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Abstract

This work uses passive samplers to identify PAHs and OPAHs not previously associated with artificial turf, and to provide the
first quantitative measure of in situ flux of semi-volatile contaminants on artificial turf fields. Both air (1.5-m height) and turf air
(immediately above turf surface) were sampled using two sampling materials: low-density polyethylene and silicone. Utilizing a
broad targeted screen, we assess both artificial turf and samples of crumb rubber for over 1530 chemicals including pesticides,
phthalates, and personal care products. We report the presence of 25 chemicals that have not yet been reported in artificial turf
literature, including some with known human effects. The samplers were also quantitatively analyzed for polycyclic aromatic
hydrocarbons yielding gas-phase concentrations at breathing height and surface level—the first such report on an artificial turf
outdoor field. Turf pore-air and air chemicals were highly correlated at all sites, and particularly at the recently installed indoor
site. Flux of chemicals between air and turf surface appear to follow field age although more research is needed to confirm this
trend. The thermal extraction process and silicone passive samplers used are suitable for larger-scale environmental sampling
campaigns that aim for less solvent and sample processing. By co-deploying silicone passive samplers and conventional low-
density polyethylene, partitioning coefficients are derived that can be used for future silicone passive air sampling environmental
assessment. This study provides an initial demonstration that passive samplers can be used to quantify volatile and semi-volatile
organic chemicals from artificial turf.

Keywords Polycyclic aromatic hydrocarbons - Oxygenated polycyclic aromatic hydrocarbons - Semi-volatile organic
contaminants - LDPE - Silicone - Flux - Artificial grass - Synthetic turf

Introduction

Professional and amateur athletes commonly compete and
practice on artificial turf. The latest generation of artificial turf
is composed of several layers to mimic the look and feel of
grass, often including plastic “grass” fibers and infill made of
crumb rubber and/or sand (Cheng et al. 2014). Crumb rubber
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is made using recycled tires and is ~90% of field material by
weight (Cheng et al. 2014; Schiliro et al. 2013). Components
of the recycled tires have been considered as potential toxi-
cants, including lead, zinc, particulate matter, and volatile and
semi-volatile organic chemicals (European Chemicals
Agency 2017; USEPA 2016). Potential exposure routes from
crumb rubber include inhalation of particles or gas-phase con-
taminants, dermal contact, and inadvertent ingestion of crumb
rubber. Risk estimates to date have yielded mixed results,
concluding either that (a) artificial turf components meet or
do not exceed levels that would contribute to health risks, or
(b) that some exposures are above levels that may contribute
to risk (USEPA 2016 and references therein). Refining these
conclusions is the subject of recent and ongoing investigations
by the USEPA (2016) and the European Chemicals Agency
(2017).

Semi-volatile organic chemicals, e.g., phthalates,
benzothiazole, and polycyclic aromatic hydrocarbons
(PAHSs), are used in tire production and are commonly detect-
ed in crumb rubber analyses (Celeiro et al. 2014; Cheng et al.
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2014; Dye et al. 2006; Llompart et al. 2013; Schiliro et al.
2013). Other toxicologically relevant chemicals are also pres-
ent, but crumb rubber has not yet been fully characterized, and
these unknown components remain as uncertainties in risk
evaluations (European Chemicals Agency 2017).
Oxygenated PAHs (OPAHSs), like PAHs, derive from numer-
ous natural and anthropogenic sources. OPAHs are also
formed as photo-oxidation products of PAHs (Lundstedt
et al. 2007), and formation of OPAHs is likely in the high-
sun environment typical on outdoor sports fields. For other
contaminants not descendent of recycled tires, artificial turf
could act as an initial sink with gradual release over time.
Kanematsu et al. (2009) and Nilsson et al. (2008) used mass
spectra libraries and identified potential toxicants in rubber
mulch leachate. However, to the authors’ knowledge, only
targeted approaches have been used when characterizing the
crumb rubber on artificial turf fields. Non-specific sampling
and analytical methods are still needed to fully characterize
artificial turf fields.

PAHs are a subgroup of volatile organic compounds
(VOCs) known as semi-volatile organic compounds
(SVOCs) and generally have higher molecular weights and
lower vapor pressures than VOCs. However, despite lower
vapor pressures, SVOCs do vaporize and are typically present
both in the gaseous phase and adsorbed onto surfaces and
particulates (Xu and Zhang 2011). As such, contaminants
can off-gas from crumb rubber infill, making chemicals avail-
able for inhalation by athletes and field users. Li et al. (2010)
and Zhang et al. (2008) report that chemical off-gassing rates
generally decrease as the field ages. Under most conditions,
lower molecular weight PAHs are primarily in the gaseous
phase, but importantly, PAHs with higher molecular weights
are also partially present in the gaseous phase (Ramirez et al.
2011) and are often the largest contributor to PAH-associated
health risks (Dye et al. 2006; Samburova et al. 2017).
Researchers have observed that gas-phase PAHs can contrib-
ute heavily to the carcinogenic potency of PAH mixtures
(Ramirez et al. 2011; Samburova et al. 2017). Thus measuring
PAHs in the gaseous phase is relevant when assessing person-
al PAH exposure. Of environmental chemical transport pro-
cesses, diffusion has been used as a baseline for total chemical
movement, commonly referred to as flux (Fernandez et al.
2014). Flux on the unique artificial turf environment has not
yet been measured in situ, and the research presented here is
the first report of flux between soil and air on artificial turf.
Attificial turf may be an important source of SVOCs, includ-
ing PAHs, to air.

Passive sampling is an established method for measuring
trace levels of contaminants and researchers often use passive
samplers to detect chemicals in air environments (Huckins
et al. 2002). Samplers can be made of various polymers that
mimic uptake of biological membranes, such as polyethylene
or silicone. Chemicals passively sorb into the material up to
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equilibrium concentrations, but environmental concentrations
can still be determined when the samplers are still in the up-
take phase. The polyethylene samplers have been used exten-
sively in environmental monitoring and research, and the sil-
icone samplers described in this work are identical to silicone
wristbands in previous publications that measure personal ex-
posure (e.g., Anderson et al. 2017; Dixon et al. 2019;
O’Connell et al. 2014). Using two polymers concurrently en-
ables a wider range of compounds to be sampled (O’Connell
et al. 2014) and analyzed with multiple techniques.

This work samples three distinct artificial turf playing fields
to demonstrate a range of chemical and flux profiles. Our
objectives in this study were to use passive samplers to (1)
identify gas-phase PAHs and OPAHs not previously associat-
ed with artificial turf by using a broad and targeted screen to
assess both artificial turf and crumb rubber for 1530 chemicals,
including several with known health effects; and (2) quantify
PAH and OPAH flux between turf and the overlying air.
Additionally, we demonstrate for the first time that silicone
passive samplers can be used to quantify volatile and semi-
volatile organic chemicals from artificial turf and develop
partitioning coefficients that can be used for silicone passive
air sampling environmental assessment. This work will aide in
future risk assessments by advancing and broadening the char-
acterization of organic chemicals associated with artificial turf.

Materials and methods
Chemicals and materials

Target PAH analytes, deuterium-labeled internal standards,
and extraction surrogates (Table S1) with purity 97% or great-
er were purchased from distributers as detailed previously
(Anderson et al. 2015; O’Connell et al. 2013). PAHs
fluorene-D10, pyrene-D10, benzo[b]fluoranthene-D12 (C/D/
N Isotope Inc.; Quebec, Canada), and the OPAH
anthraquinone-D8 (Sigma-Aldrich; St. Louis, Missouri,
USA) were used as performance reference compounds
(PRCs) for determining in situ sampling rates. Low-density
polyethylene (LDPE) passive samplers were constructed from
lay-flat tubing purchased from Brentwood Plastics, Inc. (St.
Louis, MO, USA). Silicone passive samplers (width, 1.3 cm;
inner diameter, 5.8 ¢cm) were purchased from
24hourwristbands.com (Houston, TX, USA). LDPE and
silicone samplers were transported and stored in individual
polytetrafluorethylene (PTFE) bags from Welch
Fluorocarbon, (Dover, NH, USA).

Site descriptions and sampling design

We collected 20 passive samples concurrently; 10 LDPE sam-
ples and 10 silicone samples. Each LDPE sample was a
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composite of 5 LDPE strips, while each silicone sampler was
one individual “wristband.” We also collected crumb rubber
samples that were each a composited from four locations with-
in each field. The samples were collected on three different
artificial turf fields in OR, USA: indoor, an indoor facility (turf
field approximately 2 months old), outdoor A, an outdoor
field surrounded by a rubberized track (approximately 2 years
old); and outdoor B, an outdoor multi-use field (approximate-
ly 5 years old). Field managers add crumb rubber to fields on
an as-needed basis.

Passive sampling devices were used to measure two matri-
ces: air at an approximate height of 1.5 m and turf air, air
immediately above and in close contact with turf (analogous
to soil pore air). Paired air and turf air boxes, as described in
Donald and Anderson (2017) were deployed at the three lo-
cations with triplicate equipment at outdoor A. Additional site
details including weather conditions, photographs, and figures
are provided in SI. All sampling equipment was set up con-
currently and remained for 27 days in August and September
2016.

Sample preparation and extraction
Low-density polyethylene (LDPE) passive samplers

Passive samplers were prepared using strips of LDPE tubing
as in Anderson et al. (2008). The strips were pre-conditioned
in solvent baths, dried, and a solution containing performance
reference compounds (PRCs) infused into each before heat-
sealing. Infusion with PRCs allows calculation of in situ air
sampling rates and time-integrated air concentrations, as used
in Donald and Anderson (2017) and preceding works.
Inclusion of PRCs means that the environmental concentra-
tions can be calculated before the samplers reach equilibrium
with the environmental matrix. Post deployment, strips were
cleaned in isopropanol and extracted with n-hexane after ad-
dition of surrogate extraction standards as in Donald and
Anderson (2017). Five LDPE strips from each sampling box
were composited for extraction. Internal standards were added
to aliquots prior to instrumental analysis.

Silicone passive samplers

Silicone passive samplers were pre-conditioned in a vacuum
oven, and 20 pL of a PRC solution applied directly to the
surface and air dried as in Anderson et al. (2017). Silicone
samplers were thermally extracted onto Markes sorbent tubes
(C3-AAXX-5304) using a Markes micro-chamber/thermal
extractor. The tubes were fitted with Markes diffusion lock
caps (difflock C-DL100) during analysis. Tubes used a
Markes Unity 2/Ultra 2 Thermal Desorption System for intro-
duction into the gas chromatographer with mass spectrometer

detector (GC/MS). Conditions for thermal desorption are pre-
sented in SI, Table S5.

Crumb rubber

Twelve crumb rubber samples were collected from four dif-
ferent locations from each field and were composited into
single representative sample for each field. Additionally, 4
crumb rubber samples were taken from “fresh” stock that
had yet to be applied and composited into a sample.
Samples were analyzed using the identical parameters as sili-
cone samplers. Extraction and analysis was performed in trip-
licate for each crumb rubber sample, with approximately
50 mg of crumb rubber used per sample.

Instrumental analysis
LDPE passive samplers

Extracts were analyzed using three separate analytical
methods. Two are previously described methods for 62
PAHs and 19 OPAHs (Table 1). Briefly, PAH analysis was
conducted using gas chromatography electron-impact/triple
quadrupole mass spectrometry (GC/MS-MS, Agilent
7000C) with an Agilent PAH-select column (Anderson et al.
2015). Analysis for OPAHs was performed with GC/MS
(Agilent 7890A and 5975C) with a DB5-MS column
(O’Connell et al. 2013).

LDPE sampler extracts were also analyzed on a third ana-
lytical method for the presence or absence of 1530 chemicals
using GC/MS with a DB5-MS column (Bergmann et al.
2018). This presence/absence screen, hereafter referred as
the “1530 screen,” uses mass spectral deconvolution software,

Table1 Detected artificial turf-associated chemicals that are previously
unreported in a 2016 literature survey conducted by USEPA (2016)

PAH method

2-ethylnaphthalene 2,6-diethylnaphthalene
1,6-dimethylnaphthalene 3,6-dimethylphenanthrene
1,4-dimethylnaphthalene Benzo[c]fluorene
2,4-dimethylnaphthalene Triphenylene
1,5-dimethylnaphthalene 6-methylchrysene

1,2-dimethylnaphthalene Naphtho[1,2-b]fluoranthene

OPAH method
Chromone

1530 screen
b-citronellol

9-fluorenone

Xanthone
9,10-phenanthrenequinone
9,10-anthraquinone
Benzofluorenone

Benzyl salicylate
N,N-diethyl-m-toluamide
Ethiolate
Pentachlorobenzene
Triphenyl phosphate
Benzyl benzoate
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and the complete list of analytes is given at http://fses.
oregonstate.edu/1530. Chemical concentrations in the 1530
screen are not quantified against calibration curves.
Responses from blanks and quality control samples were
compared to infer relative concentrations. Data was acquired
using an Agilent 7890A GC and Agilent 5975C MS operated
in in full scan mode with electron ionization using an Agilent
DB-5MS column (30 m % 0.25 mm). Inlet pressure was
locked to the retention time of chlorpyrifos at 19.23 (£0.20)
minutes. Full details are provided in Tables S3 and S4. Initial
target compounds were obtained from the NIST 2008 mass
spectral library with additional target compound retention
time and reference library spectrum obtained through direct
injections from single analyte solutions (Accustandard, New
Haven CT). AMDIS version 2.66 (NIST), as part of the
Deconvolution Reporting Software (DRS, Agilent), was used
to de-convolute and identify additional peaks (Bergmann et al.
2018). AMDIS software parameters are given in Table S4.
AMDIS integrated the identified peaks which were used for
some general comparisons.

Silicone passive samplers and crumb rubber

Silicone samplers and crumb rubber were analyzed for 77 com-
pounds, including PAHs, OPAHs, VOCs, flame retardants, tri-
R-phosphates, polybrominated diphenyl ethers, pesticides,
pharmacological chemicals, and consumer products, via GC/
MS following thermal extraction as per Table S5 using a
Markes micro-chamber/thermal extractor. Samples were loaded
into the extraction chamber and spiked with 2 uL of a 50 ng/uLL
extraction surrogate solution. A sorbent tube packed with
quartz wool, Tenax® TA, and carbograph 5TD was used.
Samplers were thermally extracted by heating from an initial
temperature of 25 to 50 °C held for 30 min, then heated at the
maximum heating rate to 250 °C and held for 1.5 h. Nitrogen
was used as carrier gas at a flow rate of 40-50 mL/min.

After thermal extraction, tubes were fitted with Difflok
caps, and were analyzed with an Agilent 6890N GC with an
Agilent 5975B with triple axis detector MS equipped with a
Markes series 2 Ultra auto sampler and Markes Unity 2 cold
trap sample introduction system. Markes systems were con-
trolled using Markes Maverick thermal desorption system
control program, version 5.1.0. Agilent Chemstation
E.02.00.493 was used to control Agilent components and to
analyze data. Settings for sample acquisition are given in
Table S5 and S6. Where overlap of PAH and OPAH com-
pounds occur in two analysis methods, the value for the
triple-quadrupole instrument is reported.

Calculations

Gas-phase concentrations of PAHs and OPAHs in air (C,;,)
and turf air (Cyyt o) Were determined from LDPE passive
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samplers using an empirical uptake model with PRCs as in
situ calibration standards (Donald and Anderson 2017;
Huckins et al. 2002). Details are provided in SI. Method de-
tection limits (Table S1) were calculated separately for air and
turf air, using average PRC retention per matrix and average
temperature of deployment. Generally, detection limits in-
crease from air to turf air, and increase with chemical
volatility.

Quantitative flux (ng m 2 h ") between air and turf air was
calculated for PAHs and OPAHs at each site when concentra-
tions were above limits of quantitation in both matrices:

DT
flux = g (Cturf air_Cair) (1)
where Cy,t . 1S the concentration of a target chemical in air
immediately at the turf surface (ng m ) and C,; is the con-
centration of a target chemical in air (ng m °). The height of
the boundary layer (8r) was estimated at 0.001 m.
Temperature-corrected mass transfer coefficients (D7) were
estimated from the D’ of pyrene at 298 K as a reference
(Table S1) (Donald and Anderson 2017).

Statistical analysis

Mean temperature and relative humidity comparisons were
made using two-sided ¢ -tests with serial correlation correc-
tions. Uncertainty of flux calculations was estimated via prop-
agation of error following the methods described in SI.
Logarithms of air and turf air concentrations were compared
using simple linear regression. Statistical analyses were per-
formed in Microsoft Excel 2016 and JMP Pro 13.0.0.

Quality control

QC samples represented over 50% of all samples analyzed
and included LDPE and silicone passive sampler construction
blanks, field blank, trip blank for both deployment and retriev-
al as well as post-deployment cleaning blank, extraction blank
and a field triplicate. Details and results of quality control
samples are provided in SI. Instrumental limits of quantitation
(LOQs) were calculated in accordance with other methods in
our laboratory and described previously (Anderson et al.
2015; Bergmann et al. 2018).

Results and discussion

Environmental concentrations of PAHs and OPAHSs
in turf

Among ten turf air and pore-air LDPE samples, we de-
tected 44 PAHs and 7 OPAHs (Fig. 1). Higher molecular
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Fig. 1 Concentrations of PAHs and OPAHs in air and turf air. OPAHs are indicated with asterisks. Triplicate samples were collected at outdoor A.

Compounds are ordered by log K, from low to high

weight chemicals were more frequently detected in air,
even though air has slightly lower detection limits
(Table S1). The indoor site, the newest field sampled,
had the highest concentrations, with average PAH and
OPAH levels in both air and turf air 20- and 13-fold
greater than at outdoor A and outdoor B, respectively.
Indoor fields, particularly those with poor ventilation,
have documented higher levels of air contaminants
(European Chemicals Agency 2017).

Samples at outdoor A were collected in triplicate, and var-
iance across target analytes present in both matrices was sim-
ilar between air (average RSD 26%) and turfair (average RSD
21%). This contrasts with the initial demonstration of the flux
passive sampling equipment in which variance in soil air
(RSD 40%) far exceeded the variance in air (RSD 8%;
Donald and Anderson 2017). These differences in variance
may reflect the relative homogeneity of an artificial turf field
versus natural settings.
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Twelve detected PAHs had not been reported previously in
work related to artificial turf (Table 1; USEPA 2016), includ-
ing many alkyl-naphthalenes. The presence of these alkylated-
naphthalenes associated with artificial turf is noteworthy for
risk assessment considerations. The risk of environmental
PAH exposure has not been fully characterized due in part to
a lack of adequate exposure data for alkylated PAHs, and in
aquatic studies, mounting evidence suggests that alkylated
PAHs may be more toxic than parent PAHs, perhaps due both
to bioavailability and toxic potency of alkylated PAHs (Han
etal. 2014). Han (and references therein) illustrated an 18-fold
increase in toxicity for alkylated-naphthalenes over naphtha-
lene in copepods. While more studies are needed to assess
human toxicity, these results demonstrate the importance of
analyzing large numbers of chemicals in human exposure
scenarios.

One PAH not previously reported was benzo[c]fluorene,
with an estimated carcinogenic potency 20 times greater than
benzo[a]pyrene (USEPA 2010). Benzo[c]fluorene was detect-
ed in all LDPE samplers at all sites. On the three sampled
fields, turf air concentrations were higher than air concentra-
tions, indicating that benzo[c]fluorene was volatilizing from
turf. Independent of turf, Yagishita et al. (2015) found
benzo[c]fluorene in the gas phase in a recent atmospheric
study in Japan, and reported that 44% of benzo[c]fluorene
was in the gas phase and a large contributor to the atmospheric
carcinogenic risk of PAHs.

Many PAHs in tires are from the addition of highly-
aromatic oils (HA-oils) during manufacturing (Sadiktsis
et al. 2012; Schiliro et al. 2013). HA-oils formerly contained
between 10 and 30% PAHs by weight, but high-PAH HA-oils
have been phased out of European Union (EU) countries after
directive 2005/69/EC beginning in 2010. It is expected that
tire producers worldwide will increasingly use alternative,
low-PAH HA-oils (Cheng et al. 2014). Tires are also a docu-
mented source of carcinogenic, 6-ringed dibenzopyrene PAHs
to the environment, but levels are expected to decline as high-
PAH HA-oils continue to be phased out (Sadiktsis et al. 2012).
This study sampled both volatile and semi-volatile gas-phase
contaminants, and most PAHs observed were lower-MW
PAHs. We did not detect the carcinogenic dibenzopyrenes
described in Sadiktsis et al. (2012) where crumb from tires
containing HA-oils was analyzed. If present, such 6-ringed
dibenzopyrenes would likely be highly associated with parti-
cles and therefore present in the gas-phase at low levels.

Pyrene and benzo[ghi]perylene are major PAH com-
ponents in tires, and have been documented as major
components in artificial turf crumb rubber as well
(Sadiktsis et al. 2012). Pyrene was present in all air,
turf air and crumb rubber samples in this study.
Additionally, the less-volatile benzo[ghi]perylene was
detected in all air samples above turf in this study, but
was below limits of detection in turf air.
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We detected six OPAHSs not previously reported at artificial
turf fields (Table 1). Previous reports are limited to three
OPAHs: 6H-benzo[cd]pyren-6-one, 4H-
cyclopenta[def]phenanthrene-4-one, and 2-ethyl-9,10-anthra-
quinone (Kanematsu et al. 2009; USEPA 2016). Two of these
were included in our analysis, and we detected 4H-
cyclopenta[def]phenanthrene-4-one, but not 6H-
benzo[cd]pyren-6-one. Compared to the PAHs, the toxicity
of OPAHSs is less well-studied (Lundstedt et al. 2007).
OPAHs may have more mutagenic potential than their corre-
sponding parent PAHs, and some OPAHs need not be meta-
bolically activated to induce toxicity (Lundstedt et al. 2007).
Knecht et al. (2013) screened 38 OPAHs for morphological
malformations using the embryonic zebrafish model, and
found 9,10-phenanthraquinone to be one of the most toxic
OPAHs, followed closely by benzofluorenone.
Benzofluorenone is also a potent inhibitor of the CYPI1A1
enzyme, indicating that this OPAH is as toxicologically rele-
vant as the more studied PAHs (Wincent et al. 2016). These
newly reported PAHs and OPAHs may be considered as po-
tential toxicants in future human risk assessments of artificial
turf field users.

Numerous studies report concentrations of PAHs associat-
ed with particles; however, to the authors’ knowledge, only
one previous report gives gas-phase concentrations on an ar-
tificial turf field. Dye et al. (2006) used active samplers to
collect the gas-phase concentration in three indoor facilities
with artificial turf. Air data from indoor turf in the research
here agrees well with results in Dye et al. (2006) (Fig. S14),
suggesting that the disparate sampling methods are compara-
ble. Dye et al. (2006) also includes particle-phase (PM10)
PAH concentrations as a separate measurement. Comparing
these two phases (Fig. S15), PM10-bound and gas-phase, we
infer that over 97% of measured PAHs were in the gas-phase.
Generally, the low-molecular weight, volatile chemicals were
predominantly present in the gas-phase, while PAHs with log
Koa approximately 9 or greater were mostly associated with
particles. Similar trends are observed beyond the artificial turf
environment (Thang et al. 2014). Gas-phase contaminants are
bioavailable and can enter biological membranes when in-
haled or contacted. Contaminants adsorbed to particles are
less bioavailable, and particle size affects penetration into
the lungs (European Chemicals Agency 2017). The current
work gives the first gas-phase concentrations around outdoor
artificial turf fields to date (USEPA 2016).

Concentrations in crumb rubber

Crumb rubber stock and the 2-month-old indoor field crumb
rubber samples had similar numbers of VOC/SVOC detec-
tions; 35 and 38, respectively (Fig. 2). Crumb rubber stock
had more chemicals than either of the outdoor samples, 35
versus 31 and 19 chemicals respectively. Compared with the



Air Qual Atmos Health (2019) 12:597-611

603

stock crumb rubber, the outdoor A and B samples were mostly
missing the most volatile compounds (decanes and the naph-
thalenes) which have volatilized into air. Outdoor B crumb
rubber had the fewest chemicals detected and was also miss-
ing phenanthrene, substituted phenanthrenes, and many

stock
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higher molecular weight SVOCs like benz[b or c]fluorene,
chrysene, triphenylene, or benzo[a]pyrene (see Fig. 2).
Crumb rubber is an important contribution to the chemicals
measured and could pose a potential inhalation exposure
hazard.
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7000

10 100 1000

UBERRALLLE B R L

10 100 1000

T T T T T[Ty =¥
% 40 100 1000 ™

concentration (ng/g)

IERRRLLE L nnmbx

10 100 1000 '

Fig.2 Average concentrations (# = 3) in crumb rubber samples. Each sample was composited from 4 locations per field and analyzed in triplicate. Stock

crumb rubber was pulled from stock and has never been applied to fields
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Field managers occasionally add fresh crumb rubber to fill
in more worn sections of the field, and we do not have a record
of these applications on any of the sampled fields. A typical
soccer field contains between 75,000 and 112,500 kg of
crumb rubber and the small additions are unlikely to affect
the overall character of the field. We aimed to avoid biased
samples by compositing four locations on each field.

Presence/absence of 1530 chemicals

The LDPE samplers were screened for the presence or ab-
sence of 1530 additional compounds. Nineteen chemicals
were detected beyond the PAHs and OPAHs (Fig. 3) including
seven that have not been previously reported (Table 1)
(USEPA 2016). Two phthalates were present in small amounts
in the procedural blanks, but are included in Fig. 3 nonetheless
because responses were more than 500-fold greater in field
samples than in procedural blanks (bis(2-ethylhexyl)phthalate
and di-n-butylphthalate, Table S9).

Fig.3 Detections in the presence/
absence (1530) screen, where a
shading indicates the chemical is
present. At indoor and outdoor B,
black indicates presence. Samples
at outdoor A were collected in
triplicate; the greyscale corre-
sponds to the frequency of detec-
tion from 1 to 3

phthalate

personal care product

N,N-diethyl-m-toluamide

other

preservative/antioxidant
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bis(2-ethylhexyl)phthalate --

butyl benzyl phthalate

diisobutyl phthalate -
di-n-butylphthalate -

pentachlorobenzene

triphenyl phosphate

butylated hydroxy toluene

Phthalates detected in the present work have been
reported in previous analyses of crumb rubber
(Llompart et al. 2013), playground material (Celeiro
et al. 2014), and air at playing fields (European
Chemicals Agency 2017; USEPA 2016). Four phthalates
are recognized as reproductive toxicants by the
Registration, Evaluation, Authorization and Restriction
of Chemicals (REACH) directive. A recent risk analysis
of these four phthalates (bis(2-ethylhexyl)phthalate, di-n-
butylphthalate, butyl benzylphthalate, and
diisobutylphthalate) concluded that concentrations are
below levels that would lead to health problems in
players and workers (European Chemicals Agency
2017). The present work confirms the presence of these
phthalates on the sampled fields.

Several personal care products were detected using the
1530 screen in both air and turf air samplers. The chem-
ical b-citronellol is a component of perfumes and essential
oils of various plants (Ribeiro-Filho et al. 2016). Benzyl
salicylate, a scent compound (Lapczynski et al. 2007) was
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Fig. 4 Magnitude and direction of PAH and OPAH flux. Error bars show
uncertainty determined via propagation of error. The scale in the top left is
reduced to larger values. Chemicals are listed in order of molecular

present in all air samples, but absent in all turf air sam-
ples. Drometrizole, an ultraviolet light absorber used in
sunscreen products (Antoniou et al. 2008) and plastic
polymers (Lygre et al. 1999), was found in one turf air
sampler. This chemical has previously been detected in
crumb rubber leachate (Nilsson et al. 2008), and we can-
not distinguish whether our detection is due to personal
care product usage or as an antioxidant additive in
sourced tires used in the crumb rubber. The common in-
sect repellent N,N-diethyl-m-toluamide (DEET) was

weight, from low to high. OPAHs are indicated with asterisks. Flux was
not determined if a chemical was below limit of detection in either air or
turf air

found in turf air samplers. With the possible exception
of drometrizole, personal care products such as these are
unlikely to be present in fresh crumb rubber; therefore,
their detections likely stem from field users rather than
the artificial turf. Personal care products found in turf air
support the hypothesis that artificial turf can act an initial
sink to naive chemicals, with gradual off-gassing over
time.

In addition, we observed several other chemicals, seven of
which have not been reported previously to be associated with
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Fig.5 Turf air concentrations correlated with air concentrations fit is greatest at indoor, the location with more volatilization and likely less convolution

from air movement and temperature extremes

artificial turf, tires, or crumb rubber (Table 1). Ethiolate, a
dithiocarbamate herbicide believed to be no longer in use
(World Health Organization 2009), has not been previously
associated. However, dithiocarbamates are used as vulcaniz-
ing agents in tire production (ChemRisk Inc. and DIK Inc.
2008) and we hypothesize this detection represents a
structurally-similar dithiocarbamate constituent of tires.
Pentachlorobenzene is a persistent organic pollutant included
in the Stockholm Convention (Bailey et al. 2009).
Pentachlorobenzene was seen in two samples, in turf air from
the indoor newest field and in turf air from the oldest outdoor
field. Pentachlorobenzene can also be emitted from biomass
burning (Bailey et al. 2009), and regional wildfires around the
sampling period are a potential source. Finally, triphenyl phos-
phate is a flame retardant and is used in hydraulic fluids and
plasticizers (Hou et al. 2016). Triphenyl phosphate detections
were observed only in air, and only at the older and outdoor
fields, and suggest that artificial turf is not the primary source
of this chemical.

At the outdoor fields, we detected benzothiazole only in
turf air, as in previous reports where samples were collected
6 in. (15 cm) above turf (Connecticut Department of Public
Health 2010; Ginsberg et al. 2011). Benzothiazole levels were
substantially higher indoors than outside in previous studies
(Connecticut Department of Public Health 2010; Ginsberg
et al. 2011). Similarly, in our work, benzothiazole was above
detection limits in both air and turf pore air at the indoor field,
but only detectable in turf air at the outdoor fields, generally
suggesting lower levels outdoors. Phthalimide, another chem-
ical associated with rubber vulcanization, was detected in one
turf air sampler and has been reported previously in leachate
from artificial turf (USEPA 2016). Preservatives and antioxi-
dants like butylated hydroxy toluene and diphenylamine are
known components of tires, although benzyl benzoate has not
previously been reported in artificial turf literature (USEPA
2016).

@ Springer

Flux of PAHs and OPAHs

Flux varied substantially among the three fields (Fig. 4) where
flux was evaluated for 35 PAHs and OPAHs at all sites in
which both air and turf air measurements were above limit
of detection. Complete flux values with uncertainty deter-
mined via propagation of error are given in Table S10.
Naphthalene had the highest measured rate of volatilization
(indoor site, 38,000 ng m 2 hfl), and the highest rate of depo-
sition (outdoor B, —2000 ng m 2 hY). All flux values at the
indoor site were positive, indicating volatilization from turf air
into the air, with an average rate of 3000 ng m > h™'. In com-
parison, only higher molecular-weight, less-volatile chemicals
were volatilizing at the outdoor sites. The more volatile
chemicals naphthalene and 1- and 2-methylnaphthalene were
depositing at both outdoor A and B, while the slightly-heavier
dimethylnaphthalenes were generally depositing only at the
oldest of the three sites, outdoor B. When measurable,
OPAHs were volatilizing; however, only chromone was sig-
nificantly volatilizing. Profiles of PAH/OPAH flux agrees
with previous evidence that off-gassing relates to the age of
the field (Li et al. 2010). Compared to the newest field, the two
older fields appear to be acting as a sink for the more volatile
chemicals. Additional sampling is needed to confirm these
trends, though we do mention these details to highlight possi-
ble reasons for flux differences.

The relationship between turf and overlying air can also be
represented by a simple correlation (Fig. 5). We observed
correlations (p value <0.05) at each field, although the
strength of correlation varied. The newest field, indoor, had
the strongest correlation (R2 =0.964), indicating that volatili-
zation from turf strongly affects concentrations in the overly-
ing air at this site. Slightly less strong correlations were ob-
served at outdoor A (R*=0.717) and outdoor B (R* = 0.670),
providing evidence that the contribution of volatilization at the
two older, outdoor sites is likely convoluted by additional
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Table2 Log K, values for silicone and LDPE (low-density polyethylene)

Chemical log Koa  log Ksa LDPE  log Ksa Anderson Predicted log Ksa Percent difference between
et al. 2017 silicone this study silicone log Ksa (%) (Anderson et al. 2017
and this study)

Naphthalene 5.05 4.43 5.9 53 11
2-methyl-Naphthalene 5.53 5.07 6.1 59 32
1-methyl-Naphthalene 5.55 5.09 6.1 59
2-ethyl-Naphthalene 6.04 5.58 6.5
2,6-dimethyl-Naphthalene 5.89 5.58 6.4
1,4-Dimethylnaphthalene 6.17 5.65 6.7
1,5-Dimethylnaphthalene 6.22 5.66 6.8
1,2-dimethylnaphthalene 5.89 5.58 6.4
1,8-Dimethylnaphthalene 6.22 5.52 6.8
2,6-Diethylnaphthalene 6.59 6.48 72
Acenaphthylene 6.27 6.20 6.2 6.8 9.8
Acenaphthene 6.04 5.46 6.3 6.6 3.9
Fluorene 6.59 6.00 6.4 7.2 12
Dibenzothiophene 724 7.03 8.1
Phenanthrene 7.22 6.86 6.7 8.0 18
Anthracene 7.09 6.85 6.6 7.9 18
2-Methylphenanthrene 7.50 7.30 6.8 8.4 21
2-methylanthracene 7.64 7.47 8.6
1-Methylphenanthrene 7.78 7.57 6.9 8.7 24
9-Methylanthracene 7.87 7.56 8.9
3,6-Dimethylphenanthrene 8.03 7.97 9.1
Fluoranthene 8.60 8.50 7.2 9.8 31
2,3-Dimethylanthracene 8.03 7.97 9.1
9,10-Dimethylanthracene 8.28 8.27 9.4
Pyrene 8.19 8.16 7.0 9.3 28
Retene 8.70 8.83 9.9
Benzo(a)fluorene 8.36 8.50 9.5
Benzo(b)fluorene 9.57 8.95 11.0
Benzo(c)fluorene 8.37 8.25 9.5
1-Methylpyrene 8.91 8.85 10.2
Benz(a)anthracene 9.07 9.45 10.4
Cyclopenta(c,d)pyrene 10.15 10.14 11.8
Triphenylene 10.69 9.13 12.4
Chrysene 9.48 9.52 10.9
6-methylchrysene 9.72 9.79 11.2
5-methylchrysene 9.72 9.79 11.2
Benzo(b)fluoranthene 10.35 10.27 12.0
7,12-Dimethylbenz(a)anthracene 9.61 9.42 11.1
Benzo(k)fluoranthene 10.73 10.67 12.5
Benzo(j)fluoranthene 10.59 10.67 12.3
Benzo(e)pyrene 11.35 11.08 133
Benzo(a)pyrene 10.86 10.70 12.6
Perylene 10.08 10.84 11.7
Indeno(1,2,3-c,d)pyrene 11.55 12.18 13.5
Dibenz(a,h)anthracene 11.78 11.67 13.8
Picene 11.81 12.11 13.9
Benzo(ghi)perylene 11.50 12.10 13.5
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Table 2 (continued)

Chemical log Koa  log KsaLDPE  log Ksa Anderson Predicted log Ksa Percent difference between
et al. 2017 silicone this study silicone log Ksa (%) (Anderson et al. 2017
and this study)
Anthanthrene 12.31 12.60 14.5
Naptho[1,2-b]fluoranthene 12.77 13.11 15.1
Naphtho[2,3-j]fluoranthene 12.77 13.11 15.1
Dibenzo(a,e)fluoranthene 12.77 13.11 15.1
Dibenzo(a,l)pyrene 13.20 13.64 15.6
Naphtho[2,3-k]fluoranthene 12.77 13.11 15.1
Naphtho[2,3-¢]pyrene 12.77 13.11 15.1
Dibenzo(a,e)pyrene 13.20 13.64 15.6
Coronene 13.70 14.12 16.2
Dibenzo(e,l)pyrene 12.77 13.11 15.1
Naptho[2,3-a]pyrene 12.77 13.11 15.1
Benzo(b)perylene 12.77 13.11 15.1
Dibenzo(a,i)pyrene 12.77 13.11 15.1
Dibenzo(a,h)pyrene 12.77 13.11 15.1

outdoor sources and potentially greater air movement. Similar
correlation analyses have been conducted, albeit sparingly.
Cabrerizo et al. (2011) report high correlations (R*=0.63
and 0.76) between air fugacity and soil fugacity where vola-
tilization of organochlorine pesticides occurs at background
sites, but weaker correlations (R* = 0.32 and insignificant) at
sites with deposition signatures. In a similar approach,
Bidleman and Leone (2004) point to good correlations be-
tween soil concentrations and overlying air concentrations
(R? up to 0.73) as evidence of volatilization. The strength of
correlation observed at the indoor site exceeds these previous
reports of volatilization from soil, and we hypothesize that the
strength of this correlation will decrease over time as the field
age.

Silicone-air partitioning coefficient

Commonly, new techniques are calibrated against existing
technologies. Khairy and Lohmann (2014) co-deployed
LDPE passive samplers with established active samplers to,
in part, determine sampler-air partition coefficients. These par-
tition coefficients are used to calculate environmental air con-
centrations from passive sampler concentrations. Similarly,
we co-deployed silicone samplers alongside the more
established LDPE. Numerous types of silicone polymer have
been used in organic pollutant research (Smedes et al. 2009).
O’Connell et al. (2014) co-deployed LDPE and different types
of silicone to illustrate that the properties of target compounds
should be considered when selecting a polymer in passive
sampling studies. Co-deployment of conventional and new
samplers is valuable for gaining insight into the characteristics
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of new sampling technologies. Further, the previous report
that used active samplers (Dye et al. 2006) have results similar
to our LDPE results, providing additional support of LDPE
values used in the paired approach for assessing silicone-air
portioning coefficients. In addition to environmental sam-
pling, silicone samplers in the present study have been used
as wearable samplers (wristbands) in numerous applications
to detect personal chemical exposures, e.g. (Dixon et al. 2019;
O’Connell et al. 2014).

Side-by-side deployment of passive samplers of two mate-
rials allowed for calculation of silicone-air partition coeffi-
cients (Ksilicone - air):

_ Csilicone

Kapoo . —
silicone—air
C

where Cgicone 18 the concentration in silicone and C is the
concentration in air or turf air determined with LDPE sam-
plers. Values for Kgjjicone — air Of chemicals were determined for
chemicals at equilibrium, as inferred from PRC dissipation
data.

Our silicone-air partition coefficients (K;jicone — air) determi-
nations are similar to a previous report of silicone-air partition
coefficients (Kgjjicone —air) in Anderson et al. (2017); the per-
centage difference ranges from 0.97 to 11.4% with larger pre-
diction intervals (Table 2 and Fig. 6). In Anderson et al.
(2017), the silicone was worn on participants’ wrists, so sam-
pling occurred at near-constant temperatures. In contrast, av-
erage temperatures in this turf study ranged between 20.5 and
25.2 °C, and though this is a small range, even small differ-
ences in temperature can result in large changes in
partitioning. A 10 °C increase in temperature is expected to
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Fig. 6 K, determination as 90
determined in the present study

(red line) and Anderson et al. 85
(2017) (blue line)
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decrease Kgjjicone — air by twofold. We propose that the variabil-
ity in our prediction of Kjicone—air €an be attributed to the
differences in environmental conditions. In future work, this
information can be combined to understand the contribution
of vapor-phase contaminants in environmental and personal
exposure. For example, personal sampling using the silicone
samplers may reveal unique exposure patterns that stationary
monitors cannot discern (Shen et al. 2014), such as field users
participating in different sports or positions.

Limitations

This study does not incorporate fields with a wide range
of ages, adjacent contaminant sources, geographic loca-
tion, artificial turf manufacturers, or use patterns. The
trends observed with field age and indoor/outdoor loca-
tions will need to be validated with additional sampling
on fields with a range of ages, geographic locations and
manufacturers. We sampled during the warmest days of
the year. As chemical volatility increases with tempera-
ture, we expect lower volatilization rates in cooler tem-
peratures, all else constant. The detection of a chemical in
an air sample does not necessarily indicate it derives from
artificial turf. Detections in the self-contained turf air sam-
pling boxes are more likely associated with artificial turf
and infill. The passive sampling technologies and range of
analytical methods demonstrated here can help provide
critical missing information for researchers determining
how artificial turf-associated chemical exposures may
contribute to adverse health outcomes.
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