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Abstract
1.	 Body	 size	 determines	 key	 ecological	 and	 evolutionary	 processes	 of	 organisms.	
Therefore,	 organisms	 undergo	 extensive	 shifts	 in	 resources,	 competitors,	 and	
predators	 as	 they	 grow	 in	 body	 size.	While	 empirical	 and	 theoretical	 evidence	
show	that	these	size‐dependent	ontogenetic	shifts	vastly	influence	the	structure	
and	dynamics	of	populations,	theory	on	how	those	ontogenetic	shifts	affect	the	
structure	and	dynamics	of	ecological	networks	is	still	virtually	absent.

2.	 Here,	we	expand	the	Allometric	Trophic	Network	(ATN)	theory	in	the	context	of	
aquatic	food	webs	to	incorporate	size‐structure	in	the	population	dynamics	of	fish	
species.	We	 do	 this	 by	modifying	 a	 food	web	 generating	 algorithm,	 the	 niche	
model,	to	produce	food	webs	where	different	fish	life‐history	stages	are	described	
as	separate	nodes	which	are	connected	through	growth	and	reproduction.	Then,	
we	apply	a	bioenergetic	model	that	uses	the	food	webs	and	the	body	sizes	gener‐
ated	by	our	niche	model	to	evaluate	the	effect	of	incorporating	life‐history	struc‐
ture	into	food	web	dynamics.

3.	 We	show	that	the	larger	the	body	size	of	a	fish	species	respective	to	the	body	size	
of	its	preys,	the	higher	the	biomass	attained	by	the	fish	species	and	the	greater	the	
ecosystem	stability.	We	also	find	that	the	larger	the	asymptotic	body	size	attained	
by	fish	species	the	larger	the	total	ecosystem	biomass,	a	result	that	holds	true	for	
both	the	largest	fish	in	the	ecosystem	and	each	fish	species	in	the	ecosystem.

4.	 This	work	provides	an	expanded	ATN	theory	that	generates	food	webs	with	life‐
history	structure	for	chosen	species.	Our	work	offers	a	systematic	approach	for	
disentangling	 the	 effects	 of	 increasing	 life‐history	 complexity	 in	 food‐web	
models.
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1  | INTRODUC TION

Body	 size	determines	 key	ecological	 and	evolutionary	processes	
during	 the	 ontogeny	 of	 organisms	 (Werner	 &	 Gilliam,	 1984).	
Ecological	 interactions,	 diet	 breadth,	 foraging	 efficiency,	 repro‐
duction,	 and	mortality,	 among	 other	 processes	 animating	 an	 or‐
ganism's	 life,	 strongly	 depend	 on	 the	 organism's	 size	 (De	 Roos,	
Persson,	 &	 McCauley,	 2003;	Werner	 &	 Gilliam,	 1984;	 Yodzis	 &	
Innes,	1992).	Given	such	dependency,	organisms	will	undergo	ex‐
tensive	shifts	in	resources,	competitors,	and	predators	as	they	grow	
(Ramos‐Jiliberto,	 Valdovinos,	 Arias,	 Alcaraz,	 &	 Garcia‐Berthou,	
2011;	Werner	&	Gilliam,	1984).	These	size‐dependent	ontogenetic	
shifts	vastly	influence	the	structure	and	dynamics	of	aquatic	pop‐
ulations	and	communities	(De	Roos	et	al.,	2003;	Werner	&	Gilliam,	
1984).	 For	 example,	 “juvenile	 bottlenecks”	 influences	 the	 struc‐
ture	 and	 dynamics	 of	 fish	 communities,	where	 prey	 populations	
compete	with	the	juveniles	of	their	predatory	populations	exhib‐
iting	 similar	 body	 sizes	 (Byström,	 Persson,	 &	Wahlstrom,	 1998).	
Moreover,	theoretical	work	has	shown	that	competitive	and	pred‐
atory	 (cannibalistic)	 interactions	 between	 different	 age	 cohorts	
drive	 fish	 population	 dynamics	 (Persson,	 1988;	 van	 den	 Bosch,	
Roos,	&	Gabriel,	1988;	De	Roos	et	al.,	2003).	However,	despite	all	
the	empirical	and	theoretical	evidence	of	the	vast	impacts	of	size‐
dependent	 ontogenetic	 shifts	 and	 stage‐structured	 populations	
on	the	population	dynamics	of	interacting	species,	little	theory	has	
been	developed	on	the	effects	of	the	size‐dependent	ontogenetic	
shifts	and	population	structure	on	the	structure	and	dynamics	of	
ecological	networks	(but	see	Mougi,	2017).	Here,	we	contribute	to	
develop	such	theory	by	expanding	the	Allometric	Trophic	Network	
(ATN;	Yodzis	&	Innes,	1992;	Williams	&	Martinez,	2004b;	Williams,	
Brose,	&	Martinez,	2007)	model	to	incorporate	life‐history	struc‐
ture	 for	 fishes	 (to	 capture	 changes	 in	 body	 size	 across	 different	
ages)	 and	 evaluate	 its	 effect	 on	 the	 structure	 and	 dynamics	 of	
aquatic	food	webs.

The	study	of	ecological	networks	has	recently	achieved	major	
breakthroughs	by	 recognizing	 that	 the	ecological	 functionality	of	
species	can	be	largely	attributed	to	their	body	sizes	(Brose,	Jonsson	
et	al.,	2006;	Otto,	Rall,	&	Brose,	2007).	Specifically,	a	 large	pred‐
ator–prey	body	size	 ratio	appears	 to	be	key	 to	stabilizing	 the	dy‐
namics	of	complex	food	webs	(Brose,	Williams,	&	Martinez,	2006).	
Through	scaling	by	body	size,	ATN	models	have	proven	successful	
in	explaining	the	stability,	structure,	and	functioning	of	ecosystems	
(Brose,	Williams	et	al.,	2006;	Dunne,	2006;	Williams	&	Martinez,	
2000).	Apart	from	model‐based	investigations	on	the	role	of	body	
size	in	food	web	dynamics,	the	theory	has	been	further	supported	
by	Boit,	Martinez,	Williams,	and	Gaedke	(2012)	who	created	a	re‐
markably	accurate	and	empirically	validated	ATN	model	by	 incor‐
porating	body	size	that	explained	30%–40%	of	the	variation	in	the	
seasonal	dynamics	of	the	Lake	Constance	plankton	community.

Within	 the	context	of	 food‐web	dynamics	models	 in	general,	
and	 ATN	models	 in	 particular,	 species	 of	 similar	 body	 size	 have	
been	 traditionally	 lumped	 together	 in	 a	 single	 functional	 group,	
such	 that	 scaling	by	body	size	 is	done	with	 respect	 to	 individual	

body	 size	 across	 the	 species’	 lifespan.	 This	 approach	 stemmed	
from	a	 need	 to	 develop	 simple	models	 to	 address	 generic	 ques‐
tions,	such	as	those	related	to	species	coexistence	(Blondel,	2003).	
However,	 for	some	species,	an	 individual's	body	size	can	change	
by	orders	of	magnitude	throughout	its	 life	(e.g.,	fishes;	Wootton,	
1999).	As	there	are	strong	correlations	between	body	size	and	key	
functional	 traits,	 such	as	metabolic	 rate	 (West,	1999),	 a	 species’	
ecological	 functionality	 is	 likely	 to	 change	 substantially	 from	 ju‐
venile	to	adult	life‐history	stages.	Thus,	incorporation	of	the	life‐
history	structure	of	species	that	experience	substantial	changes	in	
their	body	size	across	their	lifespan	is	likely	to	increase	the	struc‐
tural	realism	of	food	webs	and	yield	more	biologically	realistic	pre‐
dictions	about	their	dynamics.

Fishes	constitute	ideal	study	species	because	of	their	indetermi‐
nate	growth,	which	causes	them	to	shift	through	several	ecological	
niches	as	they	grow	(Wootton,	1999).	Their	body	size,	diet,	exposure	
to	predation,	and	general	ecological	functionality	changes	tremen‐
dously	from	larvae	through	adult	stages,	resulting	 in	many	species	
transitioning	from	the	bottom	of	the	food	chain	to	the	position	of	
apex	predator.	For	example,	during	 their	 lives,	Atlantic	cod	 (Gadus 
morhua)	 have	 the	 potential	 to	 change	 from	 being	 planktivores	 (as	
<10	mm,	1–2	g	larvae)	to	apex	carnivores	longer	than	1	m	in	length	
and	tens	of	kg	 in	mass	within	5–7	years	 (Brander,	1994;	Hutchings	
&	 Rangeley,	 2011).	 Another	 aspect	 that	makes	 fishes	 and	 aquatic	
food	webs	particularly	 interesting	systems	for	studying	the	role	of	
life‐history	structures	in	food	web	dynamics	is	the	fact	that	contem‐
porary	life‐history	trends	toward	smaller	body	sizes	and	earlier	ma‐
turity	have	been	documented	in	many	fish	species	across	the	world	
(Audzijonyte,	Kuparinen,	Gorton,	&	Fulton,	2013;	Hutchings	&	Baum,	
2005).	Understanding	the	impacts	that	such	life‐history	changes	can	
have	on	interacting	species,	entire	ecosystems	and	sustainable	fish‐
eries	management	warrants	for	knowledge	about	the	role	of	fish	life	
histories	in	food	web	dynamics.

The	present	study	has	two	primary	objectives.	The	first	 is	 to	
expand	the	ATN	modeling	approach	by	incorporating	simple	life‐
history	structure	for	the	fishes	in	a	generic	aquatic	ecosystem.	The	
second	objective	is	to	evaluate	the	effect	of	life‐history	structure	
on	food	web	dynamics.	This	second	objective	 includes	disentan‐
gling	the	effect	of	increasing	food‐web	complexity	by	adding	nodes	
representing	 the	 previously	 ignored	 life‐history	 stages	 from	 the	
effect	of	life‐history	dynamics,	that	is,	aging	from	one	life‐history	
stage	to	another	and	reproduction	(linkages	between	life‐history	
stages).	To	this	end,	we	use	the	generic	allometrically	scaled	niche	
model	(Williams	&	Martinez,	2000)	adapted	to	aquatic	food	webs	
(Martinez	 et	 al.,	 2012)	 to	 randomly	 generate	 scenarios	 for	 food	
webs,	within	which	we	 introduce	 life‐history	 structure	 to	 fishes	
and	 split	 the	 species‐level	 diets	 among	 the	 life‐history	 stages.	
Through	 systematic	 simulations,	we	 disentangle	 the	 relative	 im‐
pacts	of	 life‐history	dynamics	 from	adding	 life‐history	 stages	by	
analyzing	three	types	of	models:	 (a)	 “original”	ATN	model	not	 in‐
cluding	life‐history	stages	within	species,	(b)	ATN	model	with	“un‐
linked”	 life‐history	stages	 that	 incorporates	new	nodes	but	does	
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not	connect	them	via	growth	and	reproduction,	and	(c)	ATN	model	
incorporating	life‐history	stages	that	are	linked	together	as	a	spe‐
cies	through	aging	(hereafter	referred	to	as	“growth”)	and	repro‐
duction.	These	analyses	will	provide	broadly	generalizable	insights	
into	the	ways	in	which	fish	life	histories	affect	their	food	webs.

2  | MATERIAL S AND METHODS

The	theory	we	develop	here	consists	of	generating	the	topology	
of	life‐history	structured	food	webs	which	determines	the	trophic	
interactions	 among	 nodes	 (i.e.,	 trophic	 species	 and	 fish	 life‐his‐
tory	stages)	and	coupling	the	population	dynamics	determined	by	
those	trophic	interactions	with	life‐history	dynamics	(fish	growth	
and	reproduction).	We	first	describe	how	we	generate	the	topol‐
ogy	of	the	food	webs	and	then	how	we	link	the	population	dynam‐
ics	of	the	species	and	fish	life‐history	stages	with	the	life‐history	
dynamics.

2.1 | Generation of life‐history structured 
food webs

We	expand	the	niche	model	(Williams	&	Martinez,	2000)	to	generate	
networks	 that	 incorporate	 life‐history	structures.	The	niche	model	
uses	as	inputs	the	number	of	species	and	connectance	(i.e.,	fraction	
of	potential	feeding	interactions	that	are	realized)	and	randomly	as‐
signs	a	“niche	value”	(ni)	to	each	species	from	a	uniform	distribution.	
This	value	gives	species	a	hierarchical	ranking	where	they	fall	relative	
to	each	other,	which	we	interpret	as	relative	body	size.	Species	with	
a	low	niche	value	are	generally	autotrophs,	while	species	with	high	
niche	values	are	more	likely	to	be	carnivores.	Prey	items	are	assigned	
to	each	species	from	a	range	centered	at	a	lower	niche	value,	where	
a	larger	range	indicates	a	more	varied	diet.	Range	size	(ri)	is	chosen	by	
first	drawing	a	random	variable,	xi,	from	a	beta	distribution	that	has	
been	weighted	to	reflect	the	desired	connectance	(C)	of	the	web	(see	
Supporting	information	Appendix		for	the	derivation	of	β):

A	 less	connected	web	will	have	more	specialists,	such	that	 the	
distribution	will	skew	more	toward	smaller	range	values.	The	range	
width	for	each	species	 is	 then	scaled	to	fall	 in	 (0,	ni)	so	that	 it	will	
never	exceed	the	niche	index,	which	is	obtained	by:

The	predation	range	is	then	defined	as	
[
ci−

ri

2
,ci+

ri

2

]
	Thus,	we	can	

center	their	predation	range	using	a	uniform	distribution,	(ci∈U
(
ri

2
,ni

)
),	

where Ci is	the	center	of	the	species	dietary	range.	Species	are	consid‐
ered	 nondiscriminatory	 beyond	 this,	 as	 in	 they	 consume	 all	 species	
within	their	dietary	range.	We	discarded	webs	failing	to	satisfy	certain	
requirements	of	biological	realism,	including	the	conditions	that	(a)	all	
species	are	connected	to	the	web	either	by	predating	or	being	predated	
on	by	other	species;	(b)	every	species	has	an	autotroph	in	its	food	chain;	
(c)	the	web	is	connected,	which	ensures	that	our	food	web	is	not	com‐
posed	of	several	smaller,	distinct	food	webs.	We	also	confirm	that	(d)	
the	generated	web	exhibits	our	desired	level	of	connectance.

Once	a	food	web	has	been	created,	the	species	are	identified	
as	 autotrophs,	 invertebrates,	 or	 fishes	 (Yodzis	 &	 Innes,	 1992).	
Autotrophs	are	identified	by	looking	for	the	species	that	have	no	
prey	(i.e.,	basal	species).	Invertebrates	and	fishes	are	identified	de‐
pending	on	the	species	trophic	position	under	the	assumption	that	
herbivores	are	more	likely	to	be	invertebrates,	and	carnivores	are	
more	likely	to	be	fishes	(Romanuk,	Hayward,	&	Hutchings,	2011).	
In	particular,	we	assume	 that	 the	 three	most	apex	predators	are	
fish	and	that	all	the	remaining	species	that	are	not	autotrophs	are	
invertebrates	 (following	 Tonin,	 2011	 and	Martinez	 et	 al.,	 2012).	
Trophic	 position	 of	 each	 species	 is	 calculated	 using	 the	 short‐
weighted	trophic	position	(T;	Williams	&	Martinez,	2000,	2004a),	
which	 is	 the	 average	 of	 two	 other	 trophic	 position	metrics:	 the	
shortest	trophic	level	to	a	basal	species	(T1)	and	the	prey‐averaged	

(1)
x∼beta(�,�)with

� =1

� =
1−2C

2C

(2)ri=xini

TA B L E  1  Model	parameters

Variable Description Value Unit References

S Number	of	species	in	original	niche	web 30 ‐ Martinez	et	al.	(2012)

C Connectance 0.15 ‐ Martinez	et	al.	(2012)

K Autotroph	carrying	capacity 540 µgC/L Boit	et	al.	(2012);	Martinez	
et	al.	(2012)

r Autotroph	intrinsic	growth	rate r ~ N	(09,0.2) 
r∈

(
0.6,1.2

) d−1

yij Maximum	consumption	rate	of	predator	i	for	prey	j 10 d−1 Boit	et	al.	(2012)

eij Assimilation	efficiency	for	i	eating	j
{

0.45, j is an autotroph

0.85, otherwise

‐ Brose,	Williams	et	al.	(2006)

h Hill	Exponent 1.2 ‐

fa Fraction	of	assimilated	carbon	that	contributes	to	
growth

0.4 Boit	et	al.	(2012)

fm Fraction	of	assimilated	carbon	lost	for	maintenance 0.1 Boit	et	al.	(2012)



3654  |     BLAND et AL.

trophic	position	(T2;	see	Supporting	information	Appendix		for	its	
calculation):

The	shortest	trophic	level	(T1)	is	defined	as	the	shortest	path	to	
a	basal	species	plus	1:

where aij	is	a	binary	element	from	the	species	connection	matrix.
Prey‐averaged	trophic	position	for	species	i	is	1	plus	the	average	

trophic	position	of	all	its	prey:

where Pi	is	the	number	of	prey	that	species	i	consumes.	We	de‐
scribe	a	computational	shortcut	to	calculate	T2i	 for	each	species	 in	
the	Supporting	 information	Appendix	 .	The	 short‐weighted	 trophic	
position	has	been	shown	to	be	a	better	estimator	of	trophic	position	
than	T1 or T2	individually	(Carscallen,	Vandenberg,	Lawson,	Martinez,	
&	Romanuk,	2012;	Williams	&	Martinez,	2004a).	Note	that	autotro‐
phs	(basal	species)	are	assigned	a	trophic	position	of	1	in	every	trophic	
position	metric	which,	is	reflected	in	Equations	(3)	and	(4).

2.2 | Coupling life‐history and population dynamics 
in food webs

The	 first	 step	 to	 define	 the	 population	 dynamics	 of	 each	 species	
within	the	generated	food	webs	is	to	determine	how	efficient	species	
are	at	processing	their	food.	We	expand	the	methods	used	by	Brose,	
Williams	et	al.	(2006)	to	calculate	species	consumption	rates	based	on	
species	metabolic	rates	that	are	approximated	by	relative	body	size.	
The	body	sizes	(accounted	as	body	masses)	of	all	species	within	the	
food	web	are	related	to	the	basal	species.	Therefore,	the	relative	body	
masses	of	all	 the	basal	species	are	assigned	a	value	of	1.	Then,	 the	
relative	body	masses	of	the	invertebrates	and	fishes	are	calculated	as‐
suming	a	constant	body	mass	ratio	between	consumers	and	resources	
(the	so‐called	allometric	 ratio,	Z),	 set	 to	Z	=	100	 (Brose,	Williams	et	
al.,	2006).	Thus,	 the	body	mass	 is	a	simple	function	of	trophic	 level	
Mass	=	ZT−1,	where	1	is	subtracted	from	the	trophic	level	to	exclude	
basal	species	from	the	calculation	(Brose,	Williams	et	al.,	2006).

Fish	 body	 mass	 is	 of	 importance	 not	 only	 because	 of	 dietary	
shifts	but	because	metabolic	rate	per	unit	mass	decreases	with	size.	A	
school	of	large	fish	is	more	efficient	at	processing	food	than	a	school	
of	 small	 fish	with	 the	 same	biomass.	 In	 theory,	 this	means	 that	 an	
ecosystem	would	be	able	 to	support	a	 larger	biomass	of	 fish	 if	 the	
fish	were	 larger.	Kleiber's	 Law	 states	 that	metabolic	 rates	 increase	
at	a	slower	rate	than	body	mass	 (Kleiber,	1975).	While	this	 law	has	
been	revised	and	modified	many	times,	the	underlying	principle	has	
held	true	(Ballesteros,	Martínez,	Luque,	Lacasa,	&	Moya,	2014;	Smil,	
2000).	For	instance,	a	predator	may	be	100	times	larger	than	its	prey,	

but	its	metabolic	rate	is	only	75	times	that	of	its	prey.	Yodzis	and	Innes	
(1992)	took	advantage	of	this	relationship	to	approximate	how	effi‐
cient	the	hypothetical	organisms	of	this	model	convert	energy	from	
their	food	sources	(Brose,	2008;	Williams	et	al.,	2007).	Their	calcu‐
lations	resulted	in	metabolic	rate	(xi)	per	unit	of	body	weight	(M)	as:

We	use	a	deterministic	algorithm	to	find	the	weight	for	new	life‐
history	stages.	From	their	weight,	we	can	approximate	 their	niche	
index	so	that	we	can	fit	them	into	the	food	web	and	their	metabolic	
rates.	We	assign	weights	to	three	new,	younger	 life‐history	stages	

(3)Ti=
T1i+T2i

2
,∀speciesi.

(4)
T1i =1+ min

j∈{jaij=1}
T1j

(5)

T2i =1+
∑
j∈S

aij
T2j

Pi

=1+
∑

j∈Sprey,i

T2j

Pi
.

(6)xi=

⎧
⎪⎪⎨⎪⎪⎩

0, forautotrophs

0.314M−0.15, for invertebrates

0.88M−0.11, forfish

F I G U R E  1  The	half	saturation	constants	(B0ij)	and	competition	
coefficients	(cij)	for	predator	i	eating	prey	j.	Figure	and	constants	are	
reproduced	from	Tonin	(2011)	and	Martinez	et	al.	(2012)
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(t	=	0,1,2)	 with	 a	 von	 Bertalanffy	 isometric	 growth	 curve	 (Pauly,	
1980).	Adults	retain	the	original	weight	(Wmax)	we	assigned	to	each	
species,	and	we	assume	that	 is	 the	 life‐history	stage	 (tmax	=	3)	and	
weight	 of	 maximum	 yield	 per	 recruit.	 The	 curvature	 of	 the	 von	
Bertalanffy	curve	is	set	as	K=

3

tmax

	(Froese	&	Binohlan,	2000),	and	we	

assume	the	adults	reach	Wmax

Winf

=0.9	of	their	asymptotic	weight.

The	population	dynamics	of	each	species	and	life‐history	stages	
within	 the	 food	 web	 can	 be	 described	 with	 ordinary	 differential	
equations	 (ODEs),	 which	we	 use	 to	 simulate	 the	 biomass	 of	 each	
species.	We	modified	the	ATN	model	(Williams	et	al.,	2007;	Williams	
&	Martinez,	2004b)	to	accommodate	life‐history	structure.	The	fol‐
lowing	equations	from	the	ATN	model	show	the	growth	for	autotro‐
phs	 (Equation	 (8)	 and	 consumers	 (Equation	 (9)	 during	 the	 growing	
season:

where ri	 is	the	 intrinsic	growth	rate	for	autotroph	 i,	K	 is	the	
carrying	capacity,	xi	is	the	metabolic	rate	(Equation	6),	yij	is	pred‐
ator	 i's	maximum	consumption	 rate	 for	 prey	 j,	eij	 is	 the	 assimi‐
lation	 efficiency	 for	 i	 eating	 j,	 fm	 is	 the	 fraction	 of	 assimilated	
carbon	lost	for	maintenance,	and	fa	is	the	fraction	of	assimilated	
carbon	 that	 contributes	 to	 growth.	 Fij	 is	 the	 normalized	 func‐
tional	response:

where �ij=1∕Pi	is	the	relative	preference	of	species	i	on	its	prey	
j,	Pi	is	the	total	number	of	species	i's	prey,	h	is	the	Hill	exponent,	B0kj 
is	the	half	saturation	density	for	k	eating	 j,	ckj	is	the	predator	inter‐
ference	of	species	k	eating	 j,	and	pik	 is	the	fraction	of	 i's	resources	
that	it	shares	in	common	with	k.	The	values	for	these	parameters	are	
described	in	Table	1	and	Figure	1.

At	 the	 end	of	 each	 growth	 season,	 the	ODEs	 (Equations	8	 and	
9	are	paused	so	that	fish	may	grow	and	reproduce.	The	biomass	(Bi)	
shifts	 between	 life‐history	 stages	 according	 to	 the	 following	 Leslie	
matrix:

Essentially,	 this	means	 that	90%	of	biomass	grows	 to	 the	next	
life‐history	 stage,	 while	 10%	 remains	 in	 the	 previous	 stage.	 This	
choice	was	made	to	allow	realistic	phenotypic	variability	within	the	
species,	that	is,	most	individuals	grow	from	one	age‐specific	average	
size	 to	the	next	age‐specific	average	size	but	a	 few	 individuals	 re‐
main	at	the	lower	developmental	stage	(size)	than	expected	based	on	
their	age.	The	highest	(4th)	life‐history	stage	reproduces	and	90%	of	
its	biomass	is	transferred	to	the	first	life‐history	stage	as	newborns.	
Notably,	 our	 formulation	 of	 the	 Leslie	matrix	 allows	 the	model	 to	
be	applied	to	a	broad	range	of	ontogenetic	developments,	not	only	
the	most	obvious	application,	which	is	aging	from	one	age‐class	to	
another	(100%	biomass	transfer	from	one	stage	to	another).

2.3 | Simulation design and analyses

We	 investigated	 the	model	 through	 systematic	 simulations	 to	 de‐
termine	 how	 inclusion	 of	 fish	 life‐history	 stages	 affects	 the	 food	
web,	 its	structure,	dynamics,	and	stability.	The	addition	of	 life‐his‐
tory	structure	for	fishes	changes	multiple	features	of	the	food	web.	
Introduction	 of	 life‐history	 stages	 involves	 the	 addition	 of	 new	
nodes	and	 feeding	 links	 to	 the	web;	 life‐history	dynamics	 (growth	
from	one	life‐history	stage	to	the	next)	alters	the	ways	in	which	bio‐
mass	is	transferred	within	the	food	web.

To	tease	apart	the	relative	roles	of	these	components	 involved	
with	 the	 life‐history	 structures,	 we	 run	 3	 sets	 of	 simulations	
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food	web	simulation.	Each	species	has	four	life	stages
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(hereafter	 denoted	 as	 “model	 types”).	 The	 first	 model	 type	 com‐
prises	 an	 “original”	 or	 baseline	web	 that	 does	 not	 include	 life‐his‐
tory	 stages	within	 species.	 That	 is,	 each	 species,	 including	 fish,	 is	
described	through	one	single	node	in	the	food	web.	Model	type	2	in‐
corporates	unlinked	life‐history	stages	within	each	fish	species.	That	
is,	each	fish	species	is	partitioned	into	life‐history	stages,	but	these	
stages	are	not	linked	with	one	another	through	Leslie	matrices.	The	
new	fish	life	stages	are	independent	of	each	other,	and	biomass	does	
not	 transfer	 through	 aging	 from	one	 life‐history	 stage	 to	 another.	
In	the	ATN	modeling	sense,	they	can	be	considered	as	new	species.	
While	this	model	type	is	not	biologically	realistic,	it	is	crucial	for	dis‐
entangling	the	effects	of	adding	new	nodes	to	the	food	web	from	the	
effect	of	life‐history	dynamics.	Model	type	3	is	an	ATN	model	that	
incorporates	life‐history	stages	that	are	linked	to	one	another	within	
each	species	using	Equation	(11).

To	 compare	 the	 three	 model	 types,	 we	 begin	 the	 simulations	
(500	for	each	model	type)	with	the	same	initial	conditions.	In	each	

simulation,	the	food	web	is	allowed	to	stabilize	for	200	years,	after	
which	the	food	web	is	either	accepted	or	rejected,	based	on	the	rules	
detailed	below.	The	dynamics	of	the	food	webs	are	then	investigated	
across	another	100‐year	period.	The	burn‐in	 time	and	 the	 investi‐
gated	simulation	period	were	chosen	such	that	the	node	biomasses	
reached	dynamic	equilibriums	and	to	allow	sufficient	temporal	rep‐
lication	of	the	food	web	dynamics	to	capture	short‐	and	long‐term	
oscillations.	Each	year	consists	of	100	simulation	time	steps,	repre‐
senting	a	100‐day	growing	season.	Because	our	objective	is	to	study	
the	 impact	of	 fish	 life‐history	stages,	we	choose	among	 the	stabi‐
lized	food	webs	only	those	that	contain	at	least	one	fish	species	or	at	
least	one	fish	life‐history	stage	(in	model	type	2).	Life	stages	become	
extinct	if	their	biomass	is	lower	than	10−6 μg	C/L,	although	fish	spe‐
cies	can	be	revitalized	through	aging,	as	biomass	shifts	from	younger	
to	older	age	classes.	Thus,	the	final	analyzed	food	webs	contained	
from	one	to	three	fish	species	or,	in	the	case	of	model	2,	at	least	one	
fish	life‐history	stage.

F I G U R E  3  Boxplots	of	the	coefficient	
of	variation	(CV)	of	the	(a)	total	ecosystem	
biomass	and	(b)	total	fish	biomass	for	each	
model	type	(CV's	greater	than	100	are	not	
shown	for	clarity)
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We	initially	conducted	a	preliminary	analysis	on	the	probability	
of	 fish	 extinctions	 for	 each	model	 type.	 For	 this	 preliminary	 anal‐
ysis,	we	discarded	only	those	food	webs	for	which	all	 fish	became	
extinct.	The	remaining	analyses	were	subjected	to	a	more	stringent	
constraint;	 at	 least	 one	 fish	 species	must	 have	 persisted	 in	 every	
simulation	 run	 for	a	given	model	 type	 for	 the	web	to	be	 included.	
The	robustness	of	the	results	to	the	choice	of	Z	=	100	was	explored	
by	replicating	the	analyses	with	the	values	of	Z	generated	randomly	
from	 lognormal	distributions.	The	main	difference	was	seen	 in	the	
increased	frequency	of	stable	food	webs	when	Z	=	100,	as	compared	
to	 the	scenario,	where	Z	was	 randomly	drawn	from	the	 lognormal	
distribution	 (results	 not	 shown).	We	used	R	 version	3.3.2	 (R	Core	
Team,	2016)	for	all	analyses,	and	the	R	library	tidyverse	(Wickham,	
2017).	We	run	the	dynamic	model	with	MATLAB	version	2016	(The	
MathWorks).

3  | RESULTS

One	 means	 of	 assessing	 the	 biological	 realism	 of	 the	 model	 was	
to	 examine	 the	 degree	 to	 which	 the	 model	 produced	 biologically	
realistic	 results.	 In	 this	 regard,	 our	 model	 produced	 realistic	 von	
Bertalanffy	 growth	 curves:	 mass	 is	 incomparable	 across	 simula‐
tions,	but	fish	species	within	a	single	simulation	tended	to	be	in	the	
same	size	range,	as	the	weight	ranges	for	fish	species	often	overlap	
(Figure	 2).	 The	 youngest	 life	 stage	 of	 the	 largest	 fish	 species	was	
smaller	than	the	oldest	life	stage	of	the	smallest	fish	in	75.8%	per‐
cent	of	the	simulations.

A	key	criterion	for	the	initial	part	of	the	analysis	was	to	have	the	
generic	model	achieve	stability	in	overall	fish	biomass.	Most	(81.0%)	
of	 the	simulations	met	 this	criterion,	 insofar	as	 fish	biomass	stabi‐
lized	in	at	 least	one	of	the	experiments.	A	secondary	criterion	was	
that	at	 least	one	 fish	species	must	achieve	stability	 in	each	of	 the	
specific	models;	24.4%	of	the	simulations	met	this	second	criterion.	
Given	 that	most	 simulations	stabilized	within	200	years,	 the	 initial	
200	years	 were	 discarded	 and	 the	 remaining	 100	years	 used	 for	
analysis.

Neither	the	CV	for	total	ecosystem	biomass	or	total	fish	biomass	
(Figure	3)	differed	between	the	three	model	types.	This	result	is	sup‐
ported	by	the	frequency	of	the	consecutive	number	of	surviving	fish	
species	in	each	model	(Figure	4).	The	model	types	that	included	new	
life	stages	were	more	likely	to	have	at	least	one	fish	species	survive,	
as	well	as	having	every	fish	species	survive.	There	does	not	appear	
to	be	a	difference	between	the	linked	model	(model	type	3)	and	un‐
linked	model	 (model	 type	2).	The	unlinked	model	 seems	 to	have	a	
more	intermediate	outcome,	while	linking	the	life	histories	seems	to	
steepen	the	probability	of	consecutive	extinctions.

Simulation	 outputs	 are	 illustrated	 for	 the	 fully	 linked	 model	
(model	 type	 3)	 (Figure	 5;	 but	 see	 Supporting	 information	 figures		
and		in	the	electronic	supporting	materials	for	the	analogous	figures	
for	model	1	and	model	2).	There	is	no	correlation	between	fish	size	
and	mean	 total	 ecosystem	biomass	 (t	=	0.61,	df =	1980,	p = 0.544; 
Figure	 5a)	 or	 mean	 fish	 biomass	 (t	=	1.64,	 df =	1980,	 p = 0.102; 

Figure	 5b).	 However,	 larger	 fish	 species	 are	 correlated	 with	 a	
higher	CV	for	both	the	total	ecosystem	biomass	(t	=	5.67,	df =	1980,	
p	<	0.001;	Figure	5c),	and	the	CV	of	fish	biomass	(t	=	3.13,	df =	1980,	
p	=	0.002;	 Figure	 5d).	 Normality	 for	 each	 variable	 was	 confirmed	
using	qqplots.

4  | DISCUSSION

The	present	study	opens	new	avenues	of	research	in	food	web	ecol‐
ogy	by	proposing	a	general	framework	to	integrate	life	histories	into	
the	 analysis	 of	 complex	 food	 webs.	 This	 framework	 extends	 the	
existing	 allometric	 trophic	 network	 (ATN)	 theory	 by	 incorporating	
life‐history	 structure.	 Using	Williams	 and	Martinez's	 (2000)	 niche	
model	and	the	bioenergetics	model	(Yodzis	&	Innes,	1992)	as	starting	
points,	we	 created	 life‐history	 structured	ATN	models.	 Firstly,	we	
added	additional	 life‐history	stages,	that	 is	nodes,	to	each	species.	
Secondly,	we	linked	these	stages	together,	such	that	juveniles	grow	
into	 adults	 and	 then	 produce	 offspring.	 Through	 these	 additional	
biological	mechanisms,	we	are	able	to	evaluate	the	effect	of	life‐his‐
tory	dynamics	on	the	function	and	stability	of	food	webs.	While	we	
chose	aquatic	ecosystems,	where	fish	species	exhibit	the	life‐history	
dynamics,	our	 theory	can	easily	accommodate	other	 types	of	 sys‐
tems	 and	 species	 exhibiting	 the	 life‐history	 dynamics	 through	 the	

F I G U R E  4  The	frequency	of	simulations	with	0,	1,	2,	or	3	
surviving	fish	species	in	each	model.	The	different	shapes	indicate	
each	model	type:	(1)	the	original	ATN	model	(triangle),	(2)	extended	
unlinked	model	(square),	and	(3)	the	linked	model	(circle)

0.0

0.2

0.4

0.6

3210

Number of surviving fish species

Fr
eq

ue
nc

y 
of

 s
im

ul
at

io
ns

Model
1
2
3



3658  |     BLAND et AL.

broadly	applicable	Leslie	matrix.	Furthermore,	our	framework	offers	
a	 systematic	 approach	 for	 disentangling	 the	 effects	 of	 increasing	
life‐history	complexity	in	food‐wed	models.

Here,	we	find	that	the	addition	of	 life‐history	structure	com‐
plexity	significantly	influences	model	outcomes,	but	that	the	link‐
ing	of	the	stages	within	each	fish	species	through	a	Leslie	matrix	
alters	the	output	of	the	unlinked	model	only	marginally.	For	exam‐
ple,	 the	addition	of	 life‐history	stages	reduces	variability	 in	total	
ecosystem	biomass,	which	we	interpret	as	reflecting	increased	sta‐
bility.	Given	that	new,	unlinked	life‐history	stages	can	be	treated	
as	new	individual	species,	this	finding	is	essentially	equivalent	to	
the	conclusion	that	ecosystems	which	support	greater	numbers	of	
fish	species	are	more	stable	than	ecosystems	that	support	fewer	
fish	species.

One	potential	pathway	leading	to	the	increased	stability	is	via	link‐
ing	multiple	size‐varying	 life‐history	stages,	which	makes	each	spe‐
cies	more	dependent	on	a	broader	range	of	prey.	In	a	sense,	we	are	
creating	a	scenario	for	increased	species	generalism	by	linking	all	the	
life	stages	and	by	making	them	less	dependent	on	any	one	particular	

prey.	On	the	other	hand,	we	might	also	increase	the	extinction	prob‐
ability	of	a	predator	species	if	any	one	of	its	life‐history	stages	goes	
extinct.	These	nonviable	life‐history	stages	may	be	partly	responsible	
for	why	we	failed	to	find	a	strong	effect	of	linking	the	life	stages	to‐
gether.	Perhaps,	if	we	ensured	life‐history	stage	viability	by	assigning	
broader	diets	to	each	stage,	we	might	have	observed	a	larger	effect	of	
stage	linkage.	The	linking	of	life‐history	stages	might	also	alleviate	the	
predator‐induced	mortality	of	certain	prey	species.	If	a	fish	predator	is	
comprised	of	a	wide	variation	of	cohort	sizes	in	its	life‐history	stages,	
the	prey	of	any	given	stage	may	go	through	phases	of	intense	preda‐
tion	when	it	is	targeted	by	the	largest	cohort	followed	by	a	recovery	
period	when	the	largest	cohort	is	no	longer	preying	on	it.

The	 effects	 of	 increasing	 life‐history	 complexity	 on	 ecosys‐
tems	were	recently	explored	by	Mougi	(2017),	who	evaluated	the	
effect	of	two	life‐history	stages	on	food	webs	that	were	randomly	
generated	and	whose	dynamics	were	described	by	Lotka–Volterra	
population	dynamics	with	linear	functional	responses.	The	author	
found	 that	 inclusion	 of	 two	 stages	 (rather	 than	 only	 one	 stage	
per	 species)	 increased	 the	 probability	 of	 persistence	 of	 complex	

F I G U R E  5  Mean	and	CV	of	biomass	
as	a	function	of	the	asymptotic	individual	
body	mass	for	each	surviving	fish	
species.	Panels	(a)	and	(b)	show	the	mean	
ecosystem	biomass	and	mean	biomass	of	
the	1982	fish	species,	respectively.	Panels	
(c)	and	(d)	show	their	respective	CV's.	The	
blue	lines	represent	linear	regressions.	
These	are	significant	for	the	CV	of	the	
total	ecosystem	biomass	(panel	c;	t	=	5.67,	
df =	1980,	p	<	0.001)	and	the	CV	of	the	
fish	biomass	(panel	d;	t	=	3.13,	df =	1980,	
p	=	0.002).	Outliers	with	a	mass	larger	
than	1010	or	CV	greater	than	800	were	
removed	from	the	analysis
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food	webs,	while	 it	 decreased	persistence	 for	 simpler	 food	webs	
(Mougi,	2017).	Based	on	the	findings	of	the	present	study,	we	hy‐
pothesize	that	most	of	the	effects	that	Mougi	(2017)	documented	
when	adding	 life‐history	structure	might	be	attributable	to	an	 in‐
crease	in	food	web	size	resulting	from	the	addition	of	nonrandom	
nodes,	rather	than	any	intrinsic	effect	of	life‐history	structure.	That	
said,	our	methods	were	quite	different.	The	structure	of	our	food	
webs	was	randomly	generated	by	the	niche	model	which	has	been	
demonstrated	to	generate	realistic	structures	when	compared	with	
empirical	 food	webs	 (Williams	&	Martinez,	 2000).	Moreover,	 the	
parameters	 used	 in	 our	 population	 dynamics	 come	 from	 allome‐
tric	relations	well	supported	by	empirical	studies	(Brown,	Gillooly,	
Allen,	 Savage,	 &	West,	 2004;	 Enquist,	West,	 Charnov,	 &	 Brown,	
1999).	 Additionally,	 the	 functional	 responses	 used	 in	 our	 model	
incorporate	 consumption	 saturation	 that	 has	 been	 demonstrated	
to	be	much	more	biologically	meaningful	than	linear	functional	re‐
sponses	 (Holling,	1959).	Therefore,	we	 think	our	 theory	 is	 a	 sub‐
stantial	 advance	 after	 the	 contribution	 of	 Mougi's	 (2017)	 work	
given	 that	 our	 theory	 is	 better	 supported	empirically.	 Finally,	we	
applied	an	annual	Leslie	matrix	to	model	growth	from	one	life	stage	
to	the	next,	while	Mougi	(2017)	incorporated	a	continuous	growth	
model	 directly	 into	 the	 differential	 equations.	We	 used	 four	 life	
stages	for	three	species,	while	he	used	two	life	stages	for	various	
proportions	of	the	community.

Future	research	should	deal	with	some	of	the	limitations	of	the	
theory	 we	 present	 here.	 Our	 application	 of	 the	 von	 Bertalanffy	
growth	model	 lends	 increased	biological	realism	in	terms	of	body	
mass	 and	 consequently	 metabolic	 rate.	 However,	 the	 species	
all	 have	 identical	 life	 histories	 (exactly	 four	 life	 stages,	 identical	
age‐specific	 probabilities	 of	 maturity,	 and	 the	 same	 age‐specific	
fecundity).	 It	might	be	worth	exploring	 alternative	 life	 spans	 and	
life‐history	strategies	in	future	model	formulations.	Moreover,	our	
results	suggest	that	it	would	be	instructive	to	increase	life‐history	
complexity	 in	 the	models	 that	 explore	 the	 impacts	 of	 fishing	 on	
the	target	ecosystems	(e.g.,	Kuparinen,	Boit,	Valdovinos,	Lassaux,	&	
Martinez,	2016).	From	an	ecosystem‐based	management	perspec‐
tive,	 it	would	be	 important	 to	examine	how	size‐selective	 fishing	
mortality,	which	would	differentially	affect	some	species	and	life‐
history	 stages	 more	 than	 others,	 influences	 species	 persistence	
and	ecosystem	functionality.

While	the	focus	of	our	study	was	on	aquatic	food	webs,	several	other	
applied	questions	leveraging	the	relevance	of	life‐history	dynamics	in	
food	webs	and	ecological	networks	in	general	can	benefit	from	the	the‐
ory	developed	here.	Such	applications	of	the	theory	might	include	bio‐
logical	control,	ecosystems	services	such	as	pollination,	and	responses	
of	ecosystems	to	various	types	of	anthropogenic	perturbations.
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