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Highlights
Aquaculture is an increasingly important
component of global food security, and
there is major potential for genetic im-
provement to contribute to sustainable
production.

The high fecundity and external
fertilisation of most aquaculture species
are amenable to the application of ge-
netic improvement technologies, includ-
ing genome editing using CRISPR/Cas9.
Aquaculture is the fastest growing food production sector and is rapidly becom-
ing the primary source of seafood for human diets. Selective breeding programs
are enabling genetic improvement of production traits, such as disease resis-
tance, but progress is limited by the heritability of the trait and generation interval
of the species. New breeding technologies, such as genome editing using
CRISPR/Cas9 have the potential to expedite sustainable genetic improvement
in aquaculture. Genome editing can rapidly introduce favorable changes to the
genome, such as fixing alleles at existing trait loci, creating de novo alleles, or
introducing alleles from other strains or species. The high fecundity and external
fertilization of most aquaculture species can facilitate genome editing for re-
search and application at a scale that is not possible in farmed terrestrial animals.
Disease resistance is a major target trait
for improvement, and CRISPR/Cas9
offers new opportunities to fix existing al-
leles, to perform introgression-by-editing
of alleles from wild populations or related
species, and to create de novo alleles.

Combining in vivo and in vitro screening
approaches has the potential to identify
functional disease resistance alleles for
downstream functional testing and
application.

Using genome editing to achieve 100%
sterility of production animals is a promis-
ing avenue to prevent interbreeding of
escapees with wild stocks.
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The Role of Aquaculture in Food Security
Food security is a major and increasing global challenge, associated with a rapidly growing de-
mand for high-quality animal protein. Competition for land use will present a serious limitation
to the scope for increases in terrestrial crop and animal production [1,2]. Therefore, it is likely
that aquaculture will have a growing role in meeting this rising food and nutrition demand. Fish
production via aquaculture is now approximately equal to capture fishery production for the
first time in history, will be the dominant source of seafood within a few decades [3], and is the
fastest growing food production sector, predicted to grow by 31%over the next 10 years [4]. For-
tunately, development potential is huge, with only ~1% of suitable marine sites currently being
used for aquaculture [5]. Furthermore, aquaculture production is considered efficient in terms
of feed conversation and protein retention compared with most terrestrial livestock [6], and sea-
food is themajor source of long-chain polyunsaturated fatty acids, which are considered essential
for human health [7]. However, relative to many crop and livestock production systems, most
aquaculture is at a formative stage and is typically a high-risk activity. Sustainability can be hin-
dered by an initial lack of control of the reproduction cycles of species, and periodic collapses
due to infectious diseases. Upscaling and improving the reliability of production will require
disruptive innovation in engineering, health, nutrition, and genetic improvement technologies,
the latter being the focus of this review.

Genetic Improvement for Sustainable Aquaculture Production
Domestication and genetic improvement of terrestrial livestock has occurred for several millennia,
with organized breeding programs for most species in place for N50 years. The results have been
striking; for example, selective breeding has led to a threefold increase in efficiency of milk pro-
duction in cows, with similar gains for other target traits [8]. By contrast, relatively little aquaculture
production is underpinned by modern selective breeding programs [9,10]. Most farmed aquatic
species are either still sourced from the wild or in the early stages of domestication, suggesting
that there is substantial standing genetic variation for traits of economic importance. The repro-
ductive biology of aquatic species can be amenable to the application of genetics and breeding
technologies, enabling high selection intensity and, therefore, genetic gain. In part, this is due
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Glossary
Broodstock: group of sexually mature
fish used for selective breeding.
CRISPR/Cas9: CRISPR stands for
‘clustered regularly interspaced short
palindromic repeats’ and Cas9 stands
for ‘CRISPR-associated protein 9’.
CRISPR sequences together with the
Cas9 enzyme can be used to make
targeted changes to a genome.
Genomic selection: use of genome-
wide SNPs to predict breeding values of
selection candidates in a selective
breeding program and to help inform
which individuals to select for breeding.
Introgression: targeted transfer of a
favorable allele from a donor population
(e.g., a wild strain or species) to a
recipient population (e.g., a breeding
nucleus) using backcrossing and
selection, with the target of fixing the
allele in the recipient population with as
little as possible of the genome of the
donor included.
Introgression-by-editing: achieving
the goal of introgression but using
genome editing to change the
target allele in the recipient population to
correspond to the sequence of the allele
in the donor population.
Lentivirus vector: method of delivery
of CRISPR/Cas9 into cells that is
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to the near-universal high fecundity of aquatic species, and the resulting large nuclear families,
which can facilitate extensive collection of phenotypic records in close relatives (including full
siblings) of selection candidates in breeding programs. The reproductive output from genetically
improved broodstock (see Glossary) together with ease of transport of eggs and juveniles, also
means widespread dissemination of improved stocks can have a rapid impact on production.
Furthermore, with the development of high-density SNP arrays and routine genotyping by
sequencing [11], genomic selection has become the state-of-the-art in several globally impor-
tant aquaculture sectors, offering higher selection accuracies than selection based on phenotypic
and pedigree records alone [12,13]. However, genetic progress in selective breeding is limited by
the heritability of the target traits, the generation interval of the species, and the need to target
multiple traits in the breeding goal. In addition, advanced breeding programs are typically closed
systems, and are limited to the standing genetic variation in the broodstock (typically sourced
from a limited sample of wild populations), and new variation that arises from de novomutations.
Genome-editing technologies, such asCRISPR/Cas9 (Box 1), offer new solutions and opportu-
nities in each of these areas.

Current Status of Genome Editing in Aquaculture Species
Genome editing using CRISPR/Cas9 was recently successfully applied in vivo and/or in cell
lines of several major aquaculture species of Salmonidae (Atlantic salmon, Salmo salar and
rainbow trout,Oncorhynchusmykiss), Cyprinidae (Rohu, grass, and common carp, Labeo rohita,
Ctenopharyngodon idella, and Cyprinus carpio, respectively), Siluridae (channel and southern
catfish, Ictalurus punctatus), as well as Pacific oyster (Crassostrea gigas), Nile tilapia
(Oreochromis niloticus), and gilthead sea bream (Sparus aurata) (Table 1 for details and refer-
ences). One major group of aquatic species where successful CRISPR/Cas9 editing has not
yet been reported is shrimp (Penaeus sp.), which may be partly due to practical limitations, as
discussed briefly below. Most studies have a proof-of-principle focus, have typically followed
particularly amenable to screening
approaches using genome-wide pooled
gRNAs.
Mosaicism: presence of more than
one genotype in one individual.
Mosaicism can arise in CRISPR/Cas9
editing of embryos if editing continues at
different stages of embryonic
development and each edited cell give
rise to a different set of cells (organs or
part of).
Off-target editing: CRISPR/Cas9
cleavage and editing at an unintended
genomic location, often with sequence
similarity to the site targeted by the
gRNA.
Phenotyping: process for measuring
the observable characteristics of
individuals, in this context following the
editing of a target locus.
Polygenic: a trait influenced by many
QTL, eachwith a relatively small effect on
the trait.
Quantitative trait locus (QTL): a
region of the genome that contributes to
genetic variation in a quantitative trait.
SNP array: SNPs are single base-pair
differences in DNA sequence at a
specific region of the genome. The
specific variants (alleles) carried by an

Box 1. Advances in Genome-Editing Technologies: CRISPR/Cas9 as the Game-Changer

In contrast to transgenesis, which involves the transfer of a gene from one organism to another, genome editing allows
specific, targeted, and often minor changes to the genome of the species of interest. Initial progress using transcription
activator-like effector nucleases (TALENs) and zinc finger nucleases (ZFNs) [68,70] has been largely superseded by the
advent of the repurposed CRISPR/Cas9 system [71–73]. The CRISPR/Cas9 system was discovered in bacteria, and
was engineered to enable easy, cheap, and efficient targeted editing of the genome. The system creates a double-strand
break (DSB) at a user-defined locus, enabling imperfect or targeted repair to create alterations to the sequence of the ge-
nomic DNA [74]. The platform functions by combining an endonuclease, the most commonly used enzyme derived from
Streptococcus pyogenes (SpCas9), and an adapter RNA in two parts, the complementary RNA (crRNA) and the
transactivating crRNA (tracrRNA). Once annealed, the crRNA recognizes the target DNA sequence, which requires the
presence of a protospacer adjacent motif (PAM), and the tracrRNA binds the Cas9 protein to enable targeted endonucle-
ase activity [71]. There are then are two primary repair mechanisms, each of which can be used to introduce different types
of edit to the target genome. First, the two adjacent strands of DNA can be repaired through a nonhomologous end-joining
pathway (NHEJ), which is error prone and induces insertion or deletions of a few nucleotides. Second, if a repair template is
present, homology-directed repair (HDR) can be used to insert desired mutations (from a single nucleotide swap to a
whole chromosomal region insertion) [72,75].

Over the past few years, technical developments havemade genome editingmore efficient, and raised new possibilities for
biological discovery. Single guide RNAmolecules (sgRNA) are routinely used instead of the crRNA and tracrRNA duplex to
facilitate synthesis from a polymerase III promoter (U6) [72], which simplifies the process of CRISPR/Cas9 delivery. There
have also been numerous innovations that have enabled improved precision of editing, with lower off-target rates, and
broadening of the range of target sites accessible via alternative Cas9 proteins (reviewed in [76]). Novel extensions of
the CRISPR/Cas9 editing system now allow researchers to achieve gene activation or inhibition, without DSBs by using
a ‘dead’ Cas9 (dCas9) fused to activating (VP64, Rel A, and Rta proteins, known as the VPR system) or inhibiting complex
(dCas9-KRAB) [77–79]. Furthermore, swapping of base pairs (base-editing) fromC to T with a cytidine deaminase [76] and
A to G with an adenine deaminase [80] using the same inactive Cas9 (dCas9) has the potential to target almost two-thirds
of human SNPs [81].
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individual are called a genotype. A SNP
array is a microarray platform that is
used to provide the genotype of an
individual for many thousands of SNPs
dispersed throughout the genome.

Trends in Genetics
CRISPR/Cas9 protocols developed in model organisms, such as zebrafish (Danio rerio) [35], and
have often targeted genes with a clearly observable phenotype to test editing success
(e.g., pigmentation). The standard methodology to induce in vivo mutations in aquaculture spe-
cies is injection of the CRISPR/Cas9 complex into newly fertilized eggs as close as possible to
the one-cell stage of development. Typically, mRNA encoding the Cas9 protein is injected to-
gether with the guide (g)RNA, leading to the high efficiency of editing demonstrated in various
species to date (Table 1); using the Cas9 protein in place of mRNA is also effective [25]. While
most studies have used nonhomologous end joining (NHEJ) to induce mutations, homology-
directed repair (HDR) has been successfully used to insert a template DNA in Rohu carp [30]. Fur-
thermore, successful germline transmission of edits has been reported in several of the studies to
date (Table 1).Mosaicism is common in edited animals, implying that the Cas9-induced cutting
and editing continues past the one-cell stage; this is an issue to tackle with future research (see
Outstanding Questions).

Target production traits for genome-editing studies in aquaculture species to date have included
sterility, growth, and disease resistance. Creating sterile animals for aquaculture is desirable to
prevent introgression with wild stock and to avoid the negative production consequences of
Table 1. Successful Applications of CRISPR/Cas9 Genome Editing To Date in Aquaculture Species

Species Target genea Trait of interest Notable features Refs

Atlantic salmon, Salmo salar tyr/slc45a2 Pigmentation [14]

dnd Sterility [15]

elov-2 Omega-3 metabolism [16]

Tilapia, Oreochromis niloticus dmrt1/nanaos2-3/foxl2 Reproduction Germline transmission [17]

gsdf Reproduction [18]

aldh1a2/cyp26a1 Reproduction [19]

sf-1 Reproduction Germline transmission [20]

dmrt6 Reproduction [21]

amhy Reproduction [22]

wt1a/wt1b Reproduction [23]

Sea bream, Sparus aurata mstn Growth [24]

Channel catfish, Ictalarus punctatus mstn Growth Germline transmission [25]

ticam1/rbl Immunity [26,27]

LH Sterility

Southern catfish, Silurus meridionalis cyp26a1 Germ cell development [28]

Common carp, Cyprinus carpio sp7a/sp7b/mstn(ba) Muscle development [29]

Rohu carp, Labeo rohita TLR22 Immunity Homology-directed repair [30]

Grass carp, Ctenopharyngodon idella gcjam-a Disease resistance In vitro [31]

Northern Chinese lamprey, Lethenteron morii slc24a5/kctd10/wee1/soxe2/wnt7b Pigmentation/development [32]

Rainbow trout, Oncorhynchus mykiss igfbp-2b1/2b2 Growth [33]

Pacific oyster, Crassostrea gigas mstn Growth [34]

aFull gene names: aldh1a2, aldehyde dehydrogenase family 1, subfamily A2; amhy, anti-Mullerian hormone; cyp26a1, cytochrome P450, family 26, subfamily a,
polypeptide 1; dmrt1, doublesex and mab-3 related transcription factor 1; dmrt6, doublesex and mab-3 related transcription factor 6; dnd, dead end; elovl-2,
ELOVL fatty acid elongase 2; foxl2, forkhead box L2; gcjam-a, grass carp junctional adhesion molecule-A; gsdf, gonadal somatic cell derived factor; igfbp-
2b1/2b2, IGF binding protein 2b1/2b2; kctd10, potassium channel tetramerisation domain containing 10; LH, luteinizing hormone; mstn, myostatin; nanos2,
nanos C2HC-type zinc finger 2; nanos3, nanos C2HC-type zinc finger 3; rbl, rhamnose binding lectin ; sf-1, steroidogenic factor 1; slc45a2, solute carrier family
45member 2; soxe2 SRY-box transcription factor E2; sp7a/sp7b, transcription factor Sp7-like; ticam1, toll-like receptor adaptor molecule 1; TLR22, toll-like receptor 22; Tyr,
tyrosinase; wee1, WEE1 G2 checkpoint kinase; wnt7b, wingless-type MMTV integration site family, member 7B; wt1a/b, Wilms tumor 1 transcription factor a/b.
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Box 2. Genome Editing to Induce Sterility and Prevent Wild Introgression in Atlantic Salmon: A Case Study

Most Atlantic salmon are farmed in open sea-cages, a production method that faces sustainability challenges, such as dis-
ease transmission from wild to farmed fish and vice versa, as well as escaped farmed fish impacting wild populations [82].
A possible solution to these problems is the creation and use of sterile salmon in production.

Currently, the only method available to sterilize commercial-scale numbers of salmon is triploidization [83,84]. However,
triploid (infertile) salmon are generally more sensitive to suboptimal rearing environments, which can make them prone
to deformities [85,86] and less tolerant to rising seawater temperatures [87].

There are two significant additional benefits of using sterile fish. First, early maturation is prevented, which avoids the as-
sociated negative phenotypes, such as reduced growth, lower flesh quality, and higher susceptibility to disease [88]. Sec-
ond, sterility in production fish may safeguard Intellectual Property for the breeding companies. The gene encoding dead
end (dnd) has been targeted to induce sterility in salmon, preventing the formation of germ cells [15]. This was done using
targeted mutagenesis against dnd with CRISPR/Cas9, thereby creating a gene-edited sterile fish. Germ cell-free salmon
will be 100% sterile and do not enter maturity [89]. Practical application of such sterile fish in breeding programs will require
developments in genome editing, including knock-in, which could lead to the production of an inducible ‘on-off’ system for
sterility. Such mechanisms have been developed for the model fish species medaka and zebrafish [90,91]. Use of this ste-
rility technologymay foster the future development of genome editing for other traits, such as disease resistance, with neg-
ligible risk of escapees interbreeding and passing edited alleles on to wild stocks.

Trends in Genetics
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early maturation; in this context, CRISPR/Cas9 has been used to induce sterility in Atlantic salmon
and Catfish (Table 1 and Box 2). For growth-associated traits, several groups have edited the
myostatin gene (famous for its role in ‘double-muscled’ cattle, such as the Belgian Blue), resulting
in larger fish. To date, this has been performed in channel catfish and common carp (Table 1). Im-
munity and disease resistance have already been investigated using genome editing in Rohu carp
and Grass carp, respectively, and it is expected that this area of research will flourish as a route to
improving and understanding disease resistance as a key target trait for aquaculture (see later).
Genome editing can also be applied to develop models for studying fundamental immunology,
such as the targeted disruption of the TLR22 gene in carp [30]. Suchmodels can improve our fun-
damental understanding of host response to infection in fish andmay lead to more effective treat-
ment protocols. Along similar lines, it is plausible to use genome-editing technology to generate
improved cell lines for fish species, for example by enabling more efficient production of viruses
for future vaccine development by knocking out key components of the interferon pathway [37].

Some practical reasons why genome editing has such potential for research and applications in
aquaculture species are the ease of access to many thousands of externally fertilized embryos,
and the large size of those embryos facilitating microinjection by hand. The ability to use large
nuclear families enables a degree of control of background genetic effects, with ample sample
sizes achievable for downstream comparisons of successfully edited individuals with their uned-
ited full-sibling counterparts. The ability to perform extensive ‘phenotyping’ is often also feasible,
for example using well-developed disease challenge models to assess resistance to many viral
and bacterial pathogens during early-life stages. Finally, should favorable alleles for a target trait
(e.g., disease resistance) be created or discovered, then there is potential for widespread dissem-
ination of the improved germplasm for rapid impact via the aforementioned selective breeding
programs (Box 3). In parallel, high-quality, well-annotated reference genomes are available for
most of the key species [36]. A high-quality species-specific reference genome is essential for
the effective design of target gRNAs with high specificity and minimum change of off-target
editing, in particular given the relatively recent whole-genome duplication events that are features
of several finfish lineages, including salmonids [38].

Applications of Genome Editing for Aquaculture Research and Production
Infectious diseases are one of the primary threats to sustainable aquaculture, with an estimated
40% of the total potential production lost per annum [39]. Due to the formative stage of
Genetics, September 2019, Vol. 35, No. 9 675



Box 3. Integration of Genome-Editing Technologies into Aquaculture Breeding and Dissemination
Programs

If the public and regulatory landscape permits, genome-editing technologies are likely to be used in commercial aquacul-
ture breeding in the coming years. However, for widespread adoption, maximal benefit, and minimal risk, it is necessary
that these technologies are seamlessly integrated with well-managed selective-breeding programs. Achieving this will help
ensure careful management of genetic diversity and avoidance of potential inbreeding depression. In practice, the mass
delivery of CRISPR/Cas9 to edit production or multiplier animals is unlikely to be feasible, and editing entire broodstock
populations to carry the desirable alleles in the germplasm is more practical. As such, inducible editing targets may be
required for impacts on traits related to sterility and maturation. In addition, technology developments are required to
effectively integrate multiple edits simultaneously into broodstock animals to target multiple traits, or multiple causative
alleles for the same trait [46]. Thorough testing of edited animals is required to assess and exclude possibilities of unin-
tended and potential detrimental pleiotropic effects of edits before any application in production. However, once these
issues have been addressed, widespread and rapid positive impacts could be achieved, because the high fecundity of
most aquaculture species may enable dissemination to production systems without the need for pyramid breeding
schemes typical of terrestrial livestock species.

Trends in Genetics
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domestication of many aquaculture species, new selection and disease pressures in the farm en-
vironment may increase the possibility that standing genetic variation in farmed populations in-
cludes loci of major effect, which may represent potential ‘low-hanging fruit’ for genome editing
to increase the frequency of the favorable allele. A well-known example of a major quantitative
trait locus (QTL) affecting disease resistance is the case of infectious pancreatic necrosis
virus (IPNV) in Atlantic salmon, in which a major QTL explains the majority of the genetic variation
[40–43]. Marker-assisted selection, which is based on the targeted use of molecular genetic
markers linked to QTL [44], has been successfully applied to markedly reduce the impact of
this disease [45]. However, despite several QTL studies in aquaculture species and ample evi-
dence for the heritability of disease resistance traits (e.g., [45]), only a handful of large-effect
QTL have been detected, and most disease resistance and other production-relevant traits are
underpinned by a polygenic genetic architecture. As such, genetic improvement of disease re-
sistance relies on family-based selective breeding programs, augmented by the use of genomic
selection, for which disease resistance has been a major focus [12,13].

The substantial opportunity for genetic improvement of disease resistance and other perfor-
mance traits in aquaculture species, combined with initial success of in vivo genome-editing trials,
opens exciting new avenues to improve aquaculture production and sustainability. There are
three main categories by which genome-editing technology could be applied to make step
changes in genetic improvement, and each requires different approaches to the underpinning re-
search leading to discovery of functional alleles: (i) detecting, promoting, removing, or fixing
targeted functional alleles at single or multiple QTL(s) segregating within current broodstock pop-
ulations of a selective breeding program; (ii) targeted introgression-by-editing of favorable var-
iants from different populations, strains, or species to introduce or improve novel traits in a
population; and (iii) creating and utilizing de novo favorable alleles that are not known to exist else-
where. Here, each of these avenues are discussed in turn, and a unique opportunity to harness a
combination of in vivo and in vitro approaches to understand and improve disease resistance in
aquaculture species is presented.

Fixing Alleles at Existing QTL
Detecting and utilizing causative variants for QTL affecting production traits is a fundamental goal
of most animal breeding and genetics research, albeit with few success stories to date [46]. Sim-
ulations have demonstrated that harnessing genome editing for favorable causative alleles at mul-
tiple QTLs as part of a breeding program, has the potential to expedite genetic gain compared
with pedigree or genomic selection alone (e.g., [47]). However, a major challenge for the effective
application of this approach is the successful identification of causative variation underpinning



Box 4. A Pipeline for the Discovery of Causative Variants for Complex Traits of Relevance to Aquaculture
Production

Shortlisting putative functional variants underlying QTL as potential targets for in vivo CRISPR/Cas9 will require consider-
able research effort, andmay include: (i) gene expression comparison of animals with disparate phenotypes for the traits of
interest; (ii) functional annotation of polymorphismswithin genomic regions of interest; (iii) comparative genomics, including
phylogenetic conservation of the region; and (iv) detection of variants impacting gene expression of candidate loci within
these regions (e.g., expression QTL or allele-specific expression). The impact of targeted edits in candidate genes can
be tested in vivo and in vitro using a combination of gene knockout and ultimately ‘allele-swap’ experiments using HDR
as a template to change the unfavorable version of an allele at a QTL to a favorable version before assessing the impact
on the target phenotype. This pipeline of technologies can shortlist the many thousands of candidate variants within
QTL regions down to the likely causative variant. Rapid developments in genomics technologies in fish will greatly assist
this process. For example, reference genome assemblies are now available for most aquaculture species, and the focus
now is on improving these assemblies and in particular on functional annotation to discover functionally relevant regions
(e.g., open chromatin, promoters, enhancers, etc.) [38].
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QTLs, particularly those of small effect. To achieve this, a suite of genetic and genomic technol-
ogies can be applied to shortlist of candidate variants identified from large-scale genome-wide
association studies (GWAS; Box 4 and Figure 1, Key Figure). The same approach could be
used to remove deleterious variants that are inevitable in populations, both large-effect variants
(e.g., recessive lethal mutations), and more polygenic deleterious loads [48]. However, a chal-
lenge for polygenic traits is the need to edit multiple alleles simultaneously in the same broodstock
animal(s) to achieve notable impact using this approach and, therefore, development and
improvement of multiplex genome-editing approaches is required.

Introgression-by-Editing: Accessing Alleles from Different Strains or Species
One of the exciting possibilities of genome editing is to access genetic variation outside closed
breeding populations, without the need for costly and time-consuming introgression programs,
or in cases where introgression is impossible. It is common that a particular farm animal strain,
or a closely related species, has a desirable characteristic. If the alleles responsible for that
intra- or interspecific variation in phenotype can be identified, then CRISPR technology potentially
allows editing of the unfavorable allele in the target strain and/or species to correspond to the se-
quence of the favorable allele found in the related strain or species (i.e., introgression-by-editing).
In other words, it offers new opportunities to bypass traditional introgression, thereby avoiding the
downsides associated with linkage drag (e.g., negative effects on growth rate associated with
introgressing alleles from wild strains), and it allows access to genetic variation in other strains
and species that would not be possible using conventional selective-breeding methods.

From a pragmatic standpoint, the early applications of such introgression-by-editing approaches
will need to hold promise for transformative impacts on production to justify the extensive
research and development effort required. In Atlantic salmon, parasitic copepod sea lice
(Lepeophtheirus salmonis in the Northern hemisphere and Caligus rogercresseyi in the Southern
hemisphere) have a crippling impact on sustainable aquaculture, with an economic impact of
N GBP £700 million (USD$ 880 million) per annum globally. A unique aspect of aquaculture
is the proximity of farmed species to extant wild species and populations that may have
desirable characteristics. For example, certain Pacific salmon species, such as Coho salmon
(Oncorhynchus kisutch) and pink salmon (Oncorhynchus gorbuscha), are largely resistant to
sea lice [49,50] and are able to mount a successful immune response against the parasite. This
raises the enticing possibility of transferring resistance mechanisms to Atlantic salmon, and sub-
stantial research efforts have been made to identify the factors underlying the relative differences
in host resistance mechanisms, including differences in gene expression response in the iron
regulation pathway, proinflammatory response related to interleukin 1 beta, or upregulation of
immune receptors (e.g., C-type lectins) [51–55]. It is plausible that there are key regulatory
Genetics, September 2019, Vol. 35, No. 9 677



Key Figure

Combining In Vivo and In Vitro Screening Approaches to Identify, Test,
and Apply Disease Resistance Alleles in Aquaculture Species
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(See figure legend at the bottom of the next page.
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genes in the pathways underpinning differential resistance between the species that could be
modified in Atlantic salmon to mimic the response to sea lice exhibited by the Coho salmon.
This may be targeted editing of the coding sequence and/or modulation of the regulatory se-
quence to enhance or suppress the expression of these key host response genes. However,
temporal and/or spatial differences in gene expression often have a significant impact on a
given trait, and overall modification of expression may not achieve the desired effect.

Creating de novo Variants Based on Knowledge of the Trait
While genome editing based on existing genetic variation (either within the farmed strain, or via
introgression-by-editing) gives rise to possibilities for major benefits in animal production, creating
de novo favorable alleles (i.e., those that are distinct from any naturally occurring alleles, to the
best of our knowledge) is another exciting avenue and has already resulted in potential solutions
to animal production and welfare problems. In this approach, novel alleles can be created using
CRISPR/Cas9 based on a priori knowledge of the biology of the trait of interest, or from genome-
wide genetic perturbation approaches to identify candidate genes influencing the trait. An exam-
ple of the former is the development of Porcine Reproductive and Respiratory Syndrome Virus
(PRRSV) resistance in pigs, where genome editing was used to knockout the CD163 gene,
resulting in a viable animal missing the entire receptor [56], or created a modified receptor by re-
moving a specific exon and its associated protein domain [57]. Similar approaches have been
used in aquaculture, including modification of the dnd allele to induce sterility in Atlantic salmon
and targeting the mstn1 gene in several fish species to increase growth (Table 1). Alternatively,
reverse genetic screens can facilitate the discovery of de novo alleles impacting traits of interest.
Such genome-wide CRISPR/Cas9 screens can be performed in cell lines, and may provide de
novo targets for downstream testing and potential editing in vivo, in particular for disease resis-
tance traits (see below).

Pooled CRISPR Screens for Disease Resistance
One of the most powerful techniques that emerged from the advent of CRISPR/Cas9 editing
is the genome-wide CRISPR knockout (GeCKO) approach [58,59]. Briefly, this comprises
creating a library of tens of thousands of gRNA to target every gene in the target organism,
followed by synthesis, packaging into a lentivirus vector, and transduction of the cell line
expressing Cas9 with a low dose aiming at approximately one gRNA integration per cell.
The cell line is then screened (e.g., using a pathogen challenge) and the selected cells
(surviving, fluorescently labelled, or another marker of selection) sequenced. Following selec-
tion, the enrichment or depletion of gRNAs informs the role of the target genes in the phe-
notype under investigation. An example of the power of this approach is the identification
of the Norovirus receptor [60] using a genome-wide knockout screen in a murine cell line.
This approach has been extended via the use of catalytically inactive Cas9 to enable
transcriptional activation or suppression, allowing for potential gain-of-function screens in
suitable cell culture systems [61].
Figure 1. In vivo screens: (1) start with a heterogeneous population of fish; (2) challenge with a pathogen of interest
(3) sequencing and/or genotyping of resistant and susceptible animals; (4) large-scale genome-wide association study
(GWAS) approaches combined with functional and comparative genomics to detect naturally occurring disease resistance
alleles in commercial aquaculture populations. In vitro screens: (1) pooled CRISPR knockout (GeCKO) approaches
resulting in a heterogeneous population of cells; (2) followed by positive or negative selection after a pathogen challenge
and; (3) sequencing to; (4) screen for enriched guide (g)RNAs can discover novel disease resistance alleles. The candidate
functional genes identified by either or both approaches are then taken forward for in vitro (5) and in vivo (6) testing and
characterization, then potentially commercial application, resulting in a population of animals with markedly increased
disease resistance (7).
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A major bottleneck for aquaculture research is the lack of suitable, well-tested, and charac-
terized cell lines for many species of interest. Indeed, for many crustacean and molluscan
species, there are no well-established immortalized cell lines. Developing such platforms
will make genome-wide screening approaches a more realistic possibility in major aquacul-
ture species. At present, CRISPR/Cas9 in cell culture is at a formative stage in fish species,
albeit with promising early results. Zebrafish and medaka immortalized cell lines are readily
transducible with constructs [62], suggesting that the lentivirus-mediated GeCKO approach
is feasible. Recently, medaka [63], carp [31], and chinook salmon [37,64] cell lines were
edited using CRISPR/Cas9. The embryonic chinook salmon CHSE-EC cell line [65] is the
only fish cell line with stable integration of Cas9, another important component of pooled
CRISPR screens. Various aspects of in vitro genome editing need to be optimized in aqua-
culture species, including methods for the genomic integration of large inserts and optimiza-
tion of which promoter to use to drive the expression of the gRNA in the different species
and systems. Viral infections (and resistance to those infections) are high-priority target traits
for in vitro studies using CRISPR/Cas9, because the innate mechanisms of host response
are usually cell-intrinsic and, therefore, amenable to interrogation in existing immortalized
cell lines. Developing this technology would help facilitate an integration of large-scale ge-
netic screens to inform the biology underpinning disease resistance and provide a pipeline
of candidate alleles for application to commercial aquaculture breeding (Figure 1). The gen-
eration of Cas9 stable target animals may facilitate primary cell lines that are amenable to
editing, and future development of immortalized cell lines from target tissues and/or cell
types that broaden the applicability of GeCKO approaches to a wider array of aquaculture
species.

Technical Challenges to Overcome
There are several important technical hurdles to be addressed to maximize the possibilities to
apply genome-editing approaches in aquaculture species. First, in species where CRISPR/
Cas9 has already been applied, optimization of methods is required to maximize editing effi-
ciency, minimize off-target effects, and reduce the problem of mosaicism in the F0 genera-
tion. Off-target editing, which can result in nonspecific and unintended modification to the
genome, may also lead to unintended impacts on the organism. Improved knowledge of
the genome sequences of aquaculture species will assist with the design of gRNAs specific
to a single targeted region, and the relatively modest cost of whole-genome resequencing
can facilitate routine screening for off-target editing events. To tackle mosaicism, short half-
life Cas9 proteins have been engineered to induce double-strand breaks (DSBs) only at the
one-cell stage of development of the fertilized embryo [65]. Also, in F1 crosses between mo-
saic F0 mutants, it is possible to screen for the most commonly formed mutations to identify
animals homozygous for a single mutated allele (rather than mosaic for more than one edited
allele). Precise editing in the F0 generation, such as SNP exchange to change the amino acid
or form a premature stop codon, can be enabled by testing of base editing approaches and
HDR using templates with precise targeted changes or a short insert [66]. To rapidly select
optimal gRNAs, constructs can be tested in cell culture before in vivo editing. Particularly
for species where access to newly fertilized embryos is difficult, such as certain shrimp spe-
cies, alternative methods of delivery of CRISPR/Cas9 could be tested, including sperm-
mediated transfer, microinjection of unfertilized ova, and editing primordial germ cells.
Another approach to enrich for edited alleles of interest is germ cell transplantation from
animals with a desired edit, into multiple sterile surrogates [67]. Analogous approaches are
being successfully used for editing in chickens [68], and transfer of skills and technologies
from terrestrial livestock and model organisms to aquaculture species will be key to the suc-
cess of this approach.
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Outstanding Questions
How can we optimize the efficiency of
genome-editing methods in diverse
aquaculture species?

Optimization of tailored microinjection
protocols and reagents is required,
together with investigation of alternative
delivery methods. Methods to time-limit
the activity of Cas9 to reduce unwanted
editing throughout embryo development
should be studied.

Is it possible to identify specific
causative variants as targets for
genome editing?

Shortlisting putative functional variants
underlying QTLs as targets for editing
is a major challenge, and will require
considerable research effort as
described in Box 3.

What is the potential for pooled
CRISPR/Cas9 screening approaches
in aquaculture?

Pooled CRISPR screens for genome-
scale editing typically require a suitable
cell culture model. In highly fecund
species (e.g., marine fish or bivalve
shellfish), it may be possible to con-
sider an ‘in vivo GeCKO’ approach
based on similar principles to the cell
culture model but delivering the gRNA
library to embryos (or gametes) to en-
able an early-life screening experiment.

How can genome editing be applied in
selective breeding programs?

Seamless integration of genome-
editing technologies into breeding pro-
grams is required to ensure continuous
genetic improvement and careful man-
agement of genetic diversity. Improve-
ments in editing technologies is
required to enable multiple edits in sin-
gle broodstock animals, and careful
assessment of any potential unin-
tended pleiotropic effects is necessary
before commercial application.

Trends in Genetics
Factors Affecting Public and Regulatory Acceptance
Innovation in technology is essential to advance food production to address the increasing global
demand. CRISPR/Cas9 technology has the exciting potential to contribute to the improved quan-
tity, quality, and sustainability of seafood production globally. However, public and regulatory ac-
ceptance are key to its potential being realized. There is considerable debate about the definition
of genetic modification (GM) and whether genome-editing approaches should be considered
separately. If genome editing is considered separately, the different applications discussed earlier
may be subject to different regulations. For example, genome editing animals could be created
with just single base changes in their genome that correspond to existing polymorphisms within
farmed and/or wild stocks. Alternatively, de novo alleles can be created that are absent in nature
to the best of our knowledge (e.g., PRRSV resistance in pigs). The former may be more accept-
able to the public and could feasibly be subjected to less stringent regulatory procedures. How-
ever, the ruling by the European Court of Justice that genome edited crops should be considered
GM organisms is likely to hinder the commercial-scale application of genome editing in EU-
farmed species [69]. However, it is noteworthy that a GM salmon (the AquaBounty salmon with
a transgenic growth hormone gene) has been approved for human consumption by the FDA
and the Canadian Food Inspection Agency. Furthermore, a line of tilapia derived from genome
editing by the same company has been exempted from GM regulation in Argentina. It is clear
there will be longstanding uncertainty about the regulation of edited animals, and the process
will vary considerably in different countries. Therefore, extensive engagement with the public
and other stakeholders to facilitate knowledge-driven decisions about benefits and risks of the
technologies is key. From a public acceptance standpoint, it is important to consider the nature
of the target traits, and whether the potential benefits stretch beyond sustainable production
and profit. For example, traits such as sterility also have downstream benefits for the environment
and wild stocks, and traits such as disease resistance have substantial concurrent benefits for
animal welfare.

Concluding Remarks
Aquaculture is the fastest growing food production sector, is rapidly assuming greater impor-
tance than capture fisheries, and is seen as an essential component of food and nutrition security,
particularly in the developing world. The use of genetics and breeding technologies in aquaculture
is rapidly increasing, with the development of high-tech breeding programs for many of the
world’s most important aquaculture species. Most farmed aquatic species are close to wild an-
cestors, and this offers a major untapped resource to enhance sustainable seafood production
from aquaculture. Furthermore, the external fertilisation and high fecundity of aquaculture species
offer exciting opportunities for high-resolution genetics studies to understand and improve com-
plex traits. Genome-editing technologies, such as CRISPR/Cas9, have significant potential to
expedite genetic gain for production traits. Infectious disease is one of the primary constraints
to aquaculture production and, therefore, a major target for selective breeding and genome-
editing approaches. Host resistance to certain pathogens is a suitable trait for the use of genome-
editing technologies due to the difficulty in nondestructive measurement of the trait in breeding
candidates, the plausibility of utilizing cell culture genome-wide pooled CRISPR screens, and
the frequent availability of early life in vivo-established challenge models. Different categories of
genome-editing applications include: (i) discovery of causative variants underlying single or multi-
ple QTLs affecting traits of interest, and subsequent fixation of the favorable alleles using editing;
(ii) introgression-by-editing of favorable alleles into closed breeding systems from other popula-
tions, strains, or species; and (iii) creation and use of de novo alleles with positive effects on the
trait of interest. Genome editing together with established genetic and genomic approaches en-
ables detection and shortlisting of candidate functional variants for downstream in vivo validation,
and potential commercial application. While several outstanding research priorities require major
Trends in Genetics, September 2019, Vol. 35, No. 9 681
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effort (see Outstanding Questions), the high reproductive output of most aquaculture species
would enable potentially favorable alleles introduced into the germplasm of a well-managed
breeding program (Box 3) to be disseminated at a scale and pace not feasible in terrestrial farmed
animal production. Thus, subject to favorable regulatory and public perceptions, genome-editing
technology has the potential to significantly transform the sustainable production of seafood
through aquaculture.
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