will have a higher probability 
of being predicted as presence than a randomly chosen 
absence. AUC values close to 0.5 indicate the model is no 
better than a random classifier, whereas values close to 
1 indicate a good classifier (Kleinbaum and Klein 2010). Model 
performance was measured using k-fold cross-validation 
(k = 5) with 10 repetitions. The predictor variables were 
repeatedly re-shuffled and their relative importance was 
calculated by comparing the model prediction from the best 
model to that obtained after re-shuffling. An index of relative 
importance (IRI) was calculated for each repetition as:

 IRI = 1 – correlation(Predref, Predreshuf)

Predictors with IRI values close to 1 are considered 
important and the converse is true for those with values close 
to 0 (Thuiller et al. 2016).

The numerical accuracy of model predictions was 
assessed visually using calibration plots, where the 
observed prevalence of occurrence was binned and plotted 
against the corresponding model-predicted probability of 
occurrence (Supplementary Figure S2). A close fit to the 1:1 
line indicates good predictive abilities of the model. As an 
additional model diagnostic, spatial independence was also 
checked. This was done by calculating a sample variogram 
from the residuals and computing a variogram envelope 
with just the nugget effect included. A flat sample variogram 
enclosed in the nugget-effect-only variogram model indicates 
the absence of spatial structure; the resulting variogram 
of the residuals (Supplementary Figure S3) indicates no 
violation of assumptions of spatial independence.

Results

Response curves illustrating the partial effects of water 
temperature, dissolved oxygen and year from the best 
models for the three size classes indicate size-dependent 
associations of M. paradoxus with the environmental 
variables (Figure 2). The response curves indicate the 
ranges across which the variables exert an influence, and 
the flatness or steepness of the dome shapes indicate the 
rapidity of the responses as the variables change. The small 
M. paradoxus were associated with narrow ranges of oxygen 
concentrations and temperature. The medium M. paradoxus 
occurred in water with a narrow temperature range, having 
reduced occurrence at both the cool and warm ends of the 
measured range; they were also associated with moderate 
to high oxygen concentrations. The large hake occurred 
in water masses that were relatively cool and had elevated 
dissolved oxygen concentrations. 

The interannual patterns were largely flat for the period 
2003–2010, with some variability; the patterns for the last 
three years of the time-series were similar for the three size 
classes (Figure 2). The temporal patterns in the temperature 
and oxygen response curves for all three size classes were 
consistent over time; results are shown only for the small 
size class (Figures 3 and 4). The range and median of 
temperature and oxygen with which the three size classes 
were associated indicated a degree of overlap between 
the medium and large size classes (Figure 2). There was a 
general indication, in terms of the median, that temperature 
associations decreased with size: small > medium > large, 
and the opposite occurred for oxygen: small < medium < large 
(Figure 2).

The ability of the GAMs to discriminate between 
presence and absence of M. paradoxus was reasonably 
good for all selected size classes (Supplementary Table 
S2; Supplementary Figure S2). For the smallest size 
class, oxygen was the most important variable, followed 
by temperature. For the medium and large size classes 
temperature was the most important variable, followed by 
oxygen. Sampling year was least important in influencing 
the occurrence of the three size classes (Figure 5). These 
results are interpreted here as environmental regulation 
of presence/absence of the different size classes, and 
environmental determination (inter alia, see Discussion) of 
their nursery ground, the extent of which will change among 
years (Figures 6–8).
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The predicted probabilities of occurrence of M. paradoxus 
off the west coast indicated that small individuals were 
mostly associated with the shelf region (Figure 6), medium 
individuals with the shelf and shelf edge (Figure 7), and large 
individuals mainly with the shelf edge (Figure 8). Temporal 
patterns in the probability of occurrence varied among 
years. For small individuals, the greatest probabilities of 
occurrence generally extended in a band along the shelf 
from Cape Point to the Orange River (being widest in the 
north) (Figure 6). Medium individuals displayed the widest 
distribution, reflecting their tolerance of a wider range of 
values of investigated variables (Figures 7 and 9). Such 
patterns of distribution can be linked to the biological 
mechanisms of the M. paradoxus life cycle. These fish 
cannot survive in the deep when young because there are 
too many efficient predators; they gradually move into the 
deep as they approach adulthood because they became 
efficient predators themselves (Figure 8). Predicted 
probabilities of occurrence were converted into three classes 

of habitat suitability: least suitable (0–0.4), moderately 
suitable (0.4–0.7), and optimal (0.7–1) (Figure 9). Temporal 
patterns in the areas of optimal habitat were generally flat but 
there also was substantial interannual variability (Figure 9).

On the basis of the above, two regions of the continental 
shelf were compared: the Hondeklip (Namaqua) region 
(Figure 10) and the Orange Banks (Figure 11). The entire 
vertical and horizontal habitats (defined in terms of the 
chosen variables) differed for these regions. The potential 
influence of differences in bottom environmental conditions 
and topography can be clearly seen from cross-shelf 
patterns in the probabilities of occurrence of small and 
large M. paradoxus. For the Hondeklip region, there was 
overlap in the predicted distributions of small and large 
individuals at about 25 nautical miles from the coast. Both 
size classes had similar and low predicted probabilities 
of occurrence at 60–70 nautical miles from the coast. 
Farther offshore the probability of occurrence of large 
individuals increased whereas that for small individuals 
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decreased. The overlap in the distribution of large with 
small M. paradoxus in the shallow water is likely related to 
the presence of relatively cool water (<9 °C) on the shelf. 
The predicted probabilities of occurrence of small and large 
individuals on the Orange Banks were different to those in 
the Hondeklip region, though differences appear also to 
be driven by environmental conditions over the shelf and 
shelf-edge regions. The predicted probability of occurrence 
for large M. paradoxus was low in the shelf region, whereas 
juveniles were found on the shelf, with a peak in probability 
of occurrence around 30 nautical miles from the coast and 
another peak farther offshore, at around 100–110 nautical 
miles from the coast. The probability of occurrence of 
large individuals increased beyond 70 nautical miles from 
the coast (shelf edge to slope region). This contrasting 
pattern of occurrence of small and large M. paradoxus is 
likely the result of prevailing relatively warm water (>9 °C) 
on the shelf, limiting the distribution of large individuals, 
and moderate to low dissolved oxygen (<4 ml O2 l–1) on the 

shelf and in the shelf-edge region, potentially allowing small 
individuals to venture farther offshore.

Discussion

Distribution of Merluccius paradoxus 
Current knowledge about M. paradoxus distributions is 
summarised below from four publications devoted specifically 
to this topic. The present study builds on the background 
provided by these publications.

Study of Le Clus et al. (2005)
This unpublished working-group document contains important, 
pioneering conclusions, but it is not easily accessed; hence, 
some of its key points are summarised here. The document 
compared the distribution and abundance of various size 
classes of M. paradoxus between the west and south coasts 
of South Africa. The work showed that the spatial dynamics 
changed with life-history stages, with old individuals 
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presence (open circles) and absence (grey circles)
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Figure 4: Results of the generalised additive models showing the probabilities of occurrence of small Merluccius paradoxus at different 
bottom temperatures, for each of nine years between 2003 and 2013 (2004 and 2007 excluded). Hatched rectangles indicate range of 
most-probable occurrence. Lines represent medians, and shading represents 95% confidence intervals. Circles represent observations of 
hake presence (open circles) and absence (grey circles)
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temperature in determining occurrences of the three size classes of Merluccius paradoxus



Mbatha, Yemane, Ostrowski, Moloney and Lipiński420

2010 2011 2012 2013

2003 2005 2006 2008 2009

Depth (m)
200
500
1000

0.25
0.50
0.75

Occurrence (probability)

28° S

30° S

32° S

34° S

36° S

28° S

30° S

32° S

34° S

36° S
15° E 17° E 19° E 15° E 17° E 19° E 15° E 17° E 19° E 15° E 17° E 19° E

15° E 17° E 19° E

Figure 6: Habitat suitability maps off the west coast of South Africa for the small size class of Merluccius paradoxus, for each of nine years 
between 2003 and 2013 (excluding 2004 and 2007)
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Figure 7: Habitat suitability maps off the west coast of South Africa for the medium size class of Merluccius paradoxus, for each of nine 
years between 2003 and 2013 (excluding 2004 and 2007)
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moving into deeper water, as well as moving southwards 
with increasing depth. For young individuals (<20 cm TL), 
the main densities were between the 100 and 300 m 
depth contours on the west coast north of St Helena Bay. 
Small M. paradoxus (16–34 cm TL) moved offshore, but 
also southwards to Cape Agulhas, mostly at depths 
>200 m. Fish of size classes >35 cm TL had similar spatial 
distributions, with densities increasing with depth to 400 m 
for medium-small individuals (35–45 cm TL) and to 600 m 
for medium-large and large individuals. High densities of 
medium-small M. paradoxus were found south of St Helena 
Bay and on the south coast. These observations were 
supported by polynomial models of alongshore distribution. 
Cannibalism and the distribution of prey species could 
influence the alongshore trends in density of M. paradoxus. 
Details of prey versus latitude were provided.

Based on these observations, Le Clus et al. (2005) 
concluded that densities of adult M. paradoxus were similar 
on the south and west coasts, after taking into account 
the larger surface area of the west coast continental 
shelf deeper than 200 m. The densities of juveniles and 
small-sized M. paradoxus on the south coast were lower than 
expected, indicating that the adult stock on the south coast 
might be supplemented from the west coast. The authors 
suggested that the two coasts might be equally suitable for 
adult fish but, as is the case for many other fish stocks, the 
west coast appears to be the preferred nursery locality.

Le Clus et al. (2005) hypothesised that M. paradoxus 
forms one stock in South African waters, and that the south 
coast component originates on the west coast, which implies 
longshore migration of young adults from the west coast to 
the south coast. The one-stock hypothesis was subsequently 
confirmed by Henriques et al. (2016), and the postulated 
longshore migration was confirmed and extended by 
Strømme et al. (2015).

Study of Strømme et al. (2015)
Strømme et al. (2015) analysed length frequencies along 
the main distribution range of M. paradoxus (from Port 
Alfred on South Africa’s southeast coast to the Kunene 
River on the Namibia/Angola border), collected during one 
synoptic survey. They found that following size classes 
of M. paradoxus expanded from the area on and around 
the Orange Banks in northwesterly and southeasterly 
directions. The distributions of large fish, however, 
contracted to the slope area, roughly between Cape Point 
and Doring Bay (South Africa) on the west coast. The 
starting point of the expansion was interpreted as the main 
nursery ground of the species, and the end point of the 
contraction as the main spawning area. This interpretation 
implied at least two long-range migration routes (assuming 
one main spawning season), namely when expanding and 
then contracting north and south from various points of 
the range. Thus, the hypothesis of Le Clus et al. (2005), 
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Figure 8: Habitat suitability maps off the west coast of South Africa for the large size class of Merluccius paradoxus, for each of nine years 
between 2003 and 2013 (excluding 2004 and 2007)
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linking M. paradoxus on both coasts of South Africa, was 
developed into a life-cycle scheme on a geographic scale. 
In addition, an argument was made for only two crucial 
and geographically restricted areas underpinning the 
scheme: a spawning area and a nursery area. The South 
African origin of M. paradoxus occurring (and being fished) 
in Namibia was established, and synchronous changes 
in abundance were shown for the populations in the two 
countries. The abundance of M. paradoxus juveniles 
varied among years and their distribution was variable but 
limited geographically, whereas adult populations were less 
variable in abundance and more widely distributed. 

Study of Grüss et al. (2016)
The study by Grüss et al. (2016) had similar aims to those 
of the present study, using a similar principal method 
of analysis (i.e. GAMs), but it differed on a number of 
points. It was based on a stratified semi-random survey 

design and, as a consequence, it was difficult to process 
the oceanographic data. Also, it was complicated in its 
structure, dealing with two southern African species of 
hake, using more variables for the analysis and dealing 
with more size categories. Spatial considerations were 
also treated differently. The results of the study identified 
geographic position and temperature as the main predictors 
of M. paradoxus presence/absence in both binomial GAMs 
and quasi-Poisson GAMs; bottom dissolved oxygen was 
important only in the quasi-Poisson GAM, and depth only for 
juveniles, which was surprising. The study identified three 
ontogenetic migrations of M. paradoxus.

Grüss et al. (2016) concluded that the probability of 
occurrence of large M. paradoxus was reduced by low bottom 
oxygen concentrations, but that of juveniles was not. We have 
modified, extended and developed this conclusion further in 
our study; juveniles of M. paradoxus occur most frequently 
in a relatively narrow range of dissolved oxygen (a two-sided 
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constraint), whereas large M. paradoxus are associated 
with higher concentrations of dissolved oxygen, having a 
one-sided constraint. The difference in the findings of the two 
studies might be because of the more complex nature of the 
analysis of Grüss et al. (2016) as compared with our analysis, 
which considered only two environmental variables. 

Study of Jansen et al. (2017)
The study of Jansen et al. (2017) provided no substantially 
new interpretations of existing data. However, the 
analyses tried to incorporate all results of demersal 
surveys made in South Africa and Namibia. Thus, on the 
basis of a much larger dataset than previously analysed, 
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as well as more sophisticated methods (geostatistical 
modelling), the results of Strømme et al. (2015) were fully 
confirmed. The study also prepared the way for further 
developments—exploring the reasons for correlations 
between locations, and untangling migration, mortality and 
growth modelled on a spatio-temporal scale. Biological 
issues were also mentioned, such as the possibility of 

identifying different cohorts through the timing and location 
of their spawning events.

Environmental niche of Merluccius paradoxus
Our study has shown the importance of habitat, as 
determined by dissolved oxygen and water temperature, 
to the distribution of different size classes of M. paradoxus. 
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Previously, drift pathways were singled out as the most 
important determinants of nursery habitats for this species 
(Stenevik et al. 2008; Garavelli et al. 2012), supplemented 
by bathymetry (Ostrowski et al. 2011). Here, we add 
physicochemical characteristics of the environment. Together, 
these three aspects comprise important components 
considered in habitat-suitability modelling throughout the 
ontogeny of a species (Guisan et al. 2017). Our study 
addresses these basic requirements, setting the stage for 
detailed niche quantification and the modelling of habitat 
suitability in future studies. 

The results of the GAM response curves for oxygen indicate 
that oxygen might have influenced the presence/absence of 
small M. paradoxus (<15 cm TL) more than that of the other 
two size classes. Small M. paradoxus were associated with 
environmental oxygen ranges that are restricted, indicating 
that their presence was likely associated with hypoxic 
conditions (<2 ml O2 l–1) (Monteiro and van der Plas 2006), 
although the small fish mostly inhabited oxygen-depleted 
water (2–3 ml O2 l–1) and appeared to occur less often in 
waters with high oxygen concentrations (>3 ml O2 l–1). In 
an analysis of the catch rates of both hake species, Kainge 
et al. (2017) found that oxygen was not an important covariate. 
Singh and Lamont (2016) found that M. paradoxus juveniles 
mostly occurred in moderately oxygenated water (2–3.5 ml 
O2 l–1). Millar (2000) explained that large individuals are not 
able to take up oxygen as efficiently as small individuals, 
because fish gills do not grow as fast as the body (Pauly 
1998). This supports the findings of Wieland et al. (2012) 
that adult M. capensis use oxygen-depleted bottom water as 
a refuge, and hence the adults tend to overlap with juvenile 
M. paradoxus in terms of depth and spatial distribution. The 
strong association with oxygen-depleted water found in the 
present study of small M. paradoxus is in contrast to Roel and 
Bailey’s (1987) speculation that M. paradoxus juveniles are 
intolerant of oxygen-depleted conditions. 

Jarre et al. (2015) noted a restricted spatial extent of 
low-oxygen water off Hondeklip Bay, which appeared to 
merge with oxygen-depleted water near the Orange River 
mouth. The extension of oxygen-depleted water from 
these areas (Hondeklip Bay and the Orange River mouth) 
towards the Cape of Good Hope could occur if the coastal 
countercurrent were to carry water with low concentrations 
of oxygen as far as that (Jarre et al. 2015). Olivar et al. 
(1988) indicated that temperature and oxygen have strong 
influences on hake distribution and abundance. In a specific 
finding of Kainge et al. (2017), it was assumed that, based on 
the model they used, M. paradoxus are mainly influenced by 
temperature and geographical position.

Biological interpretation of the environmental relationships 
The present study outlines some complexities determining 
the distribution of three size classes of an ecologically 
successful species (M. paradoxus); however, these forcing 
factors require consideration of the whole life cycle. Eggs and 
larvae are numerous but follow relatively limited pathways 
and exhibit patchy distributions (Stenevik et al. 2008; Grote 
et al. 2012) because of a combination of two factors: the 
environmental milieu and mortality. Juveniles must survive 
and grow in order to extend their range and increase their 
biomass (Grote et al. 2011, 2012). We have shown that the 

environmental pathway of M. paradoxus juveniles is relatively 
narrow and they are probably most vulnerable, biologically, at 
that life stage, as informed by their distribution. For example, 
their oxygen-response curve is unimodal and double-
constrained (Figures 2 and 3). There is a definite optimum 
at 2–3 ml O2 l–1. This optimum (as shown on the climatology 
map, Supplementary Figure S1) occurs along the outer 
boundary of the near-shore oxygen-depletion zone (see also 
Jarre et al. 2015), whereas the main oxygen-depletion region 
is geographically located nearshore. This mean pattern, based 
on 10 years of observations, coincides with the known egg 
and larval pathways of M. paradoxus, which are transported 
by the fast outer branch of the jet current (Stenevik et al. 2008; 
Garavelli et al. 2012; Grote et al. 2012; Jansen et al. 2015) 
and retained by the relatively stable system of the Orange 
Banks (Ostrowski et al. 2011), mostly along the mean depth 
contour of 200–212 m (Stenevik et al. 2009; Grüss et al. 
2016). There, juveniles of M. paradoxus find optimal foraging 
conditions with an abundance of suitable prey (Stenevik 
et al. 2009; MRL unpublished data). Their other constraint 
(high oxygen, >3 ml O2 l–1, in the offshore direction) may be 
linked to predation (by M. capensis) and cannibalism by 
adult M. paradoxus, because adult abundance increases in 
the offshore direction. Adults of both these hake species are 
relatively scarce on the Orange Banks (Jansen et al. 2016, 
2017), probably as a result of the lack of suitable prey and the 
abundance of such prey in the deeper waters nearby. This 
renders the Orange Banks suitable as a central nursery area 
for M. paradoxus (Strømme et al. 2015) (Figures 10 and 11).

Therefore, the oxygen-depletion threshold is the main 
environmental determinant of juvenile M. paradoxus 
distribution and, importantly, temporal and spatial 
(geographic) mechanisms underpin its influence, causing 
interannual variability in the extent of the main nursery area. 
The fact that areas of the highest probabilities of occurrence 
(Figure 6) do not completely agree with actual occurrence 
(Strømme et al. 2015) indicates there must be other 
controlling factors, most probably arising from the biology 
of the species. In the case of adult M. paradoxus, response 
curves and graphs depicting the relative importance 
of various factors in defining the sizes of distribution 
areas (Figures 2, 5 and 9) do not indicate any particular 
temperature or oxygen niche, except that temperature 
is important in defining large areas of adult distribution 
(Figure 8), which is already well known (e.g. Durholtz et al. 
2015). Such broad ranges of occurrence justify consideration 
of other sources of variability as potentially being more 
critical than temperature and oxygen in determining where 
adult M. paradoxus occur. As already suggested by Gruss 
et al. (2016), trophic relations are likely to play an important 
role and should be investigated in detail from the perspective 
of how they might influence hake distributions. 

Patterns of habitat suitability for small M. paradoxus over 
the mid-shelf waters off the Orange Banks along the 200-m 
contour were relatively stable. The stability of near-bottom 
conditions is likely to play a role in creating favourable 
environments for fishes, including M. paradoxus juveniles 
(Ostrowski et al. 2011; Wieland et al. 2012). This is similar 
to the preferred distribution of juveniles of European 
hake Merluccius merluccius in nursery areas with stable 
hydrographic conditions (Sánchez and Gil 2000). 



Mbatha, Yemane, Ostrowski, Moloney and Lipiński426

A broad perspective on the importance of oxygen dynamics 
for the survival, presence, distribution and abundance of 
marine fishes was provided by Bertrand et al. (2011). They 
emphasise that the spatial and temporal dynamics of oxygen 
distributions can explain much more about the life cycle of 
many species than a one-dimensional perspective (such as 
that in this study). Oxygen concentrations differ across the 
vertical water column and change both during the course of 
the year and between years. Unfortunately, typical accounts of 
the importance of oxygen have been based on unidimensional 
perspectives (in this study: near-bottom) of this multidimensional 
environment, and on only a narrow period during the year, 
which changes from year to year (albeit only a little). However, 
most fish species migrate in the water column and across many 
gradients and boundaries; this ultimately means the difference 
between success and failure for individuals and, ultimately, for 
populations. This is a fascinating but challenging topic for future 
research, especially concerning juveniles of M. paradoxus.
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