
AQUACULTURE ENVIRONMENT INTERACTIONS
Aquacult Environ Interact

Vol. 10: 369–383, 2018
https://doi.org/10.3354/aei00275

Published August 16

INTRODUCTION

Intensive culture of fish within sea cages leads
to considerable benthic nutrient loads via spilled
feed and waste, providing a trophic subsidy that
attracts large and persistent aggregations of  ‘farm-
associa ted’ wild fish (Dempster et al. 2002, 2009,
2010). Individuals may reside in the vicinity of farms
for months to years (Uglem et al. 2009, Otterå & Skil-
brei 2014) and during this time are exposed to a vari-
ety of environmental changes, including elevated

infection risk from parasites and other pathogens
(Dempster et al. 2011, Johansen et al. 2011,
Arechavala-López et al. 2013, Glover et al. 2013),
artificial lighting regimes that may delay maturation
and alter behaviour (Porter et al. 1999, Hansen et al.
2001, McConnell et al. 2010, Otterå & Skilbrei 2014,
Skilbrei & Otterå 2016, reviewed in Trippel 2010),
contamination from chemicals and metals used in
aquaculture (Burridge et al. 2010), elevated preda-
tion risk due to the abundance of large predatory
fish, and where permitted, fishing mortality (Akyol &
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ABSTRACT: Sea cage fish aquaculture attracts large aggregations of wild fish that feed on farm
waste. Fish that associate closely with farms undergo physiological changes, and captive feeding
trials indicate possible negative effects on reproductive fitness. However, little is known about the
significance of this phenomenon for reproduction in wild fish over larger spatial scales. To assess
whether coastal areas with intensive aquaculture impact the fitness of wild fish, we collected
Atlantic cod Gadus morhua from 2 areas, 1 with high and 1 with low Atlantic salmon Salmo salar
farming density (HFD and LFD, respectively) in southwestern Norway, a region that hosts the
world’s largest coastal fish aquaculture industry. We conducted a captive spawning trial and com-
pared a range of reproductive fitness metrics. Two fatty acids that occur at high levels in commer-
cial feed, oleic and lineoleic acid, were strongly correlated in the ovaries of HFD fish, but a com-
parison of lipid profiles between HFD and LFD fish showed no differences in total lipids or
essential fatty acids. Although HFD fish were slightly larger than LFD fish and had similar body
condition, the volume of eggs produced did not differ, indicating relatively lower reproductive
investment by HFD fish. HFD eggs were 5% smaller than LFD eggs, which did not lead to differ-
ential hatching success but may have contributed to HFD larvae being 8% smaller than their LFD
counterparts at 40 d post spawning. The potential for cumulative effects of smaller eggs and larvae
on fitness at later life stages warrants further investigation.
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Ertosluk 2010, Bagdonas et al. 2012). However, per-
haps the most obvious change is the high availability
of waste feed that typically results in higher somatic
and gonadal condition indices for farm-associated
wild fish (e.g. Dempster et al. 2011). In Spain,
67−90% of fish sampled near sea cages had con-
sumed pellets (Fernandez-Jover et al. 2008), while in
Norway, pellets made up 71 and 25%, respectively,
of the diet for farm-associated saithe Pollachius
virens and Atlantic cod Gadus morhua in Norway
(Dempster et al. 2011).

Superficially, this trophic subsidy appears to bene-
fit wild fish, but it also results in a dietary shift from
marine-derived highly unsaturated omega-3 fatty
acids to terrestrially derived omega-6 fatty acids.
This in turn translates to a compositional shift in tis-
sues (Fernandez-Jover et al. 2007, 2011a, Arechavala-
López et al. 2015, Olsen et al. 2015), and given that
dietary lipids are reflected in the egg stores (e.g.
Lavens et al. 1999, Czesny et al. 2000, Salze et al.
2005), may result in deficiencies in several of the fatty
acids required for reproduction and development.
For example, captive feeding trials have found that
essential fatty acids 20:5 n-3 (ei cosapentaenoic acid,
EPA) and 22:6 n-3 (docosahexaenoic acid, DHA), as
well as 20:4 n-6 (arachidonic acid, AA), are important
for fecundity, egg and sperm quality, hatching suc-
cess, and larval development in fish (Reitan et al.
1994, Rainuzzo et al. 1997, Sargent et al. 1999a,b,
Rahman et al. 2014). Dietary deficiencies in these
reproductive nutrients contribute to low fertilisation
and hatching rates in Atlantic cod (hereafter referred
to as ‘cod’) broodstock relative to their wild counter-
parts (Salze et al. 2005) and have been linked to
changes in egg-quality metrics in turbot Scophthal-
mus maximus (Lavens et al. 1999), Atlantic halibut
Hippoglossus hippoglossus (Mazorra et al. 2003), and
cod (Bogevik et al. 2012). Furthermore, while data
are lacking for fish, evidence from other taxa indicate
that additional effects may be come apparent only
after fertilisation; sea urchins Echinus acutus reared
on commercial salmon feed had higher gonad indices
but lower fertilization and larval survival rates, lead-
ing to an overall reduction in reproductive fitness
(White et al. 2016, 2017a).

The net effect of farm proximity on fitness, whether
positive or negative, has a considerable bearing on
wild fish populations in farming areas. If trophic sub-
sidies and associated conditions provide a net fitness
benefit, farm-associated fish populations will experi-
ence higher production than those in neighbouring
areas, and farms will act as a population source. How-
ever, because farms are highly attractive to ma ny fish

species, any decline in fitness in farm-associated wild
fish may cause farms to function as ‘eco logical traps’
(Robertson & Hutto 2006, Hale & Swearer 2016). Eco-
logical traps are attractive but low-quality habitats
that can have significant meta population-level im-
pacts by drawing in individuals from higher-quality
adjacent habitats, thus acting as attractive population
sinks (Hale et al. 2015, Hale & Swearer 2016). To
demonstrate the existence of an ecological trap, we
must show that (1) individuals prefer or show equal
preference for the putative trap habitat relative to
other available habitats and (2) that fitness outcomes
in the putative trap habitat are lower than they would
have been in the other available habitats (Robertson
& Hutto 2006, Patten & Kelly 2010). We have strong
empirical evidence that ecological traps affect birds
and mammals in modified terrestrial and aquatic en-
vironments (e.g. Remeš 2003, Weldon & Haddad
2005, Balme et al. 2010, Kloskowski 2012), but to date
there have been very few tests of the theory in the
marine environment (Hallier & Gaertner 2008, Demp-
ster et al. 2011, Sherley et al. 2017), and none that
have directly assessed fitness.

Norway operates the largest coastal fish aquacul-
ture industry in the world, with Atlantic salmon
Salmo salar production reaching ~1.3 million tons in
2016 (Norwegian Directorate of Fisheries 2016; www.
fiskeridir.no/Akvakultur/Statistikk-akvakultur/ Statistiske-
publikasjoner/Noekkeltall-for-norsk-havbruksnaering).
Fjord cod stocks, which are distinct from the more
mobile offshore cod stocks (Robichaud & Rose 2004),
coexist with salmon farming in southern Norway and
are at historically low levels, with recent recruitment
rates also low (Knutsen et al. 2016). Given these con-
cerns, the population can ill afford a potential ecolog-
ical trap scenario. The >300 active salmon farms in
southwestern Norway have widespread effects on
fish movement and population distribution and repre-
sent hundreds of potential ecological traps for fjord
cod. Gadid populations are strongly attracted to
salmon grow-out cages (Dempster et al. 2011) and
move from farm to farm (Uglem et al. 2009, Otterå &
Skilbrei 2014). This satisfies the first component of an
ecological trap assessment by showing preference for
the putative trap habitat (Robertson & Hutto 2006).
However, we have no data on direct fitness measures
in any farm-associated fish, including gadids.

Farms may impact fitness in wild fish by altering
either the survival or reproductive success of individ-
uals. Both pathways are difficult to measure directly
in marine fishes, particularly highly mobile broadcast
spawning species, and as a result most previous work
has relied on proxies such as body condition (Fernan-
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dez-Jover et al. 2007, Dempster et al. 2011). Here we
employ a more direct approach by conducting a cap-
tive spawning experiment with wild-caught Atlantic
cod to investigate whether reproductive fitness dif-
fers between areas of high and low salmon farming
intensity in southwestern Norway. We assess poten-
tial reproductive effects spanning initial adult body
condition, ovarian fatty acid profiles, and volumetric
egg production, through to egg-quality metrics,
hatching rates, and larval-quality metrics, including
growth rates, deformity rates, and behaviour.

MATERIALS AND METHODS

Experimental design and fish husbandry

The density of salmon farms throughout Norway
means that there are no longer any true reference
sites for the impacts of salmon farming on highly
mobile wild fish in most parts of the country. Instead,
we make a comparison between 2 areas with differ-
ential farm density, reflecting the typical spectrum of
farm exposure for wild fish populations. We collected
2 groups of mature live wild Atlantic cod Gadus

morhua from the outer fjords of Hordaland county in
southwestern Norway during February 2016. The
first group (high farm density; HFD) was collected by
commercial fishers and technical staff from 6 loca-
tions along an 8 km stretch of coastline in the
Austevoll archipelago and 4 km away at Reksteren
(Fig. 1). HFD collection locations were all in rela-
tively close proximity (300−1200 m) to 6 active
salmon farms in an area of generally dense farming
activity. The collections took place over 10 d between
1 and 15 February. The second group (low farm den-
sity; LFD) was collected by commercial fishers from 2
locations within the Bømlo archipelago, a neighbour-
ing area with relatively little fish farming activity
(Fig. 1), between 5 and 15 February. HFD fish were
collected from sites exposed to a mean of 4.0 ha
(range 1.5−5.2 ha) of sea cage surface area within
4 km of their collection location, while LFD collection
sites were exposed to mean 0.8 ha (range 0−3.2 ha)
within 4 km. These estimates include all sea cages
and holding pens, including enclosures that were
unstocked at times during 2015 (for locations of
active salmon grow-out cages relative to collection
sites, see Fig. 1). Seventy-five percent of LFD fish
were collected ~9 km from the nearest salmon cages,
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Norwegian Directorate of Fisheries aquaculture biomass geodata. LED: low farm density; HFD: high farm density
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although it should be noted that the remaining 25%
of LFD fish were collected within 2 km of a small
salmon farm (2340 t capacity). As all fish were pooled
within groups, this is likely to reduce overall effect
sizes observed in this study. We judged the farm den-
sity within 4 km of the collection site to be a suitable
metric of farm exposure based on telemetry data
describing the movements of tagged wild coastal cod
in Norway and Shetland (Svåsand 1990, Neat et al.
2006, Uglem et al. 2008), but even if some pro portion
of fish move larger distances, a considerable differ-
ence in the average level of farm exposure be tween
HFD and LFD groups will be maintained (Fig. 1).
These 2 areas are otherwise comparable environ-
ments in terms of gross hydrology, geology, and ecol-
ogy. Several logistical factors prevented us from
including additional sampling areas. Specifically, our
need to collect both HFD and LFD fish from shallow
water to minimise barotrauma reduced the number
of suitable locations, as farms are typically placed in
much deeper water. We were also restric ted to areas
with similar latitude and water temperature to min-
imise temporal effects on spawning (Kjesbu 1994). In
consideration of this geographic restriction, we con-
sider our results to be representative of outer Har -
dangerfjord but with relevance for similar systems
worldwide.

Fish were captured using gill nets and fyke nets
over reef or mixed sand-reef substrates at 5−30 m
depth and held in marine net pens, unfed, until the
commencement of the experiment. The experiment
was conducted at the Austevoll Research Station,
Norwegian Institute of Marine Research (IMR). On 24
February 2016, we sedated all fish using 20 g l−1 tri-
caine methanesulfonate (MS-222: Finquel). Fish with
un healed injuries or other welfare concerns were
killed with a blow to the head while sedated. We re -
corded length, wet weight, and sex of the re maining
fish, inserted a passive integrated transponder (PIT)
tag into the peritoneal cavity of every fish (allowing
us to track individual weight loss between the start
and finish of spawning), and took ovarian biopsies
from all females for storage at −80°C. Fiftyfour fe-
males and 24 males were taken from each farm den-
sity group and allocated randomly among 6 cylindri-
cal 7 m3 tanks per group (9 females and 4 males per
tank, total 12 tanks).

Tanks were supplied with 6−8°C sand-filtered and
aerated seawater from 168 m depth and exposed to a
natural photoperiod through light-reducing shades.
Hatchery facilities at IMR Austevoll are described in
detail by Karlsen et al. (2015). Winter spawning typi-
cally occurs in the dark, during the early hours of the

morning every 2−3 d from February to April. Each
spawning tank was appended with a cylindrical 100 l
egg collection tank that filtered the full volume of the
spawning tank outflow via outlets at the top and bot-
tom of the water column. A constant circular flow was
maintained within the egg collector to prevent eggs
from being pressed against the filter and damaged.
The egg collectors were emptied every morning for
the duration of spawning and the volume of floating
and sinking eggs was recorded.

Fish in this experiment were not fed for the dura-
tion of captivity to better preserve any effects of diet
prior to capture and to prevent clogging of egg col-
lectors with waste matter. Reduced feeding and sig-
nificant weight loss is typical for both wild and cap-
tive cod during spawning (Lambert & Dutil 2000), but
to improve animal welfare, we removed fish from the
experiment early if their body condition dropped
below acceptable levels (indicated by loss of muscle
mass, cessation of normal swimming behaviour, or
unhealed wounds). Eggs were present after the first
night of egg collection, indicating that spawning had
already begun. Accordingly, some caution must be
applied to interpretations of egg production and
quality. However, the 2 groups were collected at sim-
ilar latitudes and housed in almost identical temper-
atures (the main determinant of spawning commen -
cement time; Kjesbu 1994), while temporal trends in
egg production do not suggest differential start or
end times between groups (see Fig. 4). Egg produc-
tion declined gradually toward the end of the spawn-
ing season, with the season considered complete
when all tanks had failed to produce viable eggs for
4 consecutive days. All fish were humanely killed
with a blow to the head while sedated with 20 g l−1

MS-222 before recording final length and weight.
On 2 occasions during the spawning season (3−4

March and 24 March), we took eggs for incubation
and hatching. Up to 350 ml eggs per tank were disin-
fected in 400 mg l−1 glutaraldehyde for 8 min to limit
harmful bacterial growth (Harboe et al. 1994), and
transferred to 70 l black polyethylene conical incuba-
tors (one per spawning tank) with 0.5 l min−1 sea -
water flow at 6°C. Each morning during incubation,
dead eggs were drained from the bottom of the incu-
bator and measured volumetrically. On 22 March,
when the majority of eggs from the first collection had
hatched, we took approximately 6000 larvae from
each incubator and divided them across duplicate 50 l
larval feeding tanks (24 tanks in total) at 8°C. Larvae
remaining in the incubators were killed with a lethal
dose of MS-222. Larvae were fed size-fractionated
copepod nauplii collected from the IMR sea-pond fa-
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cility at Svartatjern. Techniques for harvesting and
preparation of copepods for rearing of cod larvae are
described in detail by van der Meeren et al. (2014)
and Karlsen et al. (2015). Twice daily, larval rearing
tanks received 150000 nauplii, with 1.5 ml of algal
paste per tank added to improve feeding performance
(Naas et al. 1992). The experiment was concluded on
13 April, with early season larvae at Day 42 and late
season larvae at Day 21 post fertilisation.

Ovarian fatty acid composition

We randomly selected 10 ovarian samples per
group (LFD and HFD) from the biopsies stored at the
beginning of the experiment. The samples weighed
60−100 mg each. All samples were methylated and
the respective fatty acid methyl esters were analysed
on a HP-7890A gas chromatograph (Agilent) with a
flame ionization detector (GC-FID), according to the
method described in Meier et al. (2006). The fatty
acid 19:0 was added as an internal standard and
2.5 M dry HCl in methanol was used as a methylation
reagent. The methyl esters were extracted using 2 ×
2 ml of hexane, and the solution diluted or concen-
trated to obtain a suitable chromatographic response.
One microlitre was injected splitless (the split was
opened after 2 min) with the injection temperature
set to 270°C. The column was a 25 m × 0.25 mm fused
silica capillary, coated with polyethylene glycol of
0.25 µm film thickness, CP-Wax 52 CB (Varian-
Chrompack). Helium (99.9999%) was used as mobile
phase at 1 ml min−1 for 45 min, then 3 ml min−1 for
25 min. The temperature of the flame ionization de -
tector was set at 300°C. The oven temperature was

programmed to hold at 90°C for 2 min, then heated to
150°C at 30°C min−1 and then to 240°C at 2.5°C min−1

and held steady for 30 min. Total analysis time was
70 min. Seventy well-defined peaks in the chroma -
togram were selected, and identified by comparing
retention times with a fatty acid methyl ester stan-
dard (GLC-463 from Nu-Chek Prep) and retention
index maps and mass spectral libraries (GC-MS)
(www.chrombox.org/index.html) performed under
the same chromatographic conditions as the GC-FID
(Wasta & Mjøs 2013). Chromatographic peak areas
were corrected by empirical response factors calcu-
lated from the areas of the GLC-463 mixture. The
chromatograms were integrated using the EZChrom
Elite software (Agilent Technologies). Only the 39
fatty acids that contributed more than 0.1% of the
total fatty acid amount were included in the calcula-
tion. The total amount of fatty acids and cholesterol
was calculated using the internal standard 19:0.

Reproductive fitness traits

Body condition and weight loss

The amount and quality of egg production is likely
to depend on fish condition. To allow quantification
of any such relationship, we compared body condi-
tion between LFD and HFD groups (within sexes)
using the relative condition index Krel = 100 × (W/Wexp),
where W is the measured wet weight of the individ-
ual and Wexp is the expected weight (Le Cren 1951).
The expected weight was calculated using a power
function of the form Wexp = aLb fitted to the full data-
set including both LFD and HFD fish (Fig. 2), where
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Fig. 2. Weight-at-length relationship for female and male cod used in this study. The best fitting power function (y = axb) is
shown for each combination of sex and group (HFD: red triangles, solid red fitted line; LFD: blue circles, dashed blue fitted line)
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L is fish length (cm). In this case, a = 0.0272 and b =
2.76 (R2 = 0.89). We also calculated proportional
weight loss between the start and end of the spawn-
ing season. This provides a general index of relative
reproductive investment that is typically closely cor-
related with egg production (e.g. Kjesbu et al. 1996).

Egg production

We quantified volumetric egg production in terms
of daily egg production per tank, both with and with-
out a correction for the size of the females within a
given tank, as well as any loss of females during the
season. Corrected egg production (relative daily egg
production; RDEP) was calculated as follows: RDEP =
Vegg/CFL, where Vegg is the volume (ml) of eggs col-
lected from the tank, and CFL is the combined length
(cm) of all females in the tank at the time of egg col-
lection. Four females (all HFD) experienced ≤10%
weight loss, indicating little or no egg release.

Egg quality

Viability, fertilization and early development. Egg
viability rates were estimated from the proportion of
eggs that were floating when the egg collectors were
emptied each morning. Fertilisation rates were as -
sessed in subsamples of 100 eggs per tank on 4 occa-
sions (3 occasions for one HFD tank that finished
spawning early) during the spawning season (early
season: 3−4 and 8−9 March, late season: 17 and
24−25 March), as egg quality typically declines dur-
ing the spawning season (e.g. Kjesbu et al. 1996).
Where egg production was low on a given occasion,
we combined fertilisation estimates from 2 succes-
sive days. Eggs were scored as fertilised and normal
(symmetrical cell divisions), fertilised and abnormal
(asymmetry or other abnormalities), or unfertilised.

Egg size and variability. Mean egg size and vari-
ability was measured on 2 occasions (3−4 March and
11 April) during the spawning season. Eggs were
taken from the egg collectors, stored in 6°C seawater
for 2−3 h, and placed on a Petri dish and photo -
graphed using a digital camera mounted on a light
microscope. The images had a 19 mm field of view at
a resolution of 1024 × 768 pixels. We measured the
 diameter of up to 50 eggs per tank (range 18−50) using
the image analysis software package ImageJ (Schnei-
der et al. 2012), calibrated against a micro meter slide.

Hatching success. To estimate the proportion of vi-
able eggs that successfully hatch, duplicate egg sub-

samples (>100 eggs) were taken from incubators on 2
occasions, early and late in the season (early season:
10 March, Day 8 of incubation; late season: 1 April,
Day 9 of incubation) for a hatching trial. Eggs were
rinsed with filtered seawater, placed in covered con-
tainers filled with 200 ml of filtered seawater, and
maintained at 6−7°C until hatching was complete.
Dead eggs and live and dead hatchlings were scored
and removed daily until no viable embryos re -
mained. As there is large variation in growth rates
between individual larvae, cannibalism makes it im-
possible to reliably estimate impacts of farm density
on larval survival in this system beyond first feeding.

Larval quality

Larval development and growth rates. Subsamples
of at least 30 larvae per tank were collected 40 d after
spawning (23−28 d post hatching), killed by a lethal
dose of MS-222 and stored at 6°C until required for
photography (<4 h). Larvae were transferred to a
Petri dish with a thin layer of seawater and pho-
tographed laterally under dark field illumination on a
light microscope with mounted digital camera. The
images provided a 12 mm field of view at a resolution
of 1024 × 768 pixels. Larvae were measured for
length using the ImageJ measuring tool calibrated
against a micrometre slide. The measurement was
taken along a polyline running from the tip of the
snout to the cranial vertebra and along the spine to
the end of the caudal peduncle.

Phototaxis. Development of visual and cognitive
systems in larvae (at Day 42, ca. 23 d since first feed-
ing) was compared by means of a phototaxis trial in
which we tested the proportion of larvae exhibiting
behavioural responses to a light gradient. Phototactic
responses in this context correlate with larval fitness
(e.g. Karlsen & Mangor-Jensen 2001, Forsgren et al.
2013). Approximately 70 larvae (±16.9 SD) were
placed in a 60 × 10 × 5 cm tank and allowed to dis-
perse. We then completely covered the tank with
black plastic to block any light. After 8 min, we re -
moved the covering on a 10 × 10 × 5 cm end section
of the tank (thus exposing it to ambient light from a
fluorescent bulb) and scored the number of larvae
already present in the end section. This was treated
as the control score: the number of larvae present in
the end section due to random dispersal without
stimulus. The tank was then left for a further 5 min,
and the number of larvae in the end section scored
again. We then removed the rest of the covering and
counted the larvae that had not showed preference
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for light. The trial was conducted for each of the 12
spawning tanks. The change in spatial distribution
(the difference in the proportion of larvae in the end
section before and after the light treatment) provided
a measure of responsiveness to this environmental
stimulus.

Statistical analysis

We compared initial fish size, weight-at-length,
and condition (Krel) metrics across LFD and HFD
groups (Group), using linear analysis of variance
models constructed using the ‘lm’ function in R (R
Core Team 2016). Data were log transformed as nec-
essary to improve normality (and to linearise weight-
at-length curves). Proportional weight loss was com-
pared between LFD and HFD groups using a beta
regression generalised linear model fitted using the
betareg package for R (Cribari-Neto & Zeileis 2010).

We conducted several ovarian fatty acid analyses:
initially, we made univariate comparisons of total
lipids, cholesterol, and aquafeed markers oleic and
linoleic acid across LFD and HFD groups using linear
analysis of variance models. We then compared the
entire suite of fatty acids across groups using a multi-
variate permutational analysis of variance (PERM-
ANOVA) fitted to a Euclidean dissimilarity matrix
using Primer 6 software (Anderson et al. 2008, White
et al. 2017c).

Egg production metrics were compared between
treatments and over time using negative binomial
generalised linear mixed models fitted using the
glmmTMB package (Brooks et al. 2017). Group (farm
density group) and Day (sampling day) were fitted as
fixed effects. As tanks were sampled repeatedly,
non-independence between samples was addressed
by including a random intercept term with TankID
(tank identity) nested within Group. We report signif-
icance of individual model terms within glmmTMB
models by comparing the fit of the full model and a
null model with the term removed (χ2 test on 1 df).

Effects of farm density on egg-quality metrics were
tested by fitting linear mixed models, also using the
glmmTMB package. Egg size data were best fitted
with a Gaussian model family, while proportion data
were fitted using a beta regression family. We in -
cluded 3 fixed terms: Group, Time (early or late sea-
son collections), and MeanFL (mean female length at
the tank level, to account for possible effects of
female age on egg quality). As with egg production
models, we included the nested random intercept
term Group or TankID. Proportion or rate responses

were analysed at the tank level. Egg size data were
analysed at the egg level, with Group, Time, and
MeanFL as fixed terms and Group or TankID as a
random intercept term. Following the full analysis
described above, egg-quality datasets were split into
early and late season collections and re-analysed
using beta regression models fitted using the betareg
package. These results are reported alongside those
from the full analyses (Table 2), using a z-test of sig-
nificance for the Group term.

Data on deformity rates, maximum sizes, and
photo taxis were analysed at the tank level using beta
regression models fitted with Group and MeanFL as
fixed terms (betareg package). The Time and TankID
terms were not necessary as all larvae were reared
from eggs collected over a 2 d period early in the sea-
son. Larval size data were analysed at the level of in-
dividual larvae using a linear mixed model fitted by
glmmTMB, with Group and MeanFL as fixed terms
and Group or TankID as a random intercept term.

As tank-level analyses come with a cost to statisti-
cal power, we calculated Cohen’s d effect sizes (cal-
culated using individuals as replicates for fish size
and condition, and tanks as replicates for all egg and
larval-quality data) to provide an estimate of effects
independent of sample size and statistical signifi-
cance (Cohen 1988).

RESULTS

Body condition and weight loss

Female Atlantic cod collected from the HFD envi-
ronment were significantly longer (7%) and heavier
(16%) than fish from the LFD area, with no differ-
ence in body condition between females from HFD
and LFD sites (Table 1). HFD males were not sig -
nificantly different in length or weight from LFD
males, but did have a higher body condition than
LFD males (Table 1). The log-transformed weight-at-
length slope was significantly higher for HFD fe -
males than LFD females (although the effect was
small: partial R2 = 0.06), while weight-at-length did
not differ for HFD and LFD males (Table S1 in the
Supplement at www. int-res. com/ articles/ suppl/ q010
p369 _ supp. pdf, Fig. 2). During the captive spawning
season (mean 37 d LFD, 39 d HFD), females lost 29 ±
9% body weight, while males lost 18 ± 6% (mean ±
SD). LFD females lost more weight than HFD females
(mean ± SE: 30 ± 1.1% and 27 ± 1.2% respectively,
z1,9 = 2.4, p = 0.02), consistent with greater reproduc-
tive effort by LFD females.
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Ovarian fatty acid composition

We found no evidence that ovarian lipid modifica-
tion reflected the density of salmon farms, with no
significant difference in total fatty acid content or
cholesterol content, or in total saturated, monounsat-
urated, or polyunsaturated fatty acids (Table S2).
Likewise, multivariate fatty acid composition was not
significantly different between LFD and HFD groups
(pseudo-F18 = 0.58, p = 0.71; Fig. 3). Multidimensional
scaling revealed that 3 individuals — 1 LFD and 2
HFD — were separated from the main cluster. These
3 fish were not remarkable in size or body condition
(57−72 cm, 2022−3620 g, Krel 0.99−1.11), but both
HFD fish were high in oleic acid 18:1 (n-9) (15.2 and
17.5%) and 1 was also high in linoleic acid 18:2 (n-6)
(3.7%). The outlying LFD fish was also high in
linoleic acid (2.5%). Both oleic and linoleic acid can
indicate consumption of commercial feed (Fernan-
dez-Jover et al. 2011b, White et al. 2017c), and were
marginally higher in the HFD group on average (6%
and 18% increases, respectively), but this effect was
not significant for either oleic acid (F1,18 = 1.9, p = 0.2)
or linoleic acid (F1,18 = 0.4, p = 0.6). Levels of these
fatty acids were strongly positively correlated with
each other in the HFD group (Pearson’s r = 0.90, t8 =
6.0, p < 0.001), while this effect was non-significant in
the LFD group (r = 0.44, t8 = 1.4, p = 0.2). The highest
levels of both oleic and linoleic acid (17.5% and 3.7%
respectively) occurred in one individual from the
HFD group.

Egg production

Twelve spawning tanks produced a total of 137 l
of eggs over the spawning season, with no difference

in the total egg volume from LFD and
HFD tanks (11.3 ± 0.9 l and 11.3 ±
0.7 l, respectively; Fig. 4). A model
comparing raw daily egg production
between HFD and LFD tanks over
time found no effect of the farm den-
sity factor (p = 0.08; Table S3). There
was a significant temporal de cline in
daily egg production (p <0.0001,
Fig. 4), and a positive effect of total
female length in the tank on daily egg
production (p < 0.0001).

The relative daily egg production
metric (daily egg production correc -
ted for total female length) also did
not significantly differ across groups

(LFD: 64.6 ± 6.2 cf. HFD: 57.2 ± 3.4 ml female m−1 d−1

tank−1; p = 0.52), but again, there was a significant
decline over time (p < 0.0001, Fig. 4).

Initial female body condition (tank mean values)
did not significantly predict either raw daily egg
 production or relative daily egg production metrics
overall (p > 0.10 in both cases), or within farm density
groups (p > 0.05 in each case). However, mean
female weight loss during the season was strongly
correlated with both egg production metrics (p <
0.0004 in each case).

Egg quality and survivorship

The proportion of viable (floating) eggs was al -
most identical across farm density groups (Tables 2
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LFD HFD Statdf p Cohen’s d

Females n = 54 n = 54
Length (cm) 60.1 ± 1.1 64.6 ± 1.2 F1,106 = 7.2 0.008 +0.49
Weight (g) 2442 ± 145 2839 ± 164 F1,106 = 4.2 0.043 +0.35
Condition (Krel) 1.03 ± 0.03 0.98 ± 0.01 F1,106 = 3.1 0.08 –0.34

Males n = 24 n = 24
Length (cm) 60.3 ± 1.2 62.8 ± 2.0 F1,46 = 0.9 0.34 +0.29
Weight (g) 2204 ± 148 2624 ± 243 F1,46 = 1.7 0.20 +0.37
Condition (Krel) 0.98 ± 0.02 1.04 ± 0.01 F1,46 = 4.7 0.04 +0.63

Table 1. Body size and condition metrics for low (LFD) and high (HFD) farm
density groups at the commencement of the experiment (group means ± SE).
F statistics are provided with model and residual degrees of freedom as
 subscripts. Significant p-values are highlighted in bold. Positive direction 

indicates that metric was higher in HFD fish

Fig. 3. Multidimensional scaling plot showing dissimilarly
(Euclidean distance) of multivariate fatty acid profiles in At-
lantic cod ovaries according to salmon farm density. Individ-
uals are grouped by high (HFD; red triangles) and low (LFD; 

blue circles) salmon farm density. Model stress is 0.08
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& S3), with the viable proportion significantly declin-
ing over the season (p < 0.0001). Neither mean
female length (p = 0.18) nor body condition (p = 0.60)
were correlated with egg viability rates at the tank
level, regardless of farm density group.

The LFD group produced larger eggs over the
duration of the season (Tables 2 & S3). LFD eggs
were 4.8% larger by diameter at the time of the early
season collections, with no significant difference
later in the season (Table 2). We did not test for a
temporal decline in egg size, as late but not early sea-
son samples were fixed in formalin. Again, neither
mean female length (p = 0.065) nor body condition
(p = 0.32) were significantly correlated with egg size,
regardless of farm density group.

Among the viable proportion, fertilisation rates
were similar for LFD and HFD tanks respectively
(Tables 2 & S3), but declined during the season (p =
0.009). Neither mean female length nor body condi-
tion significantly predicted fertilisation rates overall
(p > 0.06 in each case), although the effect of female
length was significant within the LFD group (p =
0.04). Given the very small difference in egg viability
and fertilisation rates between groups, and non-sig-
nificant effects of male length and body condition on
fertilisation rates either overall or within groups (p >
0.13 in each case), we did not test for differences in
sperm quality.

Rates of asymmetrical cell division in pre-blastula
eggs did not differ between LFD and HFD groups
in either early or late season collections (Tables 2
& S3). Neither mean female size nor body condition
were correlated with egg symmetry (p > 0.06 in each
case). Mean asymmetry rates did not exceed 10% in

either group on any collection date, although sam-
ples ranged from 0 to 53% asymmetry.

Early season eggs hatched 12−17 d after collection,
while late season eggs hatched 14−18 d after collec-
tion. Egg survival during incubation prior to the
hatching trial did not differ significantly between
groups (Tables 2 & S3). Declines in survivorship
between early and late season collections did not dif-
fer (p > 0.10), nor did the effect of mean female
length or body condition (p > 0.10 in each case).

Hatching success rates were similar between
groups (Tables 2 & S3), with no decline between
early and late season collections. One HFD tank
ceased spawning before the late season egg sam-
pling, so late season HFD hatching data come from
only 5 tanks.

Larval quality

Larvae from LFD tanks were 8% larger than those
from HFD tanks (Tables 2 & S3). Neither mean
female size (p = 0.97) nor body condition (p = 0.34)
were correlated with larval size either overall or
within farm density groups. The size of the largest
larvae from each tank did not differ across farm den-
sity groups, nor did the rate of deformities (Tables 2
& S3). Neither were significantly correlated with
mean female length or body condition (p > 0.10 in
each case). Overall rates of larval deformity were
48% at day 40 from both LFD and HFD groups
(Table 2). Most deformities were of the spine (lordo-
sis, kyphosis, or vertebral misalignment) (152/173
deformities), followed by deformities of the jaw
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Fig. 4. Daily egg production per tank during the captive spawning period (25 Feb−11 Apr 2016). Tanks are grouped by high
(HFD; red triangles, solid red fitted line) and low (LFD; blue circles, dashed blue fitted line) farm density. Production is
 quantified by raw daily egg volume per tank (left) and with a correction for the total length of females in the tank (right). The 

temporal trend within groups is fitted by third-order polynomial functions
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(15/173) and skull (6/173). Larvae from both groups
exhibited phototaxis in response to a horizontal light
gradient (proportion in end section before exposure:
0.25 ± 0.03 cf. after exposure: 0.69 ± 0.04; t-test: t22 =
−9.5, p < 0.0001), but we found no evidence that the
farm density groups differed in the extent of the pho-
totactic response (Tables 2 & S3), nor any strong evi-
dence for an effect of mean female length or body
condition (p > 0.13 in each case).

DISCUSSION

This study presents limited evidence for negative
impacts of high salmon farm density on reproductive

fitness in the studied Atlantic cod
population. Female HFD cod were
larger and heavier than LFD fish,
but with no consistent changes in
fe male body condition. Effects on
ovarian lipid composition were
also small and largely limited to 2
HFD individuals. There was no
significant difference in egg pro-
duction, viability, fertilisation rates,
symmetry, or hatching success, but
eggs from HFD tanks were 5%
smaller and this likely contributed
to the observed −8% disparity in
mean larval length at 40 d post
spawning for the HFD group rela-
tive to the LFD group.

Gadid fishes accumulate sig -
nificant energy re serves for repro-
duction, with lipids stored primarily
in the liver and proteins in muscle
tissue (Kjesbu et al. 1991, Lambert &
Dutil 1997). Accordingly, body con-
dition indices  during vitellogenesis
are typically good predictors of fe-
cundity in coastal cod from this re-
gion (Skjæraasen et al. 2006). In our
case, mean female size and percent-
age weight loss during the season
positively tracked egg production at
the tank level; both were better pre-
dictors of egg production than initial
female body condition. However,
the di rec tion of the body condition
trend was positive, and together,
our findings are consistent with
grea ter reproductive investment rel-
ative to body length by LFD  females.

Egg-quality metrics revealed similar quality over-
all in LFD and HFD groups, but with significantly
smaller eggs from HFD fish. This was somewhat
unexpected, as HFD females were slightly larger;
female size and age in cod is usually positively corre-
lated with egg size (e.g. Marteinsdottir & Steinarsson
1998, Vallin & Nissling 2000), although body condi-
tion can be equally important (Chambers & Waiwood
1996, Marteinsdottir & Steinarsson 1998). The egg
size effect that we observed did not correspond to
any significant decrease in other metrics of egg qual-
ity, and the cumulative effect of the more direct met-
rics (viability, fertilisation, developmental symmetry,
survival during incubation, and hatching success)
was such that eggs collected from HFD and LFD
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LFD HFD N Stat p Cohen’s 
(HFD, LFD) d

Viability rate
Early season 0.96 ± 0.01 0.94 ± 0.03 102, 102 z = 0.21 0.83 −0.25
Late season 0.78 ± 0.15 0.76 ± 0.11 70, 74 z = 0.56 0.56 −0.19
Overall 0.87 ± 0.04 0.85 ± 0.04 172, 176 χ2 = 0.23 0.61 −0.14

Egg diameter (µm) (of viable eggs)
Early season 1183 ± 16 1129 ± 16 257, 289 χ2 = 5.8 0.016 −1.36
Late seasona 1261 ± 30 1210 ± 13 221, 271 χ2 = 5.3 0.07 −0.92
Overall 1222 ± 20 1166 ± 16 478, 560 χ2 = 6.5 0.011 −0.90

Fertilisation rate (of viable eggs)
Early season 0.75 ± 0.04 0.77 ± 0.03 19, 20 z = 0.68 0.49 +0.27
Late season 0.59 ± 0.09 0.68 ± 0.06 15, 18 z = 0.47 0.63 +0.46
Overall 0.67 ± 0.08 0.73 ± 0.04 34, 38 χ2 = 1.0 0.60 +0.36

Egg symmetry rate (of fertilised viable eggs)
Early season 0.92 ± 0.01 0.90 ± 0.02 19, 20 z = 0.69 0.49 −0.29
Late season 0.88 ± 0.18 0.88 ± 0.08 15, 18 z = 0.48 0.63 −0.10
Overall 0.90 ± 0.03 0.89 ± 0.04 34, 38 χ2 = 0.35 0.84 −0.08

Egg survival rate during incubation
Early season 0.85 ± 0.03 0.83 ± 0.05 6, 6 z = 0.66 0.49 –0.23
Late season 0.56 ± 0.11 0.68 ± 0.09 5, 6 z = 0.48 0.63 +0.41
Overall 0.70 ± 0.08 0.76 ± 0.06 11, 12 χ2 = 0.01 0.95 +0.23

Hatching success rate
Early season 0.90 ± 0.03 0.85 ± 0.03 12, 12 z = 1.56 0.12 −0.64
Late season 0.92 ± 0.03 0.88 ± 0.08 11, 12 z = 0.15 0.88 −0.07
Overall 0.91 ± 0.02 0.86 ± 0.04 23, 24 χ2 = 0.18 0.67 −0.48

Larval length (mm)
Early season 6.46 ± 0.05 5.98 ± 0.18 180, 176 χ2 = 3.9 0.048 −1.46

Max larval length (mm)
Early season 8.05 ± 0.17 7.68 ± 0.21 6, 6 t1, 10 = 1.32 0.21 −0.77

Larval deformity rate
Early season 0.48 ± 0.06 0.48 ± 0.07 6, 6 z1,9 = 0.01 0.99 0

Larval phototaxis rate
Early season 0.71 ± 0.07 0.67 ± 0.04 6, 6 z1,9 = 0.79 0.43 −0.28
aLate season eggs were fixed in formalin prior to examination, which may
have affected egg diameter

Table 2. Egg- and larval-quality metrics for cod from low (LFD) and high (HFD)
farm density areas (group mean ± SE).  Simple test statistics are provided (Stat).
Refer to Table S3 for full model summaries. Positive effect sizes indicate that
 quality was higher in the HFD group. Significance has not been corrected for false 

discovery rate of multiple comparisons



Barrett et al.: Salmon farming effects on wild cod reproduction

tanks did not differ substantially in their likelihood of
successfully hatching (HFD 40% cf. LFD 37%). How-
ever, previous studies have indicated that egg size
can predict larval quality, with larger size at hatch-
ing, faster growth rates, and successful development
of the swim bladder leading to a survival advantage
for larvae from larger eggs (Knutsen & Tilseth 1985,
Marteinsdottir & Steinarsson 1998). This prediction
was consistent with our larval size data; HFD larvae
were 8% smaller on average than their LFD counter-
parts 40 d after spawning.

Larger larvae often exhibit differing responses to
stimuli such as light (e.g. Colton & Hurst 2010). In
some fish, phototaxis along a horizontal light gradi-
ent correlates positively with other metrics of devel-
opment (e.g. first feeding: Karlsen & Mangor-Jensen
2001) and is affected by the environment (Forsgren et
al. 2013). In our case, LFD and HFD fish did not differ
in their phototactic response to a horizontal light gra-
dient, although the effect was in the direction of the
greater phototaxis by LFD larvae (Cohen’s d = 0.28).
Regardless, even small differences in hatching size
and larval growth rates can affect survival during the
planktonic stage and even influence post-settlement
fitness (e.g. Sclafani et al. 1993, Shima & Swearer
2010), so it is likely that the HFD larvae in this study
would have experienced non-trivial negative fitness
effects later in development.

Condition indices for fish in the present study
were similar to those from wild-caught fish in the
same region prior to the expansion of salmon farm-
ing (Botros 1962, cited in Kjesbu 1989). Egg sizes in
our study (mean 1.2 mm) were at the lower end of
those reported by previous captive spawning studies
with Norwegian coastal cod (1.2−1.4 mm: Kjesbu et
al. 1996, Otterå et al. 2006, van der Meeren & Ivan-
nikov 2006, Bogevik et al. 2012, Karlsen et al. 2015),
but this may be related to the lack of feed during
spawning rather than condition at the time of collec-
tion (Kjesbu et al. 1990). Egg fertilisation, symmetry,
and hatching rates were all within the range of
those reported by previous studies (Morgan et al.
1999, van der Meeren & Ivannikov 2006, Bogevik et
al. 2012, Karlsen et al. 2015), while larval growth
rates (6.2 mm cf. 7.4 mm at 25 d post hatching) were
slightly below those reported by Karlsen et al.
(2015).

While previous studies have found significant shifts
in ovarian fatty acid composition in captive-fed sea
bream (Cejas et al. 2003) and farm-associated bogue
(L. Martinez-Rubio unpubl. data, cited in Fernandez-
Jover et al. 2011a), the absence of such clear effects
in this study should not be taken as strong evidence

that these fish have not fed at salmon farms. Lipid
profiles of the gonads are less affected by diet than
those of the liver or muscle tissue, as the gonads are
composed almost entirely of phospholipids rather
than dietary fatty acids. Accordingly, our analysis of
ovarian lipid composition may only have detected
effects of a large dietary shift, while the presence of a
single active salmon farm near 1 LFD location (affect-
ing 25% of LFD fish) may have reduced overall dif-
ferences in fatty acid profiles between HFD and LFD
groups. Indirect intake of farm waste via predation of
farm-associated invertebrates and fish, combined
with dietary sparing and biosynthesis, may also
weaken or mask fatty acid signals in fish that are not
strongly farm associated (White et al. 2017c). The
strong correlation between levels of oleic and linoleic
acids in the HFD group (less so in the LFD group) is
consistent with (but not necessarily strong evidence
for) a spectrum of farm association, with the most
strongly farm-associated individuals in the HFD
group having higher levels of oleic and linoleic acids
than their counterparts in the LFD group. Both oleic
and linoleic acid are present in the natural diet but
are especially abundant in commercial salmon feed,
and captive feeding trials revealed a strong correla-
tion between these 2 fatty acids in muscle, liver, and
gonad tissue of saithe fed on salmon feed (Ø. Karlsen
et al. unpubl. data).

Our collection sites were selected to represent lev-
els of farm exposure experienced by cod populations
in the southwestern fjords (Fig. 1). Importantly, cod
do not associate with farms as closely or persistently
as other species (e.g. saithe), and likely do not feed
exclusively at farms for extended periods (Dempster
et al. 2011), so our experiment was designed to test
for effects of farm density on cod whose home ranges
at the time of collection overlap with areas of farming
influence. Salmon farms have relatively localised
nutrient footprints, with acute deposition within
50−250 m and very diffuse deposition beyond 500 m
(Kutti et al. 2007, Bannister et al. 2016, White et al.
2017b). Accordingly, our collection sites are likely to
reflect the 2 dominant types of farm exposure for wild
Norwegian fjord cod: temporally dynamic or partial
association versus little or no association. Tissue fatty
acid profiles in cod are altered within 3 wk of a
dietary shift (Kirsch et al. 1998), with vitellogenesis
commencing 3−4 mo prior to spawning (Skjæraasen
et al. 2006). Individuals that reside within farm foot-
prints throughout vitellogenesis are likely to show
the largest shifts in ovarian fatty acid profiles and
concomitant effects on reproductive physiology and
output. We do not know how long HFD and LFD cod
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have resided at their capture locations, but available
telemetry and mark−recapture data indicate that
wild coastal cod have relatively restricted home
ranges over a scale of weeks and months. Eighty-
seven percent of tag returns for wild cod released in
Heimarkspollen, a 2.9 km2 semi-enclosed fjord in the
Austevoll archipelago, were recaptured within the
fjord (Svåsand 1990), while in Balsfjord in northern
Norway, the majority of wild cod tagged and re -
leased at a farm were still present at the same farm
9−12 wk later (Uglem et al. 2008). In the Shetland
Isles, 133 wild cod were tagged and released, with
37/39 recaptures over a 2 yr period occurring within
15 km of the release site (Neat et al. 2006). While
some individuals move larger distances and may
have spent time in areas that differ from their capture
location in terms of farm density, our study only
assumes that fish collected from LFD locations will,
on average, be less affected by farms than fish from
HFD locations.

Previous captive feeding experiments have shown
that gadids and other fishes fed commercial diets
experience changes in reproductive fitness (e.g.
Salze et al. 2005, Bogevik et al. 2012), but very little
work has been done to assess potential impacts in a
real-world ecological context. Taken together, our
findings indicate that salmon farming in this region
has some negative effects on the reproductive
physio logy of Atlantic cod on a fjord-wide scale, with
potential cumulative effects of egg and larval size on
later developmental stages. More work is needed to
track fitness effects later in development, including
potential effects of decreased egg and larval size on
later life stages. In addition, as our study was re -
stricted in its geographic extent and spatial replica-
tion, we are cautious of generalising these findings
beyond our study environment. We encourage others
to replicate and extend this important line of
research. Future work may also consider the other
potential pathway for fitness impacts: individual mor-
tality. Mortality may decline due to the provision of a
trophic subsidy (Kilambi et al. 1978), or increase due
to elevated levels of contamination, infection, or pre-
dation at farms. Wild fish aggregations are also an
easy target for fishers, and fishing mortality will take
on greater importance if the current 100 m fishing
restriction around Norwegian farms is lifted (Bag-
donas et al. 2012). Previous studies have employed
acoustic tracking to good effect in comparing spa-
tiotemporal movement and mortality rates of Atlantic
cod individuals across habitats (Olsen & Moland
2011, Olsen et al. 2012, Fernández-Chacón et al.
2015), and it would be entirely feasible to apply the

same ap proach to quantify differential mortality rates
in wild fish across multiple farm-affected and non-
affected areas.

Data archive. Data are available at https:// figshare. com/ s/
f26589119217cddfbd4d
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