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Pelagic fishes are a major source of protein and unsaturated fatty acids, and robust management is critical to avoid overfishing. Fisheries manage-
ment is often supported by indices from scientific acoustic-trawl surveys, where vertically aligned echo sounders and trawl samples are used to
provide an estimate of abundance. Survey biases may be introduced when fish are located near the sea surface or if they avoid the survey vessel.
Horizontally scanning acoustic equipment, such as fish-detection sonars, have been proposed as a method to quantify such biases; however, man-
ual interpretation of the data hamper further development. An automated method for identifying fish aggregations within large volumes of sonar
data has been developed. It exploits the fact that near-stationary targets, i.e. a fish school, have distinct patterns through the data. The algorithm is
not instrument specific, and was tested on data collected from several acoustic-trawl surveys in the Norwegian Sea. The automatic algorithm had
a similar performance to manual interpretation, and the main cause of discrepancies was aggregations overlooked in the manual work. These dis-
crepancies were substantially reduced in a second round of manual interpretation. We envision that this method will facilitate a labour efficient
and more objective analysis of sonar data and provide information to support fisheries management for pelagic fish.
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Introduction
Highly efficient fishing fleets around the world target pelagic

fishes such as herring, pollock, mackerel, sprat, and

anchovy(Watson et al., 2006), which are major components of

several ecosystems and an important source of proteins for hu-

man consumption. A robust system for managing these stocks is

needed for sustainable fisheries, and scientific surveys are often

conducted to support these fisheries. The advantage of these sur-

veys, as opposed to catch sampling and catch per unit effort data,

is that they are independent from the fishery itself. Pelagic fish

stocks are typically surveyed using acoustic-trawl surveys

(MacLennan, 1990), resulting in independent indices of abun-

dance that are used in the assessment models.

Standard acoustic-trawl surveys commonly use net sampling

and vertically aligned echo sounders to provide independent esti-

mates of abundance (Simmonds and MacLennan, 2005).

However, in some years, the estimates from the surveys are mis-

matching either the assessment or its own internal consistency

(ICES, 2016). This inconsistency is often referred to as “year ef-

fects” by assessment biologists, which may be more precisely re-

ferred to as annual bias. These biases may be caused by many

factors, but a variable amount of fish in the upper blind zone

(Scalabrin et al., 2009; Totland et al., 2009) and different behav-

ioural reactions (avoidance) (Hjellvik et al., 2008; De Robertis

and Handegard, 2013) between years have been proposed as pos-

sible explanations. To resolve this, horizontally observing fisheries

sonars have been proposed as a tool to augment the traditional

echo sounder methodology since these sonars may have the capa-

bility to quantify these biases (Goncharov et al., 1989; Misund

and Aglen, 1992; Mayer et al., 2002).

Fishery sonars have been proposed as an important tool for

fisheries management for decades (Brehmer et al., 2006); and
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have been used to detect migration patterns (Hafsteinsson and

Misund, 1995; Trygonis et al., 2009; Peraltilla and Bertrand,

2014), map schooling fish near the surface (Misund et al., 1996a),

used to detect fish avoidance reactions (Misund et al., 1996b;

Soria et al., 1996; Pe~na et al., 2013), and used to evaluate single

school size and fish abundance (Misund, 1993; Tang et al., 2006;

Nishimori et al., 2009; Tenningen et al., 2015). All these

represent different techniques that, when applied to whole time

series and included into the assessment models, can increase both

the accuracy and precision of the stock assessment, i.e. by quantify-

ing fish in the blind zone. Despite their potential, the application of

fisheries sonars in standard fisheries management has been limited.

A major obstacle, for integrating sonar as a scientific tool, is

that processing of sonar data requires substantial manual input,

and to realise the potential of the sonar this needs to be almost

completely automated. Methods have been developed to auto-

mate conventional vertical multi-frequency echo sounder data

processing, where these methods utilize the frequency content,

signal amplitude and object shape (Kloser et al., 2002;

Korneliussen and Ona, 2003; Proud et al., 2015; Korneliussen

et al., 2016). The size, distribution, and area density of aggrega-

tions are typically quantified by integrating the acoustic energy

recorded by the echo sounder, a technique called echo integration

(Dragesund and Olsen, 1965; Scherbino and Truskanov, 1966).

Fisheries sonars, with a single frequency, do not have the same

coverage in the frequency domain as multi-frequency echo sounder

systems, but they do provide better spatial coverage. Current

sonar-data processing-methods typically use “dilation-erosion”

type image-processing techniques, where neighbouring pixels ex-

ceeding a threshold level are connected (Haralick et al., 1987; Reid

and Simmonds, 1993; Barange, 1994; Trygonis et al., 2009).

Objects with inadequate size, shape and echo amplitude are often

excluded, where these criteria are continuously adjusted by experi-

enced users. Systems that use video screen capturing from fisheries

sonar have been developed and used for automatic registration of

bluefin tuna school echoes (Uranga et al., 2017). These methods

search only for fish aggregations in the range and angle domain

within each individual ping; hence, patterns in the time domain

are not recognized. Assuming a moving vessel and a near-

stationary aggregation of fish, multiple sonar images of the fish ag-

gregation would form a pattern in the time, range and angle do-

main that can be exploited (cf. Figure 1). Search algorithms that

exploit this would potentially improve categorization of fish aggre-

gations, and enable efficient data processing of fisheries sonar data.

The objectives of this paper are to (i) provide a robust method to

automatically identify fish aggregations from background noise uti-

lizing the patterns in the data (Figure 1), and (ii) demonstrate the ef-

ficacy of the method by comparing the output of the automated

algorithm to manually interpreted data sets by an experienced user.

Material and methods
Fisheries sonars come in various configurations, but they typically

have a cylindrical transducer that emits an acoustic signal, which

is usually focused into a horizontal fan covering 360� (Blomberg

et al., 2012). If the propagating sound wave encounters an object

with a different acoustic impedance to water, such as fish, sound

is scattered back towards the transducer (Foote, 1980). Multiple

acoustic beams are formed to obtain angular resolution

(Sherman and Butler, 2007). The orientation of the beams typi-

cally alternates between two configurations, known as the hori-

zontal and the vertical mode. In the horizontal and vertical mode

the fan of beams is arranged in a horizontal circle and a vertically

aligned sector, respectively (Tang et al., 2006). The magnitude of

the echo is recorded by the sonar for each ping, beam and range

interval and converted into volume backscattering coefficients

svð Þ (Macaulay et al., 2016).

Acoustic data
Sonar data have been stored during several acoustic-trawl surveys

from IMR (Norwegian Institute of Marine Research) monitoring

programs, including surveys targeting Atlantic mackerel (Scomber

scombrus) and Norwegian spring spawning herring (Clupea hare-

ngus). From these data, 15 cases were selected (Table 1), each rep-

resenting different challenges for automated data processing. The

challenges includes; (i) many small scattered schools of fish,

(ii) large layers covering most of the fan and often interpreted as

noise or surface reverberation, (iii) actual surface reverberation

(cf. Figure 1). Each test case consists of data collected over 4 nau-

tical miles, with the exception of case 7 (the ping repetition inter-

val was substantially longer, and the distance was extended to 12

nautical miles to compensate).

Equipment description
The fisheries sonars available during the acoustic-trawl surveys

were the Simrad SH90, SX90, or SU90 (Simrad, 2007, 2013,

2015). The sonar operation frequency and recording range varied

among surveys (Table 1). The sampling resolution along the

Figure 1. Examples of patterns in sonar data generated from fish aggregations. The data is projected onto a 2D-echogram, with range from
the vessel and time/distance travelled as y- and x-axis, respectively, and averaged across the 64 beams. When the surveying vessel move with a
constant velocity, the echo traces from fishes aggregated into schools are seen as parabolic shapes. Noise from surface reverberation is visible
approximately between 340 and 450 m range from the vessel.
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beam is independent of the sonar model, frequency, and pulse

length, and is approximately 0.37 m.

The sonars have a cylindrical transducer and generate 64

beams that receives backscattered energy. The direction of the nth

beam is /n and hn for azimuth and elevation direction, respec-

tively. n indicate the index of the beam, n 2 1; 2; . . . ; 64½ �. We

are only utilizing the horizontal mode, where both /n and hn are

fixed; specifically, /n ¼
2p n�1ð Þ

64
and hn is typically between 5 and

10� below the horizontal. The elevation angles for each dataset

are specified in Table 1. The nominal beam widths in the hori-

zontal and vertical cross-section are 8:5� and 5:3�, respectively,

for the SU90 at 30 kHz, 8:5� and 7:4� for the SX90 on the same

frequency, and 8� and 7:5� for the SH90 at 114 kHz.

Semi-automatic process
To evaluate the algorithm’s performance, we compared its output

to a reference dataset obtained with the IMR’s current standard

tool for detecting fish aggregations from fisheries sonar: the

“Processing system for omnidirectional fisheries sonar”

[PROFOS, (Pe~na et al., 2013)]. PROFOS is a module of the Large

Scale Survey System (Korneliussen et al., 2006). The software au-

tomatically “grow” schools ping by ping, but the software does

require manual intervention and we refer to the method as the

semi-automatic approach.

Several PROFOS parameters (Table 2) are adjusted during pro-

cessing to optimize detection of fish-aggregations. Typically, when

aggregations were left undetected by PROFOS or false detections

were present, and this was observed by the user, the detection pa-

rameters were adjusted and the data re-interpreted. If the combi-

nation of parameters still caused false detection or failed to detect

a visible aggregation, it was manually edited using a drawing tool

in the software. Air-bubbles generated by the propeller produce

relatively high backscattered energy, and were often proposed as

candidates for fish aggregation. To avoid this, a region in the aft-

direction was excluded from the analysis. These actions were re-

peated until the operator was satisfied with the interpreted result.

This complete exercise is coined the first interpretation.

After the first interpretation of the sonar data, the specific chal-

lenge in processing each test case was noted (cf. Table 1). In addi-

tion, the difficulty was classified into simple, moderate or hard

based on the time it took to perform the analysis. “Easy” involved

almost no manual intervention and the time needed to interpret

the output was typically <2 s per ping. For moderate and hard

the times were typically between 2 and 4 s/ping, and >4 s/ping,

respectively.

The data, interpretation mask, and coordinate system
The sonar data was structured into a 3-dimensional matrix, sv ,

with the dimensions MxNxL½ �, where M is the total number of

samples along range direction, N is the total number of beams

and L is the number of loaded pings. The notation sv;lmn is used

to refer to a single element in sv and indicates the recorded vol-

ume backscattering coefficient at the m sample in range, the n

beam and the l transmission. A binary mask w, with equal dimen-

sions as sv , is defined, where wlmn ¼ 1 when the voxel belongs to

an aggregation of fish and zero otherwise. Both PROFOS and our

method produces this mask, denoted wP and wA, respectively, for

each data set.

A geo-referenced coordinate system, with the vessel location at

the beginning of each transect as the origin, is defined (Figure 2).

The x-axis is defined to be along the transect line and positive y is

toward starboard side. By visualizing sv8wP , where 8 denotes ele-

ment by element multiplication and assuming the vessel is mov-

ing in a straight line with constant speed (typical for surveying

vessels), the trajectory of the aggregation is visible as a spiralling

parabolic shape (Figure 3).

The coordinates of the pixels in sv are given by matrix x and y,

with identical dimensions as sv . The coordinate of sv;lmn is

xlmn ¼ xsonar
mn þ xvessel

l (1)

and

Table 2. Summary of the standard parameters used in the PROFOS
semi-automatic procedure.

Parameter Units
Nominal
parameter

Parameter
used

Adaptive threshold [dB] 8 5–12
Max ping from seed – 10 3–10
Max missing pings – 1 1–4
Min/Max Dsv [dB] 2 2
Min surface area ½m2� 100 10–300
Max surface area ½m2� 30 000 30 000
Max aspect ratio – 10 2–20
Min ping count – 7 3–10

The parameters were adapted to allow visible aggregations to be detected.

Figure 2. Sketch of the geo-referenced coordinate system with
location of the vessel and sonar data pixels. The origin of the
coordinate system is at the vessel’s location at the start of a transect,
black colour. The vessel’s location at the lth measurement is shown
with a grey colour. The location of a data pixel is given with the
spherical coordinates un , hn , and rm when referred to the vessel
location. In the global coordinate system, the data pixel location is
xlmn and ylmn .
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ylmn ¼ ysonar
mn ; (2)

where xsonar
mn and ysonar

mn are the coordinates of the sv;lmn data point

relative to the vessel’s own coordinate system,

xsonar
mn ¼ rm sin hncos/n (3)

And

ysonar
mn ¼ rm sin hn sin /n; (4)

and xvessel
l is the vessel location along the transect-line. xvessel

l was

computed using the distance between the GPS location at the

start of the transect and the GPS location of the current

measurement.

The search algorithm
To automate the data processing, the spiralling parabolic shape in

time, range and bearing space is exploited (Figure 3). In image

processing, the location of imperfect lines or shapes can be found

using the Hough-transformation (Hough, 1962; Ballard, 1981).

Our algorithm has a similar concept, where all sv values originat-

ing a distance Rs from the trajectory line, i.e. the distance from

the centre of an aggregation on each ping, are integrated via

sH
aij
¼
XR

0

XtI

0

X2p

0
wijsv;lmn; (5)

where

wij ¼

1 if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xlmn � xs;ij

� �2 þ ylmn � ys;ij

� �2
q

� Rs þ rm sin
2p
64

� �� �

0 /nj j > 160o or otherwise

:

8>>>>><
>>>>>:

(6)

xs;ij and ys;ij give the location of the peak of the trajectory in the

geo-referenced coordinate system, where i is the index along

the travel distance and j the index for distance from the vessel.

The rmsin 2p
64

� �
term ensures that the two closest beams always are

included in the analysis. Similar to the semi-automatic approach,

data located in the vessel wake, i.e. /nj j > 160o, are excluded.

The algorithm searches through all data, on both sides of the

vessel and along the vessel direction, and develops a search-

matrix. This search-matrix is defined as

SH
a ¼

sH
a; 11 � � � sH

a;I1

..

. . .
. ..

.

sH
a; 1J � � � sH

a;IJ

2
6664

3
7775: (7)

If there is a fish aggregation present, the magnitude of sH
a;ij will

increase proportionally with the backscattered energy and the du-

ration the fish aggregation is visible through the background

noise (Figure 4). Also, importantly, even if the fish aggregation

disappears for several pings and reappears (cf. Figure 1), it would

still be within the same sH
a;ij and can thus be identified as the

same aggregation.

Fish aggregation identification
Removal of background noise data
Prior to estimating wA, the acoustic data need to be processed to

remove background noise and surface reverberation. Data con-

taining background noise was removed and excluded from the

analysis using

sH
a;ij ¼

sH
a;ij if sH

a;ij � nj�th

0 otherwise
;

(
(8)

were nj is the predicted noise level along the range direction,

computed using the median of sH
a;ij along the travel direction, th is

a threshold parameter.

Removal of false aggregations
The beam pattern of cylindrical transducers, with similar charac-

teristics as the ones used here, includes grating lobes when form-

ing single beams (Sherman and Butler, 2007). When viewing the

sonar display, if denser aggregations are within the volume of a

grating lobe, the aggregations would then be visible in the direc-

tion of the main lobe, i.e. in areas with no fish. Such echoes,

coined ghost schools, are visually similar to the echoes of real fish

aggregation, but they can be identified as they are always at the

same range but rotated approximately 90�, in both directions, rel-

ative to the vessel. These ghost schools are usually excluded dur-

ing manual interpretation. Strictly speaking, this is not a correct

approach if the echo integration method is used since the method

requires integration over the full beampattern of the sonar. But

since this data has been removed, and we want to compare the

automatic algorithm to the manual interpretation, we need to re-

move this data also from the automatic algorithm.

The ghost schools can also be automatically identified as they

follow a trajectory perpendicular to the real aggregations. By re-

peating Equations (2–8) twice, adding positive and negative rota-

tion in Equations (4) and (5) sequentially, the ghost schools can

be removed using

Figure 3. Illustration of interpreted data from test case 7 plotted in
time (travelled distance), range and bearing dimension. Z-axis shows
the range between the data pixel and the vessel. A beam direction of
0� indicates towards aft, positive angles towards the port side. Grey
dots are the projection of data pixels on the xy-plane.
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sH
a;ij ¼

sH
a;ij if sH

a;ij �max s
Hþp

2
a;ij ; s

H�p
2

a;ij

� �
� 0

0 else

:

8><
>: (9)

Here, s
Hþp

2

a;ij indicates the search-matrix when a 90� rotation has

been added to the beam direction, and s
H�p

2

a;ij when�90� rotation

is added.

Removal of surface reverberation and wake bubbles
The sonar system automatically adjusts the beams direction for

any offset made by vessel pitch and roll, although this adjustment

is often insufficient for larger vessel movements i.e. in bad

weather. When the beam elevation angle is near horizontal, the

movement of the vessel will cause increased surface reverberation

on several beams. The data from these beams are adversely af-

fected and were removed during the semi-automated processing,

either by adapting the parameters or manually using the drawing

tool.

Manual removal of these echoes was not an option in the auto-

mated approach, and we used the vessel’s motion reference unit

(MRU) to automate the task. A measurement was ignored when

wA
mnl ¼ 0 if Hlj j > he;l �

hBW

2

� �
or Ulj j > he;l �

hBW

2

� �
;

(10, a)

where Hl and Ul are the recorded vessel pitch and roll angle, respec-

tively, he;l a beam elevation angle and hBW the vertical beam width.

The subscript “l” indicates the lth ping. Although not part of our

test scenarios, this filter could also remove data where the sonar op-

erator has set an unfavourable direction of the beams; such as a

beam elevation angle less than half the vertical beam width.

Figure 4. Visualization of the search-matrix for test cases 1–3, where each pixel represents an integration of data around a trajectory line.
Top panel is case 1 with a difficulty classified as hard, middle panel is case 2 with moderate difficulty, and lower panel is case 3, which was
classified as easy to interpret manually. The x-axis is the distance travelled, and y-axis is the distance from port and starboard side. The colour
scale indicates the magnitude of the accumulated echo energy in log scale.
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We ignored all data located in the vessel wake when making

the search-matrix. These data are also ignored when making wA

via

wA
lmn ¼ 0 if /nj j > 160o: (10, b)

Identifying fish aggregations
To identify and count the number of unique aggregations, a den-

sity cluster algorithm [DBSCAN, (Ester et al., 1996)] was used on

the filtered output of SH
a (Figure 5). DBSCAN was chosen as no

pre-knowledge of number of clusters/aggregations are needed,

and it can identify clusters with arbitrary shapes. A single cluster

was identified when the cluster size was larger than 1 pixel, and a

single pixel was merged with an already existing cluster if the dis-

tance to the cluster was less than twice the vessel’s travel distance

between successive pings. Each cluster is identified with unique

locations in the search-matrix, xs;ij and ys;ij , and all data pixels

where the output of Equation (6) equals one are stored separately

for each cluster as a binary mask for further analysis. Two

wA were made by including the mask of all aggregations, and one

where ghost schools were excluded.

Sonar echo-integration
The echo integration method is used when evaluating the differ-

ence between our algorithm and the semi-automatic approach

(MacLennan et al., 2002). The echo integration method is typi-

cally applied to the echo sounder data when enumerating fish in

acoustic trawl surveys, and we adapt a similar technique on the

sonar data, where

sa ¼
ðR
0

ðtI

0

ð2p

0

sv wP=A d/ dt dr: (11)

Here, wP=A indicates that either the interpretation mask made

from the PROFOS output or the interpretation mask made from

the automatic algorithm is used. The similarity between our algo-

rithm and the semi-automatically protocol was tested by comput-

ing the Pearson correlation coefficient (p) for each test case when

the acoustic energy was integrated over 200-m bins.

Sensitivity analysis
The algorithm has two variables that influence the output; Rs

[Equation (6)] and th [Equation (8)]. To test the sensitivity of

these variables, the total sensitivity index [TSI, (Saltelli et al.,

2010)] was computed for each of the variables and for each test

case.

The algorithm can be described as the function y ¼ f ðRs; thÞ,
where y is the algorithm output, [Equation (10)], f being the al-

gorithm as previously described with Rs and th as variables. The

total sensitivity index of the variable th is obtained from

TSIth ¼
1

2N

PN
n¼1 f ðRs;n; thnÞ � f ðRs;n; th

S
nÞ

� �2

V ðY Þ (12, a)

and

TSIRs
¼

1
2N

PN
n¼1 f ðRs;n; thnÞ � f ðRS

s;n; thnÞ
� �2

V ðY Þ (12, b)

for the variable Rs . N is the number of times the algorithm is ini-

tialized with a different set of variables, and V ðY Þ is the variance

of all outputs. Rs;n 2 5; 35½ � and thn 2 2; 31½ � in linear values,

where the value used for each initialization is selected using the

quasi-random sobol sequence (Morokoff and Caflisch, 1994).

The superscript “S” indicates that a second quasi-random sobol

sequence was used for these variable inputs.

Results
The method was validated by comparing the automated pro-

cessed data, using th ¼ 2:5 in Equation (8), with data from the

semi-automatic process and testing the sensitivity of the output

to the parameters.

The accumulated backscattered energy along the vessel track

was computed using both wP and both versions of wA in 200-m

bins (Figure 6) and for the whole data set (Figure 7). This initial

comparison revealed, in some cases, large differences between the

accumulated backscattered energy. In these cases, the manual in-

terpretation was revisited and corrected in a second inspection,

increasing the processing time by 4 s per ping. Note, the difficulty

levels indicated in Table 1 were not updated with this additional

time. The integration line and the total accumulated energy was

re-computed [Equation (11)] using both the original and an

updated wP (Figures 6 and 7). The similarity between the

Figure 5. Locations, in the geo-referenced coordinate system, of data classified as fish aggregation in test case 3. Unique fish aggregations are
identified using the DBSCAN clustering algorithm. For an easier visual interpretation, random colouring was used on each cluster.
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automatic algorithm, when ghost schools were removed, and the

two versions of wP was computed for each case (Table 3), result-

ing in a mean Pearson correlation coefficient (p) of 0.76 and 0.85,

for the uncorrected and the corrected cases, respectively.

The index of the two total sensitivity coefficients, Equation

(12a and b), were computed for each test case (Figure 8). The av-

erage between the test cases were 1.5 and 0.1, for

TSI th and TSI rs , respectively, demonstrating that results of the

algorithm is less sensitive to RS than th.

Discussion
We have demonstrated that a pattern through range, time and

space domain can be exploited to automatically detect fish aggre-

gations in sonar data. The method was compared with the tradi-

tional method (Trygonis et al., 2009; Pe~na et al., 2013), that only

search locally in the space domain and require manual interac-

tions. Integrating all data categorized as fish, using both methods,

did revealed discrepancies between the methods (Figures 6 and

7). Overall, the automatic processing algorithm tends to catego-

rise more acoustic energy as fish.

In most of the test cases, the output of the two methods was

similar (p> 0.8, Table 3), but the traditional algorithm did re-

quire substantial manual intervention in several of the cases, i.e.

1, 6, and 9. In addition, a second pass of the semi-automated pro-

cess reduced the difference between the two methodologies

(Figure 7 and Table 3), adding further processing time to obtain

Figure 7. The accumulated sv , normalized for travel distance, of all
data classified as fish aggregation for each test case using the
automatic method corrected for ghost schools (cross), the semi-
automatic method (circle), and the corrected version of the semi-
automatic method (star). Small offset has been added to the x-axis
values to separate the output from each of the three methods.

Figure 8. Total sensitivity index for th (black bars) and Rs (grey
bars), computed for all test cases.

Figure 6. The accumulated echo energy of all data in test case 6
classified as fish aggregation along the vessel’s path using either the
automatic algorithm (black) or the semi-automatic approach (grey).
Corrected data are indicated with thinner lines.

Table 3. The Pearson’s correlation coefficient (p) for each test case
using the integrated output from both the automatic process and
the semi-automatic process.

Original Corrected

Case 1 0.6423 0.7711
Case 2 0.5793 0.8551
Case 3 0.9961 0.9961
Case 4 0.9560 0.9700
Case 5 0.9958 0.9958
Case 6 0.8613 0.9805
Case 7 0.8897 0.8904
Case 8 0.7315 0.7839
Case 9 0.6144 0.6812
Case 10 0.4818 0.7560
Case 11 0.8457 0.8435
Case 12 0.6685 0.7170
Case 13 0.8501 0.8578
Case 14 0.7657 0.8786
Case 15 0.7232 0.7913

“Original” indicates the data has been interpreted once with the semi-auto-
matic process, and “corrected” that the interpretation has been revisited. The
mean p across data sets was 0.75 for the original and 0.85 for the corrected
datasets, where p � 0:8 indicates a reasonable similarity between the two
methods.
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reliable results. The cause of the discrepancy was typically aggre-

gations not detected due to an inadequate setting in the semi-

automated process combined with overlooking this in the manual

quality control (Table 2). For large aggregation of fish, such as

layers extended through the whole detection volume of the sonar,

the local search would categorise this as noise. Although the sec-

ond pass was motivated by a difference between the two methods,

the second pass did reveal aggregations that were missed (roughly

20–30% of the pings in the worst cases) in the initial run. The ex-

cluded vessel wake area can be included in both methods, i.e. ig-

noring Equation (10.b); however, no notable difference was seen

in the results when including this area. Therefore, we have con-

cluded that the traditional algorithm does not have the necessary

consistency as it is subject to the experience of the user and time

invested to process the data. In contrast, the fully automatic algo-

rithm will always, unless the input variables are altered, produce

the same result for each initialization.

The sensitivity was dominated by the threshold level (th)

(Figure 8), and a procedure to set the parameters is needed.

Ideally, the value of the variables should be set by minimizing the

differences between the semi-automatic and the automated pro-

cess, but the semi-automated method was too inconsistent for

such an approach. Instead, we propose to use the approach we

used when evaluating the method: First run a pass with the auto-

mated method on a subset of the data, then manually review and

update the interpretation, and use the reviewed set as basis for

the selection of the parameters on the rest of the data.

We have demonstrated that the automated algorithm outper-

forms the current semi-automatic operation on our acoustic-

trawl surveys in two aspects. First, the automatic algorithm is

more consistent. This result is important since consistency is im-

perative when tracking a population over time and space. Second,

our algorithm will significantly reduce processing time. With a

sonar ping interval of once per second, roughly 16 continuous

weeks is needed to thoroughly process 2 weeks of data. In con-

trast, automatic algorithm allows real time processing. For re-

search surveys, this time would be better spent to monitor the

performance of the automated method and improve parameteri-

zation of the method.

The core of the method, as it has been described here, utilizes

patterns of stationary aggregations when the vessel is moving in

straight lines. If the vessel course is changed, i.e. when circumnav-

igating single aggregations of fish, a search-matrix can still be de-

veloped by integrating all backscattering data originated at

specific locations in a geo-reference coordinate system. The same

procedure to isolate aggregations form the search-matrix can

then be applied.

Some biases, such as fish avoidance and the blind zone (Soria

et al., 1996; Scalabrin et al., 2009; Totland et al., 2009; De Robertis

and Handegard, 2013; Pe~na et al., 2013) ,which are thought to be

major contributors on the stock assessment’s total uncertainty, are

measurable using these sonars. The avoidance behaviour of

Norwegian spring spawning herring is estimated to contribute

16.5–41% of the total uncertainty (Løland et al., 2007). Timeseries

with interpreted sonar data can, in this context, either as an inde-

pendent estimate or as a supplement to the echo sounder esti-

mates, be used to quantify if the blind zone or avoidance

behaviour is significantly different between years, time of the year,

and location. Also, processed sonar data can yield insights into

temporal and spatial variability of grouping behaviour and aggre-

gation in terms of density, size and distance between aggregations.

Conclusion
A method for automatic detection of fish aggregations within

fisheries sonar data has been developed. The algorithm can be

run with very limited user intervention and is thus much more ef-

ficient and more objective than the traditional semi-automatically

data processing procedures. We envision that this approach will

enable us to test and validate fisheries sonar as a major tool on

acoustic trawl surveys.
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