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Boreal marine fauna from the 
Barents sea disperse to Arctic 
Northeast Greenland
Adam J. Andrews1,2, Jørgen S. Christiansen2,3, Shripathi Bhat1, Arve Lynghammar1,  
Jon-Ivar Westgaard4, Christophe pampoulie5 & Kim præbel1

As a result of ocean warming, the species composition of the Arctic seas has begun to shift in a boreal 
direction. one ecosystem prone to fauna shifts is the Northeast Greenland shelf. the dispersal route 
taken by boreal fauna to this area is, however, not known. This knowledge is essential to predict to what 
extent boreal biota will colonise Arctic habitats. Using population genetics, we show that Atlantic cod 
(Gadus morhua), beaked redfish (Sebastes mentella), and deep-sea shrimp (Pandalus borealis) recently 
found on the Northeast Greenland shelf originate from the Barents Sea, and suggest that pelagic 
offspring were dispersed via advection across the Fram Strait. Our results indicate that boreal invasions 
of Arctic habitats can be driven by advection, and that the fauna of the Barents Sea can project into 
adjacent habitats with the potential to colonise putatively isolated Arctic ecosystems such as Northeast 
Greenland.

The Arctic is warming more rapidly than any other geographical region1. Increase in water temperature and loss 
of sea-ice2,3 are expected to induce a northward range expansion of boreal fauna4–6, a phenomenon that is already 
apparent in the Barents Sea7–9. Atlantic mackerel (Scomber scombrus) exemplifies this trend, having recently dis-
played an exceptional northward shift in distribution to Spitsbergen10. Such predatory newcomers and compet-
itors pose a genuine threat to native Arctic fauna and thus to Arctic ecosystems as they may restructure trophic 
relationships if their occurrence becomes persistent8,11,12.

In 2015 and 2017, boreal species, i.e. juvenile Atlantic cod (Gadus morhua), juvenile beaked redfish (Sebastes 
mentella), and adult deep-sea shrimp (Pandalus borealis), were observed on the Northeast (NE) Greenland shelf 
(latitudes 74–77 °N, Fig. 1) for the first time since surveying began in 200213. This was well outside of their known 
distribution ranges4,14,15 (Fig. 2a,d,g). However, the route by which the three species had reached NE Greenland 
was unknown. The present study aims to determine their population of origin using genetic markers. This knowl-
edge will allow us to infer the dispersal routes taken by these species – information that is critical to forecast (e.g.5) 
which boreal species may disperse into the Arctic and to what extent they may colonise Arctic habitats16.

We consider two main routes of dispersal to NE Greenland, either 1) via migration against the East Greenland 
Current17 from Iceland, or 2) via advection18 from the Barents Sea by the westbound Return Atlantic Current17,19,20 
(Fig. 1) across the abyssal plains of the Fram Strait. The Norwegian Atlantic Current, along the Norwegian coast, 
and the West Spitsbergen Current17,20, along the Barents Sea shelf-break, are already known to advect cod, red-
fish, and shrimp offspring from the Norwegian coast and the Barents Sea proper to Spitsbergen, east of the Fram 
Strait21–23.

Results
We found that all cod (n = 10), and 95% of redfish (n = 61 out of 64) caught on either the NE Greenland shelf 
or in the Fram Strait, were genetically assigned to the Barents Sea North East Arctic Cod (NEAC) population 
(Fig. 2c), and the Norwegian Shallow (NSH) redfish population (Fig. 2f), respectively. All shrimp (n = 40) caught 
on the NE Greenland shelf, were genetically assigned to the Spitsbergen West (SPW) shrimp population (Fig. 2i). 
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Assignment with STRUCTURE was supported by high membership probabilities (q > 0.8), which suggest that 
the three species on the NE Greenland shelf all originate from the Barents Sea. The only individuals to assign to 
an ‘Icelandic’ population were 5% of redfish (3 out of 64).

There was high consistency in the identified population of origin between the assignment methods 
(STRUCTURE and snapclust), where 90% of cod, 98% of redfish and 75% of shrimp tests formed a consensus 
(Supplementary S1, Table S1). All individuals of these three species were assigned with a greater probability to the 
Barents Sea populations than any other reference population.

Discriminant Analysis of Principle Components (DAPC) strongly support the assignment results by cluster-
ing the NE Greenland specimens with the corresponding Barents Sea populations (Fig. 2b,e,h). The 95% DAPC 
cluster ellipses between NE Greenland and the Barents Sea overlapped considerably, though overlap was also 
evident between the reference populations, most significantly for the cod and shrimp clusters. The redfish and 
shrimp neighbour-joining trees resulted in the same grouping as the assignment and DAPC analyses, and indicate 
a Nei’s Distance of <0.02 between the redfish caught in NE Greenland and the Norwegian Shallow population 
(Fig. 3a). Nei’s Distance was as comparatively low (0.02) between the Norwegian and Icelandic shrimp reference 
populations as between the shrimp specimens of NE Greenland and the Spitsbergen West population (Fig. 3b).

Discussion
Our results show that the NE Greenland shelf is readily reached by cod, redfish and shrimp from the Barents Sea, 
probably advected across the Fram Strait by the Return Atlantic Current, supporting recent simulation studies24–26.  
Advection plays an important role in the northward transport of plankton in the Barents Sea, via the West 
Spitsbergen Current18 and because up to 50% of this water is estimated to cross the Fram Strait27–29, the Return 
Atlantic Current provides a connection between the Barents Sea and the NE Greenland shelf ecosystems. The 
inflow of Atlantic water to the Barents Sea has doubled since 198030, resulting in a warmer West Spitsbergen 
Current31. Hence, there is reason to believe that conditions on both sides of the Fram Strait have become more 
favourable for boreal species in recent years. The copepod Calanus finmarchicus is the major prey for young cod32 
and its abundance during the last warm period in the North Atlantic (1920–1965) has likely driven the range 
expansion of cod and other boreal species33. Low abundances of Calanus finmarchicus were observed on the NE 
Greenland shelf in autumn 200634, but in light of the West Spitsbergen Current warming, its abundance will likely 
increase in the Fram Strait and on the NE Greenland shelf35, thus providing ample food for boreal predators.

North East Arctic Cod (NEAC), the population of origin for the NE Greenland specimens, spawns along the 
Norwegian coast36 (latitudes 62–71 °N) during March and April where pelagic offspring drift by surface cur-
rents37 northwards and eastwards into the Barents Sea38. Depending on local wind-forcing, up to 1/3 of 0-group 
year-classes may advect off the Norwegian and Barents Sea shelf in some years and disperse over the Norwegian 
Sea37. We suggest that those 0-group cod advected off the shelf by wind-forcing26,39 either outside of their spawn-
ing grounds, or at any point until their northern-most report west of Spitsbergen21, are particularly susceptible to 
cross the Fram Strait by the Return Atlantic Current (Fig. 2a). By October, when cod are >80 mm in total length 
(TL), they gain motility, descend out of the pelagic layer, and become demersal40. Therefore, for our explanation to 

Figure 1. Stations (green full circles) of observation for Atlantic cod (Gadus morhua), beaked redfish (Sebastes 
mentella) and deep-sea shrimp (Pandalus borealis) (Methods, Table 1). Arrows indicate ocean currents 
(Source17,63). Atlantic surface currents (red arrows): IMC (Irminger Current), NAC (Norwegian Atlantic 
Current), WSC (West Spitsbergen Current), RAC (Return Atlantic Current). Atlantic sub-surface water (white 
arrows). Arctic surface currents (blue arrows): EGC (East Greenland Current), JMC (Jan Mayen Current). 
Arrow size indicates velocity. Map created using ESRI ArcMap (v. 10.6, www.arcgis.com).
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hold true, 0-group cod from the Norwegian coast/Barents Sea must advect to the NE Greenland shelf by October 
of their spawning year. The observations of 0-group cod in the Fram Strait with a genetic signature of the NEAC 
population, in September 2007 and 2017, demonstrate that this is happening.

Redfish larvae are extruded along the continental shelf break of the Norwegian and Barents Seas from latitudes 
64–74 °N between March and June41. Redfish larvae have been observed in Atlantic water west of the continen-
tal shelf, and as far north as Spitsbergen23,42. We observed large numbers of 0-group redfish (TL ~40 mm) over 
the Fram Strait with a genetic signature of the Norwegian Shallow population. Juvenile redfish are pelagic until 

Figure 2. Genetic evidence of Atlantic cod (Gadus morhua) (a–c), beaked redfish (Sebastes mentella) (d–f) 
and deep-sea shrimp (Pandalus borealis) (g–i) specimens found off Northeast Greenland originating from 
the Barents Sea. Maps (a,d,g) show species known distribution extent (shaded colours) in the Northeast 
Atlantic, catch sites of individuals in Northeast Greenland (NEG) waters (full circles), reference samples 
(hollow circles) and a proposed dispersal route (arrow). DAPC scatterplots (b,e,h) show how the NEG groups 
relate to the reference populations of the Northeast Atlantic Ocean. DAPC cluster ellipses were set to contain 
95% of genotypes. DAPC scatterplots explain 94% (b), 92% (e) and 97% (h) of the total variation observed. 
STRUCTURE barplots (c,f,i) show membership probabilities (q) for NEG individuals based on the reference 
populations used. Maps were created using ESRI ArcMap (v. 10.6, www.arcgis.com).

Station # Latitude Longitude Year Month Mean temp. (°C) Mean depth (m) Cod Redfish Shrimp

178 p 76.55N 03.03W 2007 10 2.0 29 1 — —

1312 b 74.33N 14.08W 2015 8 1.8 300 — 11 —

1321 b 75.09N 13.38W 2015 8 1.1 213 1 2 —

1339 b 76.14N 09.03W 2015 8 1.6 280 1 7 —

1353 b 77.28N 05.49W 2015 8 0.3 385 5 11 7

1278 p 77.37N 02.24E 2017 9 5.6 34 — 16 —

1338 b 76.00N 14.18W 2017 9 0.1 350 — 1 33

1381 p 78.86N 00.63W 2017 9 1.2 26 2 16 —

Genotyped individuals in total 10 64 40

Table 1. Details of assignment samples for each species. Station: p = Pelagic, b = Bottom, Year/Month = time of 
sampling. Totals for each species represent the number of genotyped individuals. Mean temp. = in situ sampling 
temperature obtained from CTD-sensor (Seabird 911).
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40–50 mm TL at age 4–5 months when they gain motility and descend to deeper waters43. We propose that the 
0-group redfish found in the Fram Strait in September 2017 were advected north to Spitsbergen along the shelf 
break by the West Spitsbergen Current, before crossing the Fram Strait by the Return Atlantic Current. The juvenile 
redfish had then reached the NE Greenland shelf along this route (Fig. 2d) by the time they were 4–5 months old.

Shrimp on the NE Greenland shelf also originated from the Barents Sea (see sampling of25). Shrimp spawn 
in autumn throughout the Barents Sea and the meroplanktonic larvae hatch in spring. Shrimp larvae are 
highly-mobile and distribute according to currents until 2–3 months of age when they settle as post-larvae14. 
We find it more likely that shrimp larvae from the north-west Barents Sea, i.e. Spitsbergen, would reach the 
NE Greenland shelf than larvae from the northern Norwegian Coast or central-eastern Barents Sea, due to 
Spitsbergen’s close proximity to the Return Atlantic Current (Fig. 2g).

The NE Greenland shelf ecosystem is severely understudied and biodiversity baselines are fragmentary with 
no timeline44. It is therefore difficult to establish whether our findings reflect a recent shift driven by ocean warm-
ing or constitute a common component of the NE Greenland Shelf fauna. Nonetheless, the Barents Sea is the most 
productive ecosystem in the NE Atlantic45 and presently supports the historically largest cod population40. In 
addition, Atlantic herring (Clupea harengus), Atlantic haddock (Melanogrammus aeglefinus) and Atlantic mack-
erel are nowadays abundant in Spitsbergen waters. Therefore, in the future we could expect to find more boreal 
species on the NE Greenland shelf, exemplified by a recent observation of capelin (Mallotus villosus) in this area13. 
The three species studied herein are clearly not exceptional in being capable of entering the NE Greenland shelf. A 
recent simulation study26 demonstrates that between 2.4% and 12% of 0-group NEAC may be transported north-
west along the proposed route (Fig. 2a). Advection therefore has the potential to restructure Arctic ecosystems18 
and the route identified here suggests that a boreal faunal invasion of NE Greenland shelf from the Barents Sea is 
plausible. Trophic relationships are likely to be strongly modified12 as boreal generalists such as cod are favoured 
by climate scenarios5. Cod feed on polar cod (Boreogadus saida), Arctic seabed fishes and zoobenthos11, and as a 
figurehead of boreal range expansions into the Arctic, gives a glimpse of what is to come for native Arctic fauna.

This is the first report to disclose the genetic origin of boreal species in Arctic waters and the connection 
between Atlantic and Arctic ecosystems. Our findings support the hypothesis that cod, redfish, and shrimp dis-
perse from the Barents Sea across the Fram Strait to the NE Greenland shelf. Due to a lack of time series, we 
cannot conclude if this is a new phenomenon, or not. In any case, predators and food competitors from lower lat-
itudes alter trophic relationships and impact native Arctic fauna and, with a warming ocean in mind, we suggest 
that the NE Greenland shelf is likely to become populated by a larger proportion of boreal species.

Methods
Specimens of juvenile cod (Gadus morhua, n = 7, TL: 216–443 mm, length-estimated age40: 2–4 years), juvenile 
redfish (Sebastes mentella, n = 32, TL: 80–172 mm, length-estimated age46: 1–4 years), and adult shrimp (Pandalus 
borealis, n = 40) were caught via bottom trawl (c.f.14) from 2007 to 2017 on the NE Greenland shelf (latitudes 
74–79 °N), well outside of their known distributional range (Table 1). In addition, 0-group cod (n = 3) and 
0-group redfish (n = 32) were caught via mid-water trawls (“Harstad” trawl, ~20 min, ~3 Knots) in the Fram Strait 
(Table 1) and are included in the analysis to support dispersal route hypotheses. Gill or muscle tissue samples 
from each specimen were preserved at sea in 96% ethanol and stored at −20 °C until further processing. Sampling 
was conducted using the R/V Helmer Hanssen as part of the TUNU-Programme47. A subset of (0-group) redfish 
and shrimp was used for genotyping, otherwise, genotyped individuals represent all specimens caught in the area. 
Access to sampling on the East Greenland shelf was permitted by the Government of Greenland under the remit 
of the TUNU-Programme at UiT, Norway.

Genotyped reference populations (Table 2) for the Northeast Atlantic were obtained from several studies16,25,48. 
To ensure all relevant populations of each species in the Northeast Atlantic were well represented, the cod refer-
ence populations were supplemented by genotyping a representative cod population from Iceland, following the 
same procedure as listed below.

To our knowledge, the reference populations represent all the known spawning populations of these species 
within the NE Atlantic, which are relevant for this study. Cod and redfish are caught sporadically by commercial 
fishing in the waters around Jan Mayen Island. They are adult individuals fished during winter time (c.f.49), which 
are suspected to originate from Icelandic and Barents Sea populations (winter feeding migration)50. Therefore, 
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Figure 3. Neighbour-joining trees utilising Nei’s distance, for beaked redfish (Sebastes mentella) (a) and deep-
sea shrimp (Pandalus borealis) (b) Northeast Greenland groups and reference populations. Bootstrap values 
(>88% and >73%) on both trees suggest good reproducibility.
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our reference populations should be adequate for assigning the juvenile cod and redfish considered in the present 
manuscript back to their population of origin.

DNA was isolated from ethanol-fixed gill or muscle tissue using the DNeasy Blood and Tissue Kit (Qiagen, 
Hilden, Germany) or the E-Z 96 Tissue DNA Kit (Omega Bio-Tek Inc., Norcross, GA, USA) following the man-
ufacturer’s instructions.

Microsatellite loci were arranged in multiplexes (Supplementary Table S2). A total of 10, 13 and 11 microsat-
ellite loci were amplified using polymerase chain reaction (PCR) for cod, redfish and shrimp, respectively. PCR 
reactions (2.5 μL) contained ca. 1 x Qiagen Multiplex Master Mix, 0.1–1.0 μm primer, and 15–25 ng DNA. The 
5′ end on the forward primers was labelled with a fluorescent dye by the manufacturer (Applied Biosystems, 
Foster City, CA, USA). Amplification was performed in a GeneAmp 2700 or 9700 thermal cycler (Applied 
Biosystems). PCR profiles were applied as per published protocols16,48,51 (Supplementary S2). PCR products were 
separated using an ABI 3130XL sequencer and GeneScan 500-LIZ (Applied Biosystems) was used as internal 
size standard. Alleles were automatically binned using GENEMAPPER software (v. 3.7, Applied Biosystems) and 
double-checked manually. Negative controls employed for extraction, amplification and fragmentation reported 
no contamination between samples. Replicates (33%) reported the repeatability and consistency of genotyping 
to be 100%.

Prior to analysis, reference genotypes that showed no amplification in >10% of loci were removed. This 
achieved amplification success >98% for each locus. All microsatellite loci were assessed for the presence of poten-
tial scoring errors, deviation from Hardy-Weinberg equilibrium (HWE), and non-neutrality (Supplementary S2). 
As the presence of scoring errors such as null alleles may introduce ambiguity around the true origin of the NE 
Greenland specimens, we ran analyses under two conditions, (1) removing loci showing potential scoring errors, 
and (2) inclusive of all loci (Supplementary S2, Table S2). This enabled us to retain loci subject to potential scoring 
errors where both conditions produced concurrent results, and to therefore minimise the loss of statistical power.

To increase the power of assignment (see Supplementary S3 for evaluation), only individuals with mem-
bership coefficients (q) lower/higher than 0.2/0.8 were used to establish reference population datasets (c.f.52, 
Supplementary S4, Table S4). As weak population differentiation was expected within all datasets, we adopted 
a conservative approach to infer q53 using a no-admixture model as implemented in the Bayesian clustering 
method, STRUCTURE (v.2.3.4)54. This approach has been shown not to bias the true structuring in datasets 
with weak genetic differentiation53. STRUCTURE was run assuming no admixture (NOADMIX = 1), correlated 
allele frequencies (FREQSCORR = 1) and utilising locality data (LOCPRIOR = 1). The program was run using 
K = number of reference populations, for 10 iterations, each with a burn-in period and MCMC replicates of 
500,000. CLUMPAK55 was used to merge runs (merged barplots: Supplementary S4, Fig. S4), and reported sim-
ilarity scores >0.95.

STRUCTURE was employed as the principle tool to assign the NE Greenland individuals to previously iden-
tified populations. For this, STRUCTURE was run under the assignment mode (POPFLAG = 1), and assumed 
no admixture (NOADMIX = 1), correlated allele frequencies (FREQSCORR = 1) and utilised locality data 
(LOCPRIOR = 1). The program was run using K = number of reference populations, for 10 iterations, each with a 
burn-in period and MCMC replicates of 500,000. CLUMPAK reported run similarity scores > 0.95. STRUCTURE 
barplots were visualised in R (v. 3.2.3)56 using the pophelper package (v. 2.2.5)57.

The maximum-likelihood clustering tool snapclust58, within the R package adegenet (v. 2.1.1)59, was used to 
corroborate the membership probabilities output by STRUCTURE. The function snapclust was run without 
optimization, and priors for the NE Greenland individuals were set to the reference population identified by 
STRUCTURE as the most probable origin. Runs used zero iterations (max.iter = 0) and membership coefficients 
were interpreted as output.

As an exploratory tool, Discriminant Analysis of Principle Components (DAPC)60, within the R package 
adegenet, was used to explore how the NE Greenland individuals relate to the reference populations. DAPC is a 
geometric clustering method free of HWE and linkage disequilibrium (LD) assumptions, that attempts to maxim-
ise the inter-variation between clusters while minimising the intra-variation observed within clusters.

Species Population Year Month n Latitude Longitude

Cod

Iceland 2013 4 93 63.57N 20.61W

Norwegian Coastal Cod 2002 4 86 69.30N 18.65E

North East Arctic Cod 2005 12 47 74.10N 21.10E

North East Arctic Cod 2001 12 90 78.22N 14.65E

Redfish

Iceland Deep 2012 8 87 65.46N 30.39W

South East Greenland Slope 2011 3 133 64.24N 35.14W

Norway Shallow 2006 10 91 72.18N 10.25E

Shrimp

Iceland 2011 7 92 67.28N 22.67W

Jan Mayen Island 2011 10 88 70.61N 08.43W

Norway 2010 10 94 64.75N 11.10E

Spitsbergen West 2010 8 85 79.51N 10.29E

Table 2. Details of reference samples for each species. Year/Month = time of sampling. n = sample size (number 
of genotyped individuals).
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DAPC clusters were set a priori to the number of reference populations plus one, including NE Greenland 
individuals as part of the DAPC model. The x.val function indicated the number of principle components 
(PC’s) to retain, but when this method resulted in the selection of too many PC’s, which would lead to overfitting, 
the optim.a.score function was preferred, based on an initial selection of all PC’s before refinement. All 
discriminant functions were retained due to the few clusters present (c.f.59).

To identify the genetic distance between the NE Greenland individuals and reference populations, 
neighbour-joining trees were produced using the aboot function in the R package poppr (v. 2.3.0)61. This 
method utilised Nei’s Distance62 and 1000 bootstrap replicates. Due to the small sample size of NE Greenland 
cod, neighbour-joining trees were only produced for redfish (n = 64) and shrimp (n = 40) data.

Pre-analysis testing where loci subject to potential scoring errors were removed from analyses resulted in the 
same outcome as analysis retaining all loci (Supplementary S5). We therefore suggest that potential scoring errors 
had little impact on assignment and thus present our final analyses utilising all loci available; 10, 13, and 11 for 
cod, redfish and shrimp, respectively.
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