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High protein diets have become popular for body weight maintenance and weight

loss despite controversies regarding efficacy and safety. Although both weight gain

and weight loss are determined by energy consumption and expenditure, data from

rodent trials consistently demonstrate that the protein:carbohydrate ratio in high fat diets

strongly influences body and fat mass gain per calorie eaten. Here, we review data

from rodent trials examining how high protein diets may modulate energy metabolism

and the mechanisms by which energy may be dissipated. We discuss the possible

role of activating brown and so-called beige/BRITE adipocytes including non-canonical

UCP1-independent thermogenesis and futile cycles, where two opposing metabolic

pathways are operating simultaneously. We further review data on how the gut microbiota

may affect energy expenditure. Results from human and rodent trials demonstrate that

human trials are less consistent than rodent trials, where casein is used almost exclusively

as the protein source. The lack of consistency in results from human trials may relate

to the specific design of human trials, the possible distinct impact of different protein

sources, and/or the differences in the efficiency of high protein diets to attenuate obesity

development in lean subjects vs. promoting weight loss in obese subjects.

Keywords: brown adipose tissue (BAT), diet, futile cycles, high protein diets, human, obesity, mouse, weight loss

INTRODUCTION

It has for long been known that dietary protein content influences energy efficiency and thereby
the energy cost for weight gain (Stock, 1999). High protein diets represent a popular alternative to
energy restriction for body weight maintenance and weight loss. For instance, the Atkins diet books
have sold more than 45 million copies. The Atkins diet and similar diets such as the Stone-age diet
claim to be effective despite ad libitum consumption of high energy food items, such as fatty meat,
oils, and butter, as long as the intake of carbohydrates remains lower than 50 g per day. This has
in part been explained by the high satiating effect of high protein meals (Veldhorst et al., 2008;
Cuenca-Sánchez et al., 2015). However, pair-feeding experiments in mice strongly suggest that
increased satiety and reduced energy-intake cannot fully explain why a high protein:carbohydrate
ratio in high fat diets attenuates obesity development in mice (Madsen et al., 2008, 2017; Ma et al.,
2011; Qin et al., 2012). Moreover, additional effects related to increased energy expenditure of diets
with high protein and low carbohydrate content have been claimed in humans (Buchholz and
Schoeller, 2004;Westerterp-Plantenga, 2008; Pesta and Samuel, 2014), and based onmeasurements
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in metabolic chambers it was recently demonstrated that excess
energy in the form of protein stimulated 24 h energy expenditure
in men and women (Bray et al., 2015).

Taking the physical laws of energy into account, both weight
gain and loss are inevitably related to consumption and use
of energy. Considering the proposed positive effect of high
protein diets, however, it is important to note that energy
from different macronutrients may be lost to a different extent
by heat generated by processing. Whereas, the thermic effects
of lipids and carbohydrates are reported to be within the
range of 2–3 and 6–8%, respectively, the thermic effect of
proteins is reported to be 25–30% (Jequier, 2002). In addition
to physical activity, energy in form of ATP may furthermore be
lost in so-called “futile cycles” where two opposing metabolic
pathways, such as synthesis and degradation of proteins and
esterification of fatty acids and lipolysis of triacylglycerols
are operating simultaneously. Energy may also be lost to the
environment in form of heat via the action of uncoupling protein
1 (UCP1), present in brown and brown-like adipocytes termed
BRITE (Petrovic et al., 2010) or beige adipocytes (Ishibashi
and Seale, 2010; Wu et al., 2012), which uncouples oxidative
phosphorylation by dissipating the proton gradient across
the inner mitochondrial membrane. Historically, UCP1 was
identified as the protein responsible for uncoupled respiration
and heat generation in interscapular brown adipose tissue
(iBAT), and cold exposure or administration of β-adrenergic
agonists was subsequently reported to induce expression of
UCP1 in formally white adipose tissue (WAT), especially in
subcutaneous inguinal white adipose tissue (iWAT), a process
termed browning, and UCP1 was considered essential for non-
shivering thermogenesis and increased energy expenditure in
response to cold (for a review see Cannon and Nedergaard,
2004).

Further, recent research has demonstrated additional UCP1-
independent mechanisms increasing thermogenesis and energy
expenditure via creatine-driven substrate cycling (Kazak et al.,
2015, 2017; Bertholet et al., 2017) or Ca2+ cycling via the
sarco/endoplasmatic reticulum Ca2+-ATPase 2b (SERCA2b) and
the ryanodine receptor (Ikeda et al., 2017). Hence, by activation
of these mechanisms it is possible to consume more energy
without an accompanying weight gain. Remaining questions in

this context are how such increased energy expenditure escapes
the normal regulatory mechanisms aiming at maintaining energy
balance, and how intake of high protein diets possibly affects

this normally finely tuned homeostatic balance. So far, no

comprehensive answers to these important questions have been
presented, but clearly approaches to provide such answers are
warranted.

Here we review mechanisms by which high protein diets
may modulate energy metabolism including the possible role of

activating brown and BRITE adipocytes, futile cycles, and UCP1-
independent mechanisms. We also review recent data showing
how the gut microbiota may impact on energy expenditure.

We further discuss the lack of consistency in human trials in
relation to the rodent trials demonstrating a huge difference in
the potential of different protein sources to attenuate obesity
development.

RODENT TRIALS

High Protein Diets, Attenuation of Obesity,
and Weight Loss in Rodents
A number of rodent studies by us and others has demonstrated
that a high protein:carbohydrate ratio prevents high fat diet
induced obesity with an accompanied reduced feed efficiency
(Marsset-Baglieri et al., 2004; Morens et al., 2005; Pichon et al.,
2006;Madsen et al., 2008;Ma et al., 2011; Freudenberg et al., 2012,
2013; McAllan et al., 2014). For instance, whereas mice fed a high
fat diet with low protein:carbohydrate ratio gained 14.7 g body
weight per Mcal eaten, mice fed an isocaloric high fat diet with
a high protein:carbohydrate ratio gained only 2.2 g body weight
per Mcal eaten (Madsen et al., 2008).

The vast majority of obesity-related rodent trials have
investigated attenuation of and protection against obesity
development and the efficiency of different diets to reverse
obesity is far less studied (Figure 1). Inevitably, caloric restriction
(Gao et al., 2015), exercise, and low fat diets promote weight
loss (Jung et al., 2013), and it was suggested that weight loss
is accompanied by browning of the WAT (Figure 1) (Pérez-
Martí et al., 2017). Information on the efficiency of high protein
diets to reverse or attenuate further obesity development is
very limited. One article reported that increasing the protein
content using whey, soy, red meat, or milk as the protein
source to 30% at the expense of carbohydrate maintaining fat
content at 40% did not reduce adipose tissue mass in already
obese mice, but attenuated weight gain in a protein-dependent
manner (Huang et al., 2008). Thus, when obese mice were fed
whey as the protein source they gained less weight than when
soy or red meat was used as protein source. The authors did
not measure Ucp1 expression or energy expenditure, and they
suggested that increased adiponectin and decreased appetite may
explain the stabilized adiposity in whey fed mice. Using low
fat diets, we have demonstrated that the protein source may be
of importance in reducing obesity, as intake of a low fat diet
with casein, but not pork, reduced diet-induced obesity (Liisberg
et al., 2016b). Hence, although diets with a high content of casein
efficiently attenuate high fat diet induced obesity, no evidence
of an obesity reversing effect of high protein diets has been
published.

Anti-obesogenic Properties of Different
Protein Sources in Rodents
There is little knowledge as to how the protein source may
modulate the response to high protein intake. In experiments
using obesogenic diets with regular protein amounts, it has been
demonstrated that protein from vegetable sources, milk protein,
and proteins from seafood are less obesogenic than proteins from
terrestrial animals, and this is associated with reduced energy
efficiency (Figure 2) (Tastesen et al., 2014a,b; Holm et al., 2016;
Liisberg et al., 2016a). However, rodent experiments, where the
protein:carbohydrate ratio is increased, are in general performed
using casein or whey as protein sources, and recent experiments
indicate that casein and whey may not be representative. We
have demonstrated that feeding obesity-prone C57BL/6J mice
a high fat high protein diet using casein, soy, or filets of
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FIGURE 1 | Caloric restriction and weight loss in obese individuals. Human

studies involving reduced energy intake suggest calorie restriction to be the

most successful dietary strategy for body weight loss. In rodents much less is

known regarding the induction of weight loss in obese rodents due to the

limited number of studies examining dietary interventions in already obese

animals. However, a mechanistic study evaluating the impact of calorie

restriction in mice has demonstrated weight loss to be dependent on browning

of the white adipose tissue.

cod, beef, chicken or pork as protein sources led to striking
differences in obesity development at thermoneutral conditions
(Liisberg et al., 2016b). Casein was the most efficient protein
source preventing weight gain and accretion of adipose mass,
whereas mice fed high protein diets based on “white meat”
(lean pork or chicken filets) gained the largest quantities of
adipose tissue. Of note, iBAT in pork fed mice was composed
of large unilocular “white-like” adipocytes. In casein fed mice,
the classic brown adipose tissue phenotype/appearance of the
iBAT was preserved with multilocular adipocytes and high
UCP1 expression even at thermoneutrality. Further, the casein-
induced reduction in adiposity is associated with a reversal
of the obesity-induced whitening of adipocytes in iBAT and
induction of UCP1 expression. Similarly, intake of high protein
diets based on beef, casein and soy protein was also shown
to elicit markedly different responses in relation to lipid
metabolism and composition of the gut microbiota (Ijaz et al.,
2018). Compared to other protein sources, casein seems to
stand out either by maintaining a β-adrenergic tone or by
eliciting effects via β-adrenergic independent pathways still
to be identified accompanied with high expression of genes
involved in a futile recycling of fatty acids, including GYK
(Liisberg et al., 2016b). The GYK-dependent futile cycle may be
activated without a concomitant upregulation ofUcp1 expression
and may play a key role in regulation of the metabolic
flexibility, not only in adipocytes, but in the entire organism.
Furthermore, it is not known if different protein sources
differentially activate creatine and/or SERCA2b-dependent Ca2+

cycling.

Potential Mechanisms by Which High
Protein Diets May Attenuate Obesity in
Rodents
High protein diets may modulate energy efficiency and
thermogenesis by several mechanisms. UCP1-dependent
generation of heat in BAT through non-shivering thermogenesis
unquestionable plays an important role in enabling rodents
to defend their body temperature (Cannon and Nedergaard,

2004) and thereby also affecting energy efficiency. Thus, several
different genetically modified animal models with increased

capacity for non-shivering thermogenesis are protected against
diet-induced obesity (Harms and Seale, 2013). A link between

UCP1 and dietary composition of macronutrients has been

demonstrated in a number of studies, where rodents fed
high protein diets exhibited attenuated obesity development

accompanied by increased UCP1 expression and energy
expenditure. Using casein-based diets with five different
protein:carbohydrate ratios, it was demonstrated in mice that
the body surface temperature and expression of UCP1 as well

as PGC1α and DIO2, both key regulators of thermogenesis,

increased in iBAT with increasing protein content in the feed.
Mice fed the highest protein content gained less weight, whereas
mice fed a so-called “balanced” protein to carbohydrate ratio had
the highest weight gain and most pronounced adiposity (Huang
et al., 2013).

In a short term experiment with rats given high protein diets,
Petzke et al., demonstrated lower weight gain accompanied with
higher overnight energy expenditure and oxygen consumption

(Petzke et al., 2007). The expression of UCP1was not significantly
elevated in the high protein fed rats after 4 days of feeding

compared with rats fed feed with lower protein content.
Still, Ucp1 mRNA levels correlated with night-time oxygen
consumption, energy expenditure, and nitrogen intake. In long

term experiments, the same group demonstrated increased Ucp1
mRNA expression in iBAT by high protein feeding (Petzke
et al., 2005). Also in these rats, Ucp1 expression levels positively
correlated with energy expenditure and oxygen consumption in
the dark period. However, even though intake of a high dietary
protein:carbohydrate ratio also attenuates obesity development
during an entire life-span in mice, no increase of UCP1
expression in iBAT or iWAT was reported in these experiments
(Keipert et al., 2011; Kiilerich et al., 2016),

A considerable number of experiments has failed to detect
an increased level of Ucp1 mRNA expression in iBAT despite
attenuated obesity and reduced energy efficiency (Madsen et al.,
2008; Ma et al., 2011; Freudenberg et al., 2012; Hao et al., 2012;
Liisberg et al., 2016b). However, expression levels of Ucp1 do
not necessarily follow the thermogenic capacity (Nedergaard
and Cannon, 2013), and we have in some experiments, despite
no detectable induction of Ucp1 mRNA expression, observed
increased levels of UCP1 protein using immunohistochemistry
and western-blotting in high protein fed mice (Liisberg et al.,
2016b).

In male C57BL/6 mice, Klaus reported that development of
high fat diet-induced obesity was delayed, but not prevented
by increasing the protein:carbohydrate ratio (Klaus, 2005). In
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FIGURE 2 | The impact of high protein intake and the source of proteins on obesity development. In rodent studies, several mechanisms are suggested to be

involved, including brown adipose tissue, browning of the white adipose tissue, the gut microbiota, and different UCP1-independent futile cycles in the white

adipocytes, such as simultaneous gluconeogenesis and glycolysis, protein degradation and synthesis, the futile creatine-driven substrate cycles, or the triacylglycerol

breakdown and re-synthesis. The impact on obesity in response to processes dependent on UCP1 has been demonstrated to be temperature-dependent.

this experiment, a lower respiratory quotient indicated higher
oxidation of fat in protein fed mice, but no differences in
energy expenditure were detected. It should be noted that the
findings of many studies reporting that high protein diets do not
result in a significant increase in UCP1 expression or activity in
iBAT are consistent with early demonstrations that unlike the
activation of the central nervous system (CNS) observed with
dietary carbohydrate and fat, the CNS response to dietary protein
in iBAT is absent or minimal (Kaufman et al., 1986). Whether
this is due to the higher protein per se or to lower contents of
carbohydrate or fat in these diets is unknown. However, reducing
the carbohydrate content, without a concomitantly increased
protein content did not appear to be sufficient for increased
thermogenic capacity in rats (Betz et al., 2012).

A number of studies has reported on increased expression of
Ucp1 and other markers of a brown-like phenotype in iWAT
in response to increased intake of dietary protein (Madsen
et al., 2008; Ma et al., 2011; Hao et al., 2012). This browning
of WAT together with induction of UCP1 was associated with
a reduced propensity to develop obesity accompanied with
improved metabolic health (Harms and Seale, 2013). However, it
has been argued that at least after cold exposure all mitochondria
of iWAT only correspond to approximately 30% of the total

number of mitochondria in iBAT (Shabalina et al., 2013). Still,
high emergence of BRITE cells is a feature of mouse strains
resistant to diet-induced obesity (Collins et al., 1997; Guerra et al.,
1998). Further, the lean phenotype associated with aP2-driven
expression of UCP1 is linked to increased energy dissipation in
WAT (Kopecký et al., 1996b). Endogenous UCP1 expression as
well as the respiration rate is actually reduced in iBAT from these
mice (Kopecký et al., 1996a).

Resistance against high fat diet-induced obesity is
demonstrated in several genetically modified mice associated
with an increased occurrence of BRITE adipocytes in former
WAT, such as mice deficient in RIP140 (Leonardsson et al.,
2004), Caveolin (Razani et al., 2002), FSP27 (Toh et al., 2008),
HSL (Ström et al., 2008), RB (Hansen et al., 2004; Dali-Youcef
et al., 2007; Mercader et al., 2009), and p53 (Hallenborg et al.,
2016). Interestingly, the thermogenic activity in iBAT of these
modified strains was unchanged or reduced. It may also be
noted that depletion of BRITE adipocytes by PRDM16 ablation
in mice leads to moderate obesity (Cohen et al., 2014). For an
extensive list of genes affecting formation of BRITE adipocytes,
see (Harms and Seale, 2013). However, it is a distinct possibility
that the blunted development of obesity in these studies with no
detectable induction of UCP1 expression in BRITE or brown
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adipocytes may be caused by UCP1-independent mechanisms
including creatine-driven cycles and/or SERCA2b-dependent
Ca2+ cycling, and future studies on the possible involvement
of such mechanisms in response to intake of high protein diets
would clearly be of interest.

Assessing the obesogenic capacity of different diets at different
housing temperatures may also contribute to an understanding
of the mechanisms by which diets influence obesity development.
The importance of UCP1 and diet-induced thermogenesis during
high protein feeding may only be clearly manifested in mice
kept at thermoneutrality (28–30◦C). Cold-sensitive mice lacking
UCP1 are not more obesity prone than wild type mice when
fed a high fat diet and kept at 21◦C (Enerback et al., 1997).
However, at 30◦C, the Ucp1-KO mice are more susceptible
to obesity than their wild type littermates and become by far
more obese, demonstrating the importance of UCP1 for diet-
induced thermogenesis and prevention of obesity development
(Feldmann et al., 2009). Compared with thermoneutrality,
housing at standard vivarium temperatures, 20–22◦C, leads
to higher food intake required to meet the increased energy
demand for thermogenesis (Cannon and Nedergaard, 2004;
Fischer et al., 2018). Increasing the protein:carbohydrate ratio in
high fat diets attenuate obesity development and increase UCP1
expression in mice kept at both 22◦C (Madsen et al., 2008) and
at thermoneutrality (Ma et al., 2011), but obesity development
and feed-efficiency in mice kept at the two different temperatures
have not yet been directly compared. Such comparison may be
useful in determining the mechanisms by which high protein
diets mediate their anti-obesogenic effects.

Whereas UCP1-dependent uncoupled respiration in iBAT
is crucial during cold exposure, recent results has convincingly
demonstrated that UCP1-independent thermogenesis and
increased energy expenditure are associated with BRITE
adipocytes (for recent reviews see Ikeda et al., 2018; Sponton
and Kajimura, 2018). Thus, it is possible that such UCP1-
independent processes may also contribute to the decreased
energy efficiency in response to intake of high-protein diets.
This notion also extends to loss of fat mass in response to
caloric restriction, which has been shown to be dependent on
browning (Fabbiano et al., 2016). Still, although it is evident
that feeding mice high protein diets reduces energy efficiency,
further investigations are required to determine the importance
of energy dissipation in form of heat by activation of UCP1 or
UCP1-independet processes in BRITE adipocyte, but evidence
from studies on the SERCA2b-dependent Ca2+ cycling would
suggest that the contribution of this process may account for
much of the diet-induced thermogenesis in BRITE adipocytes
(Ikeda et al., 2018; Sponton and Kajimura, 2018).

Temperature may also affect the process of browning by
changing the composition and function of the gut microbiota.
It was initially observed that germ-free mice were resistant to
high fat diet-induced obesity (Bäckhed et al., 2004). Interestingly,
it has been shown that antibiotics-mediated depletion of the
gut microbiota promoted browning of iWAT and perigonadal
WAT (pWAT) in lean and obese mice, and increased browning
was also observed in germ-free mice by the Trajkovski group
(Suarez-Zamorano et al., 2015). Surprisingly, the same group also

reported that exposure to cold resulted in major changes in the
composition and function of the gut microbiota in mice and that
transplantation of the gut microbiota from cold-adapted mice
to germ-free mice by co-housing increased browning of iWAT
and pWAT (Chevalier et al., 2015). Similarly, the Bäckhed group
reported that cold exposure drastically altered the composition of
the gut microbiota accompanied by an attenuated propensity for
diet-induced obesity, and the obesity-resistant phenotype could
be transferred to germ-free mice by fecal transplantation (Zietak
et al., 2016). However, in this case the most pronounced effect in
terms of inducing UCP1 expression was observed in iBAT, and in
addition, increased fatty acid oxidation was observed in the liver
(Zietak et al., 2016).

Although commonly used in commercial available rodent
feed, casein and whey protein, appear to possess anti-obesogenic
properties (Lillefosse et al., 2014; Tastesen et al., 2014b; Pezeshki
et al., 2015; Liisberg et al., 2016b; Singh et al., 2016). This may
be related to the high content of the branched-chain amino
acids (BCAA). BCAA is reported to increase the abundance of
Akkermansia and Bifidobacterium in the gut (Yang et al., 2016).
High levels of both A. muciniphilia (Everard et al., 2013; Shin
et al., 2014) and some strains of Bifidobacteria (An et al., 2011;
Wang et al., 2015; Li et al., 2016) have been reported to protect
against diet-induced obesity.

BCAAs may also directly affect metabolism, as inclusion of
BCAAs attenuates high fat diet induced obesity in rats (Newgard
et al., 2009) and mice with a disrupted mitochondrial branched
chain amino transferase gene exhibit chronic elevated levels of
BCAAs in blood and have increased energy expenditure (She
et al., 2007). The importance of BCAA is further supported
by studies from Freudenberg et al. demonstrating that adding
leucine to a high fat diet with regular protein content to a
level matching a diet with high content of whey attenuated
obesity development (Freudenberg et al., 2012, 2013). However,
equimolar supplementation with alanine decreased body fat mass
gain to the same extent (Freudenberg et al., 2013; Petzke et al.,
2014). Hence, at least some of the observed effects are not
specifically related to BCAA, but rather increased amino nitrogen
consumption. Together, animal studies indicate that casein and
whey have anti-obesogenic properties compared with other
protein sources. Hence, studies investigating the effect of high
protein diets using casein or whey may not be representative.
In fact, high fat high protein diets with meat appear to promote
obesity development (Pezeshki et al., 2015; Liisberg et al., 2016b;
Madsen et al., 2017; Ijaz et al., 2018).

In mice fed either standard low fat diets, or high fat
diets with high or low protein:sucrose ratio, the dietary
fat content is a stronger driver of the composition of
the gut microbiota than the protein:sucrose ratio (Kiilerich
et al., 2016). However, still certain phylotypes within the
Clostridiaceae family (Anaerovorax, Bryantella, C. herbivorans,
C. sphenoides, C. leptum, and C. symbiosum) were found
to characterize the gut in high protein fed mice (Kiilerich
et al., 2016). Whether the accompanied high protein induced
changes in energy expenditure and/or UCP1 expression are
linked to the observed changes in gut microbiota composition
requires further investigations. It should be mentioned, however,
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that a high dietary protein content in diets with regular
fat content led to decreased abundances of Akkermansia
muciniphila, Bifidobacterium, Prevotella, Ruminococcus bromii,
and Roseburia/Eubacterium rectale, and thereby a decreased
number and activity of propionate- and butyrate-producing
bacteria in rats (Mu et al., 2017). This would be counteractive
in terms of obesity, as Akkermansia muciniphilia (Everard et al.,
2013; Shin et al., 2014), and short chain fatty acids are reported
to attenuate diet induced obesity in mice (Lin et al., 2012; Lu
et al., 2016) and have been associated with protection against
diet-induced obesity and associated metabolic disorders in part
by increased energy expenditure and thermogenesis (Gao et al.,
2009). Thus, as high protein feeding modulates the composition
of the gut microbiota, it is possible that such changes contribute
to the reduced accumulation of fat, but it also remains to be
investigated to what extent creatine-driven cycling or SERCA2b-
dependent processes following browning contributes to these
observed physiological phenotypes.

Apart from creatine and Ca2+ cycling discussed above,
energy may also be lost in an UCP1-independent manner
by futile cycling of fatty acids. Re-esterification of fatty acids
into triacylglycerol following lipolysis occurs in both humans
and rodents (Figure 3). This process of triacylglycerol/fatty
acid cycling is a futile cycle as 6 ATPs are required for re-
synthesis of one triacylglycerol molecule. Work from Kopecky’s
laboratory has demonstrated that the ATP required for both
triacylglycerol/fatty acid cycling as well as the associated de novo
synthesis of fatty acids is produced by oxidative phosphorylation
in white adipocytes (Kuda et al., 2018). Their work suggested
that the UCP1-independent energy dissipation linked to futile
triacylglycerol/fatty acid cycling may contribute to non-shivering
thermogenesis as well as the observed amelioration of obesity
induced by calorie restriction combined with the intake of
omega-3 fatty acids. Of note, cold exposure leads to induction of
genes involved in both triacylglycerol synthesis as well as de novo
lipogenesis in WAT (Hao et al., 2010; Kiskinis et al., 2014; Gao
et al., 2015; Flachs et al., 2017).

Intake of diets with high protein:carbohydrate ratio is
accompanied by increased expression of genes involved in
futile recycling of glycerol and fatty acids in iBAT (Liisberg
et al., 2016b). Re-esterification of fatty acids into triacylglycerols
within adipocytes also requires a continuous supply of glycerol-
3-phosphate (Figure 3). Possibly, to avoid re-esterification of
glycerol, and thereby futile cycling of triacylglycerol in adipose
tissue, glycerol kinase (GYK) expression and activity is absent
or low in adipose tissue. However, PPARγ activating drugs, such
as thiazolinediones, induce the expression of GYK in adipocytes
(Guan et al., 2002), and more studies have demonstrated that
GYK expression in adipocytes is controlled by PGC-1α and
PPARα (Mazzucotelli et al., 2007). In addition to increased Ucp1
expression in eWAT, energy loss due to increased expression
of GYK and other genes involved in the futile cycling of
triacylglycerol breakdown and synthesis was suggested to explain
the lean phenotype of mice lacking RIP140 (Leonardsson et al.,
2004). Using casein as the protein source, we have observed
that a high protein:carbohydrate ratio in a high fat diet is
accompanied by increased expression levels of GYK and other

FIGURE 3 | Schematics of futile cycling of triacylglycerol (TAG) breakdown

and re-synthesis. Re-esterification of fatty acids into triacylglycerol requires 6

ATPs for re-synthesis of one triacylglycerol molecule following lipolysis. The

re-synthesis of triacylglycerols from fatty acids also requires a supply of

glycerol-3-phosphate (Glycerol-3-P), which may be produced from

dihydroxyacetone-phosphate (DHAP) or originate from glucose via the

glycolytic pathway, from pyruvate, or glycerol by the action of glycerol kinase

(GYK).

genes involved in a futile recycling of glycerol and fatty acids
in iBAT (Liisberg et al., 2016b). We have suggested that futile
cycling of triacylglycerol breakdown and re-synthesis supports
the enhanced uncoupled respiration and thereby plays a part in
mediating the anti-obesogenic effect of certain high protein diets.
Of note, the diets used by us were not carbohydrate free, and
GYK-expression may be related to a more brown phenotype and
possibly higher sympathetic flow.

When the intake of carbohydrates is low, the ratio of
circulating insulin:glucagon is low and glucose may be provided
by hepatic gluconeogenesis via activation of hepatic PGC-
1α (Herzig et al., 2001; Yoon et al., 2001; Puigserver et al.,
2003). Hence, when intake of carbohydrates is sufficiently
low, gluconeogenesis and glycolysis may occur simultaneously.
Gluconeogenesis requires a higher number of ATP molecules
than provided by glycolysis. Further, a concomitant conversion of
protein tometabolites thatmay enter gluconeogenesis may occur.
Protein is converted to glucose at a cost of 4–5 kcal/g protein
(Fine and Feinman, 2004), and this may contribute to reduced
feed efficiency. We have earlier demonstrated that a reduced
circulating insulin:glucagon ratio was accompanied by increased
expression of PGC-1α and gluconeogenesis in the liver of high
protein fed mice and suggested that this may contribute to the
lean phenotype in these mice (Madsen et al., 2008). The increased
glucagon:insulin ratio observed in mice fed a high proportion
of casein may further lead to reduced insulin signaling in
adipose tissue. This may be of particular importance, as studies
in mice with fat-specific disruption of the insulin receptor
gene have demonstrated that insulin signaling in adipocytes
is crucial for development of obesity (Blüher et al., 2002).
Furthermore, prevention of hyperinsulinemia is demonstrated
to protect against diet-induced obesity in Ins1+/−:Ins2−/−
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mice (Mehran et al., 2012). Concomitantly, enhanced cAMP-
dependent signaling and PKA activation in adipose tissues may
occur as we have observed increased phosphorylation of CREB
and enhanced expression of the canonical cAMP-responsive
genes, cAMP-responsive element modulator and cAMP-specific
phosphodiesterase 4c, in both white and brown adipose tissue
(Madsen et al., 2008). Hence, processes required to efficiently
store fat may be inhibited.

Feed efficiencymay also be reduced by simultaneous increased
protein degradation and synthesis as observed in mice with
disrupted branched-chain amino acid metabolism (She et al.,
2007). In addition, both protein synthesis and proteolysis are
energy demanding processes (Reeds et al., 1985). In men, it
has been reported that repeated intake of a high protein meals
after fasting led to a higher thermic response and nitrogen
turnover compared to what was observed after repeated intake of
carbohydrate richmeals (Robinson et al., 1990). Using theoretical

estimates of ATP requirements, the authors suggested that
increased protein synthesis accounted for more than 65% of
the thermic response after high protein meals. An increased
catabolism of amino acids requires ATP to dispose of nitrogen
as urea at an energy cost of 1.33 kcal/g urea. In mice, increased
intake of water and accompanied increased production of urea
have been observed in high protein fed mice (Madsen et al.,
2008). Interestingly, increased water intake has been associated
with reduced obesity (Thornton, 2016). It is proposed that
increased water intake, in addition to reducing food intake, can
activate thermogenesis via release of atrial natriuretic peptide
(Thornton, 2016).

Together, published results from rodent studies suggest that
high protein diets can lead to increased energy expenditure by
several mechanisms, including activation of brown and so-called
BRITE adipocytes. As discussed above, recent findings would
indicate that BRITE adipocytes seem to play a greater role than

TABLE 1 | A selection of Randomized Controlled Trials investigating the long-term effects of high-protein diets on body weight.

References Population Design Intervention groups

(protein, carbohydrate,

fat)

Energy restricted

(kcal day)

Duration

(months)

Drop

out

Body weight

reduction

pre-post (kg)

P-between

groups

Skov et al.,

1999

N = 65 (15M, 50 F)

18–56 y

BMI: 25–34 kg/m2

RCT, parallel 1) HP/LF (25, 45, 30 E%)

2) LP/LF (12, 58, 30 E%)

No 6 8% 1) −8.9

2) −5.1

<0.001

Due et al.,

2004

N = 50

19–55 y

BMI: 26–34 kg/m2

RCT, parallel 1) HP/LF (25, 45, 30 E%)

2) LP/LF (12, 58, 30 E%)

No 24 66% 1) −6.4

2) −3.2

NS

Brinkworth

et al., 2004b

N = 66

>60 y

BMI: 27–40 kg/m2

RCT, parallel 1) HP/LF (30, 40, 30 E%)

2) LP/LF (15, 55, 30 E%)

1600 (8 weeks),

energy balance

(4 weeks),

no restriction

(follow-up)

15 42% 1) −3.7

2) −2.2

NS

Brinkworth

et al., 2004a

N = 58 (13M, 45 F)

20–65 y

BMI: 27–43 kg/m2

RCT, parallel 1) HP/LF (30, 40, 30 E%)

2) LP/LF (15, 55, 30 E%)

1,555 (12 weeks),

energy balance

(4 weeks),

no restriction

(follow-up)

16 26% 1) −4.1

2) −2.9

NS

Layman et al.,

2009

N = 130 (59M, 71 F)

45 ± 1 y

BMI: 32.6 ± 0.8

kg/m2

RCT, parallel 1) HP/LF (30, 40, 30 E%)

2) LP/LF (15, 55, 30 E%)

1,900M, 1,700 F 12 55% 1) −10.4

2) −8.4

NS

Sacks et al.,

2009

N = 811

51 ± 9 y

BMI: 33 ± 4 kg/m2

RCT, parallel 1) AP/LF (15, 65, 20 E%)

2) HP/LF (25, 55, 20 E%)

3) AP/HF (15, 45, 40 E%)

4) HP/HF (25, 35, 40 E%)

−750 24 79% 1) −3.6

2) −4.5

3) −3.6

4) −4.5

NS

Larsen et al.,

2011

N = 99 (48M, 51 F)

58–62 y

BMI: 27–40 kg/m2

RCT, parallel 1) HP/LF (30, 40, 30 E%)

2) LP/LF (15, 55, 30 E%)

1,530 (12 weeks),

energy balance

(follow-up)

12 20% 1) −2.23

2) −2.17

NS

Krebs et al.,

2012

N = 419 (168M,

251 F)

30–75 y

BMI: 36.6 ± 6.5

kg/m2

RCT, parallel 1) HP/LF (30, 40, 30 E%)

2) LP/LF (15, 55, 30 E%)

−500 24 30% 1) −3.9

2) −6.0

NS

Wycherley

et al., 2012a

N = 120

51 ± 9 y

BMI: 33.0 ± 3.9

kg/m2

RCT, parallel 1) HP/LF (35, 40, 25 E%)

2) LP/LF (17, 58, 25 E%)

1,700 12 44% 1) −12

2) −10.9

NS
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canonical iBAT and that creatine cycling, SERCA2b-dependent
Ca2+ cycling, and/or futile cycling of fatty acids may play pivotal
roles. In addition, energy loss via increased production of urea
may also contribute. Furthermore, a number of secreted factors,
batokines, from brown and BRITE adipocyte has been shown
to positively or negative modulate brown/BRITE adipocyte
differentiation and thermogenesis (Sponton andKajimura, 2018),
and also here is an interesting question whether intake of high
protein diets and/or different types of protein will affect these
processes as well.

HUMAN TRIALS

High Protein Diets and Weight Loss in
Humans
The effects of high protein diets in rodents have mostly been
investigated in relation to prevention of obesity development. By
contrast, human trials have to a larger extent examined the ability
of high protein diets to induce weight loss in obese subjects,
and knowledge on how increased intake of protein prevents
weight gain in humans is limited. Systematic reviews and
meta-analyses examining the efficiency of high protein diets to
promote weight loss in humans are not consistent. A systematic
review and meta-analyses of 74 randomized controlled trials

(RCTs) from 2012, where diets low and high in protein content
were compared, concluded that high protein diets led to a
greater weight reduction after 3 months than low protein diet
(Santesso et al., 2012). Wycherley et al. examining 24 trials
concluded that increasing the protein content elicited modest
weight loss (Wycherley et al., 2012b), whereas a systematic
review by Lepe et al. concluded that the long-term effects of
high-protein diets were neither consistent nor conclusive (Lepe
et al., 2011). A selection of RCTs investigating the long-term
effects of high-protein diets on body composition is presented
in Table 1. In a number of these trials, no marked differences
between the two dietary groups were observed, whereas a
modest effect was observed in others. Of note, in these trials
the interventions combined high protein diets with energy
restriction.

Effects of Different Dietary Protein Sources
on Body Composition
Epidemiological studies indicate that whereas diets with dairy
and vegetarian protein sources protect against obesity, diets
with a high proportion of meat, in particular red meat, are
associated with higher weight gain (Fogelholm et al., 2012;
Smith et al., 2015; Mozaffarian, 2016). A number of RCTs
examining the influence of diets based on different protein

TABLE 2 | A selection of Randomized Controlled Trials investigating the effects of diets based on different protein sources on body weight.

References Population Design Intervention groups (protein,

carbohydrate, fat)

Energy

restricted

(kcal day)

Duration

(weeks)

Body weight

reduction

pre-post

P-between

groups

Yamashita

et al., 1998

N = 36 (F)

40 ± 9 y

BMI: 32.4 ± 5.2 kg/m2

Non-randomized,

parallel

1) Plant (25, 50, 23 E%)

2) Red meat (25, 51,

22 E%)

1,500 16 1) −7.6 kg

2) −7.8 kg

NS

Mori et al.,

1999

N = 63

(42M, 21 F)

54 ± 2 y

BMI: 31.6 ± 1.1 kg/m2

RCT, parallel 1) Fish

2) Weight-loss

3) Fish + weight loss

4) Control

−478 to 1,554

(groups 2–3)

16 1) 0.5

2) −5.2 kg

3) −5.9 kg

4) 0.1 kg

P < 0.05 for

groups 2 and 3 vs.

1 and 4

Melanson

et al., 2003

N = 61 (F)

43 ± 8 y BMI: 32.1 ± 3.4

kg/m2

RCT, parallel 1) Chicken (21, 57, 22 E%)

2) Beef (20, 55, 25 E%)

−500 12 1) −6.0 ± 0.5 kg

2) −5.6 ± 0.6 kg

NS

Mahon et al.,

2007

N = 54 (F)

58 ± 2 y BMI: 29.6 ± 0.8

kg/m2

RCT, parallel 1) Beef (26, 48, 26 E%)

2) Chicken (26, 48, 26 E%)

3) Carbohydrate (16, 58, 26 E%)

4) Control (habitual diet)

−1000

(groups1–4)

9 1) −6.6 ± 2.7 kg

2) −7.9 ± 2.6 kg

3) −5.6 ± 1.8 kg

4) −1.2 ± 1.2 kg

P < 0.05 for

groups 1–3 vs. 4,

and 2 vs. 3

Thorsdottir

et al., 2007

N = 324 (138M, 186 F)

39 ± 5 y

30.1 ± 1.4 kg/m2

RCT, parallel 1) Control

2) Lean Fish

3) Fatty fish

4) Fish oil

−30%

2,694M

2,022 F

8 M:

1) −5.3 ± 3.0 kg

2) −6.5 ± 2.8 kg

3) −7.0 ± 3.5 kg

4) −6.7 ± 3.2 kg

M: p < 0.05 for

groups 2–4 vs. 1.

All + F: NS

Liu et al.,

2010

N = 180 (F)

56 ± 4 y

BMI: 24.5 ± 3.7 kg/m2

Double blinded,

RCT, parallel

1) Placebo (15 g milk

protein)

2) Iso (15 g milk protein + 100mg

isoflavones)

3) Soy (15 g soy protein +

100mg isoflavones)

≈2,140 26 1) −0.3 ± 2.6%

2) −0.3 ± 2.5%

3) −1.2 ± 3.0%

P < 0.05 for group

3 vs. 1 and 2

Aadland

et al., 2015

N = 20 (7M, 13 F)

50.6 ± 3.4 y

BMI: 25.6 ± 0.7 kg/m2

RCT, cross-over 1) Lean seafood (20, 52, 28 E%)

2) Beef (20, 52, 28 E%)

717M

538F

2 × 4 1) −1.4 ± 0.2 kg

2) −1.5 ± 0.2 kg

NS
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sources on weight loss has been carried out (Table 2). In several
of these, where the dietary intervention was combined with
energy restriction (Melanson et al., 2003; Mahon et al., 2007),
the protein source did not affect weight loss, and differences
in design and population groups make it difficult to draw
clear and firm conclusions. However, a recent position paper
from MyNewGut concluded that intake of a high protein
diet generally decreased body weight development, but the
effects varied according to the type of dietary intervention and
protein source, and that intake of a high protein diet was
accompanied with changes in the gut microbiota (Blachier et al.,
2018).

Inclusion of fatty fish, lean fish, or fish oil as part of an
energy-restricted diet significantly increased weight loss in young
overweight men (Thorsdottir et al., 2007). From these RCTs
comparing the impact of different protein sources on body
weight when combined with energy restriction, there is no clear
evidence that one protein source is to be preferred relative to
another (Figure 1). Hence, it may be speculated if the protein
sources are of more importance in the habitual diets to prevent
weight gain than in energy restricted diets used to achieve weight
loss.

SUMMARY AND CONCLUSION

The ability of high protein diets using casein or whey as the
protein source to prevent weight gain is well-documented in
mouse studies. The accompanying reduced feed-efficiency may
be related to an increased glucagon:insulin ratio, increased
uncoupled respiration and/or ATP loss by futile cycling. To
what extent the reduced feed-efficiency and increased energy
expenditure are mediated via the gut microbiome is not yet
known. Further, intake of high protein diets may lead to reduced

insulin signaling in adipose tissue. Of note, these effects appear
to be restricted to diets where casein or whey are used as protein
sources and evidence that high fat high protein diets are able to
induce weight loss in rodents is lacking.

The effect of high protein diets on weight loss in humans
is not conclusive. However, in line with the importance of the
protein source in rodent studies, where obesity development is
examined, epidemiological studies indicate that diets with dairy
and vegetarian protein sources protect against, whereas diets
with meat may promote obesity. However, when diets containing
different protein sources are examined in combination with
energy restriction, the protein source appears to be of little or
no importance. Together, these data indicate that the dietary
protein source is of greater importance in preventing weight gain
than during weight reduction. It may be considered if dietary
means for obesity prevention in lean persons may be different
from dietary advices to obese subjects to achieve effective weight
loss. Based on the different approaches in human and animal
studies investigating dietary protein sources, we encourage to
performing more studies in humans and animals focusing on
weight gain, weight maintenance and weight loss with different
dietary protein sources in order to determine the possible impact
of protein source on obesity development and reversal. To
what extent high protein intake in humans modulates energy
expenditure via the gut microbiome, uncoupled respiration
or other energy consuming futile cycles remains to be
established.
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