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The dynamics of marine populations are usually forced by biotic and abiotic factors occurring at different intensity levels and time scales.
Deriving the time frame within which each factor has a causal influence is important for predicting population trajectories. This paper pre-
sents a statistical methodology for establishing (i) the strength of causal coupling between population dynamics and environmental (biotic
and abiotic) factors, and (ii) the time scales over which causal covariates have significant influence on the population dynamics. The method-
ology is based on combining a multivariate autoregressive model fit to data (to determine causal direction) with a quantification of the RPC
of covariates in frequency domain (to quantify the strength of connection). The methodology is applied to test the existence of causal cou-
pling between the capelin biomass and a selected number of covariates identified in the literature.

Keywords: Barents Sea, capelin, causality, climate, fisheries dynamics, MAR model, modelling, predator-prey, prediction, relative power contri-
bution, time series, uncertainty.

Introduction
Fisheries time series data are usually highly variable because the

observation data are forced by stochastic processes, which are

characterized by time delays, jumps and spikes, and several other

non-stationary mechanisms occurring on different time, fre-

quency and intensity scales. According to Sundelöf et al. (2013),

the mechanisms may be classified as being due to (i) environmen-

tal (including anthropogenic) forcing, (ii) species interactions,

and (iii) internal processes (e.g. density dependent regulation of

recruitment). The degree of variability observed in fisheries time

series is dictated by the intensity and degree of alignment (both

spatially and temporally) of these forcing mechanisms. For in-

stance, shift in productivity has been postulated as an underlying

mechanism for bursts in populations and stock recruitment

(Munch and Kottas, 2009). But it is when conditions align

spatio-temporally (e.g. temperature, match with prey, low canni-

balism), that there is an appropriate response in recruitment, e.g.

spiked recruitment (Solari et al., 1997). Delayed or feedback ef-

fects resulting from strong population pulses (e.g. spiked recruit-

ment) are manifested in the population dynamics several years

afterwards (Skjoldal, 2004), particularly when they result in

strong density-dependent responses, where recruitment of subse-

quent year classes (at the appropriate lag) is depressed (Caley

et al., 1996) or when they change the behaviour of the stock

(Huse et al., 2010).

For systems (e.g. marine ecosystems) consisting of multiple

non-stationary processes, causal relationships among several

components of the system will act with varying intensity, dura-

tion, and time scales. For instance, while temperature may affect

fish behaviour in general, the egg and larval stages are known to

be more sensitive to temperature change. The degree to which

temperature change affects fish is therefore dependent on the tim-

ing (stage-dependent), intensity (level of variability), and dura-

tion (see e.g. Fuiman and Werner, 2009). Thus, while the primary

VC International Council for the Exploration of the Sea 2017.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is
properly cited.

ICES Journal of Marine Science (2017), doi:10.1093/icesjms/fsx179

Downloaded from https://academic.oup.com/icesjms/advance-article-abstract/doi/10.1093/icesjms/fsx179/4345801
by Fiskeridirektoratet. Biblioteket. user
on 15 February 2018

mailto:hiroko.solvang@imr.no
Deleted Text: ,
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


goal might be to understand feedback (causal) mechanisms, it is

also noteworthy to quantify when such mechanisms are impor-

tant, as well as their relative strength and duration.

For illustration, we consider the simplest case shown in Figure

1 (see Akaike and Nakagawa, 1989)—a system composed of two

subsystems representing for instance the prey fish species capelin

(y(t)) and its predator fish cod (x(t)). The dynamic of each sub-

system is further perturbed by individual noises, e(t) and g(t), re-

spectively for the capelin and cod subsystems.

Analysing the system in Figure 1 is particular challenging be-

cause e(t) produces an effect on x(t) through the capelin subsys-

tem. Thus x(t) and e(t) are generally not uncorrelated (vice versa

for y(t) and g(t)) even if they are assumed to be statistically inde-

pendent (Akaike and Nakagawa, 1989). Addressing this challenge,

Akaike (1968) proposed a practical method to analyse such feed-

back systems by utilizing a multivariate autoregressive (MAR)

model. Using a MAR representation, the noise and variable be-

come independent, which is a precondition for spectral analysis

using Fourier transformation (Akaike and Nakagawa, 1989). The

power spectrum estimated by the AR coefficients and variance-

covariance matrix can be expressed as a sum of the relative con-

tributions from the individual variables. It is then possible to

evaluate the degree of influence by individual variables by looking

at each source contribution, and fluctuations over time, to the

power spectrum. This is referred to as the Akaike’s relative power

contribution (RPC) (Akaike, 1968). The RPC shows the strength

of causal relationship among multiple variables based on parti-

tioning the power spectral density of an optimal autoregressive

model. The RPC has been widely applied to many practical prob-

lems (see Akaike and Nakagawa, 1989; Akaike and Kitagawa,

2012), and has been referred to as Akaike Causality (Wong and

Ozaki, 2007). Although the well-known causality concept by

Granger (1969) applies only to bivariate systems, the RPC is

broadly applicable to multivariate systems. It is worth mentioning

that the original PRC idea assumes independence among the

noises. In practice however, high correlations between noise com-

ponents often occur. Hence Tanokura and Kitagawa (2004) pro-

posed an extended power contribution approach in detecting

the mutual influences involving cross-correlated noises of the

variables.

The aim of this article is to demonstrate the use of the MAR

model as a practical statistical tool for characterizing the causal

coupling roles at various time scales, and of different candidate

covariates in marine systems. A novelty of this paper lies in the

combined use of the MAR modelling framework and the RPC

concept, to establish causal links and causal directions between

species driven by an environmental forcing (temperature).

Though some studies have applied the MAR model to ecologi-

cal problems (see e.g. Ives, 1995; Hampton et al., 2013), the ap-

proach adopted in this paper is absent in the ecological literature,

and new to fisheries science. We present application examples

were the main variable of interest is an index of species abun-

dance (age-structured biomass), and the aim is to involve biotic

and abiotic time series as candidate causal variables. The goal is

to demonstrate how the methodology can be used to classify

which covariates have most relevance for short, medium or long

term prediction of the species dynamics. Such knowledge is im-

portant when devising management decisions on different time

horizons. The article uses age-structured biomass data of Barents

Sea capelin for the index, and discusses how the methodology

may help improve our understanding of capelin stock dynamics.

Quantifying causality—the RPC
For the sake of simplicity, we first explain the methodology for

quantifying causality using a 2D data example, and then extend

the results to a more general, multi-dimensional case, which is

relevant to this article. With reference to Figure 1, let the observed

2-dimensional time series be denoted by ðyðtÞ; xðtÞÞT for

t ¼ 1; . . . ;N , where ð�ÞT denotes transposition. We assume that

the data is generated by a multivariate auto-regressive process

given by Equation (1):

(
yðtÞ ¼

PM
m¼1 ayyðmÞyðt �mÞ þ

PM
m¼1 ayxðmÞxðt �mÞ þ eyðtÞ;

xðtÞ ¼
PM

m¼1 axyðmÞyðt �mÞ þ
PM

m¼1 axxðmÞxðt �mÞ þ exðtÞ;
(1)

where ayy ; ayx ; axy and axx are the autoregressive (AR) coefficients,

M is the AR order. The terms eyðtÞ and exðtÞ are i.i.d. with mean

zero and unknown variance, and result from whitening of the

noise terms (in Figure 1) e(t) and g(t), respectively. The AR coef-

ficients can be estimated by the ordinary least squares method or

some other numerical algorithm such as the Yule-Walker method

(Hamilton, 1994). The Akaike Information Criteria (AIC)

(Akaike and Kitagawa, 2012) is used to determine the AR order

of the best-fit model. Using this best-fit model, one obtains pre-

dictions for x(t) and y(t), as well as estimates of the errors exðtÞ
and eyðtÞ, and associated variance-covariance matrix given by

Equation (2),

R ¼ E½eðtÞeðtÞT� ¼
r2

yy ryx

rxy r2
xx

 !
; (2)

where E is expectation, eðtÞ ¼ ½eyðtÞ; exðtÞ�T, and the variances

are represented by the diagonal elements of the matrix. The off-

diagonal elements of R are the covariances, where ryx ¼ rxy . A

basic theoretical assumption of the methodology is that R has

zero off-diagonal elements. In practical implementations (involv-

ing empirical and usually uncertain data), this requirement is

considered fulfilled when the main diagonal elements of R are

dominant. A quantitative approach for establishing this (domi-

nant main diagonal) condition is to test for statistical significance

of the off-diagonal elements (Rij ; i 6¼ j) using any statistical pro-

cedure for such tests, for instance, the Spearman’s q (Best and

Roberts, 1975) or the Kendall’s s statistic (Hollander et al., 2013).

Figure 1. A simple (illustrative) feedback system involving capelin
(y(t)) and cod (x(t)).
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The physical interpretation of the estimated auto-regressive

coefficients is obtained by considering the procedure in the fre-

quency domain. The cross power spectra Pðf Þ of the (xðtÞ; yðtÞ)
components generated by Equation (1) is given by Equation (3)

(see Akaike and Nakagawa, 1989, Chapter 3).

Pðf Þ ¼ Aðf ÞRA�ðf Þ; 0 � f � 0:5D; (3)

where D is the sampling interval, and A�ðf Þ is the complex conju-

gate of Aðf Þ, which is the frequency response defined by Equation

(4):

Aðf Þ ¼
�

I�
XM

m¼1
AðmÞe�2pfm

��1

; (4)

AðmÞ ¼
�

ayyðmÞ ayxðmÞ

axyðmÞ axxðmÞ

�
: (5)

I is the identity matrix and AðmÞ is the AR coefficients matrix

defined by Equation (5). The Akaike’s RPC is defined by

Equation (6), where Aji is the ith row and jth column element of

Aðf Þ.

rijðf Þ ¼
jAjiðf Þj2r2

ii

jPjðf Þj
¼ jAjiðf Þj2r2

iiPk
i¼1 jAjiðf Þj2r2

jj

2 ½0; 1�; i; j ¼ 1; 2; . . . ; k:

(6)

It must be cautioned that the RPC does not carry the same sta-

tistical connotation as correlations or cross-power spectra. The

value of rijðf Þ quantifies the percentage contribution from other

variables to the power spectrum of the target variable. For a given

target, when the various RPCs are graphically represented in the

frequency domain, the pattern of the contribution of the noise

sources to the system behaviour becomes clear (Akaike and

Nakagawa, 1989).

Illustrative example
We present a simple illustrative example for the feedback rela-

tionship between the biomasses for capelin and cod (see Figure

1). We assume the estimation process yielded the MAR Equation

(2) model defined by Equation (7):

yðtÞ ¼ 1:00yðt � 1Þ � 0:37yðt � 2Þ � 0:48xðt � 1Þ

þ0:54xðt � 2Þ þ eyðtÞ;

xðtÞ ¼ 0:19yðt � 1Þ � 0:19yðt � 2Þ

þ1:5xðt � 1Þ � 0:63xðt � 2Þ þ exðtÞ;

8>>>>>><
>>>>>>:

(7)

and the variance-covariance matrix in Equation (8):

R ¼
 

0:350 0:001

0:001 0:053

!
: (8)

Using (7), we define the elements of AðmÞ in (5),

Að1Þ ¼
 

1:00 �0:48

0:19 1:50

!
; Að2Þ ¼

 �0:37 0:54

�0:19 �0:63

!
; (9)

where Að1Þ is the coefficient matrix for ðt � 1Þ terms in Equation

(7); correspondingly for Að2Þ. Using the above estimates, we cal-

culate the RPC with k ¼ 2 in Equation (6), based on Equations

(3–4). Figure 2 is a graphical illustration of the calculated RPC,

where the x- and y-axes represent the frequency domain and the

RPC ratio, respectively. The frequency scales have been converted

to annual cycles, to reflect the actual sampling interval of the

data. Table 1 defines notations for Figure 2, that are consistent

with Equation (6).

We note that the power contribution from cod to capelin

(Figure 2a) is largest at a cycle slightly longer than 16 years, while

the power contribution from capelin to cod (Figure 2b), is signifi-

cantly largest at around 8 years. In this particular case, the power

contribution from capelin to cod is in total larger than the power

contribution from cod to capelin. In other words, the (signal)

driver of the capelin biomass dynamics has a more regulative ef-

fect on cod, than the effect of the cod biomass driver on capelin.

Another representation of the RPC is the use of heatmaps (Figure

2c and d). The application of 2D heatmaps are especially attrac-

tive when dealing with multi-dimensional data since they are in-

tuitive, and ease making inference on the RPC of all data sources.

Heatmaps will be used to illustrate the RPC for the particular ap-

plication considered in this paper, as it involves five different

time series datasets.

Application to case study—Barents Sea capelin
Capelin in the Barents Sea is a short-lived (1–4 years) pelagic spe-

cies, that is considered to be the most important pelagic fish stock

in the Barents Sea (Gjøsæter and Ushakov, 2003). It is the main

diet for Northeast Arctic cod (Bogstad and Mehl, 1997; Gjøsæter

et al., 2009) and juvenile herring (Gjøsæter and Bogstad, 1998;

Hallfredsson and Pedersen, 2009). Several marine mammals (e.g.

harp seals, humpback whales, minke whales), seabirds, kittiwakes

and guillemots are also known to prey on capelin. Capelin re-

cruitment is thought to be mainly regulated by the degree of juve-

nile herring predation on capelin larvae (Carscadden et al., 2013;

Gjøsæter et al., 2015) and predation by Northeast Arctic cod

(Gjøsæter et al., 2015). Both biotic (food supply—copepods, eu-

phausiids, and hyperiids) and abiotic (ambient temperature)

have been reported to affect capelin feeding, condition factor and

distribution (see Orlova et al., 2004). Drastic changes in stock size

have occurred in the last three decades, with three stock collapses

in 1985–1989, 1993–1997, and 2003–2006 (Gjøsæter et al., 2009).

It has however, been difficult to unravel the causes of these varia-

tions. Though the literature contains a number of possible expla-

nations, they fail to explicitly explain the observed capelin

dynamics over the years. For instance, capelin is known to over-

lap spatially with cod and herring at different stages of its life his-

tory (Huse and Gjøsæter, 1999) with young herring (mainly age

groups 1 and 2) preying on juvenile capelin. Gjøsæter and

Bogstad (1998) therefore suggest that the abundance of herring

leads to recruitment failure and eventual collapse. Hjermann

et al. (2009) argue that high abundance of young herring is a nec-

essary but not sufficient condition for recruitment failure of the

capelin stock. With annual capelin consumption in the order of

several thousand tonnes, cod (mainly 3–6 year of age) predation
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on capelin has been suggested as another potential cause of cape-

lin stock collapse (Dolgov, 2002).

Figure 3 (redrawn after Hjermann et al., 2004) represents a

simplified foodweb of the Barents Sea, showing capelin (focal spe-

cies) and its link to both lower and higher trophic level species.

Given its central role, the effects of capelin collapse have been reg-

istered both downwards and upwards in the Barents Sea food

web (Gjøsæter et al., 2009).

The data
Based on Figure 3, we define the biotic dataset by the annual bio-

masses of capelin of ages 1–4, the total annual biomass of cod

and herring, and the krill biomass density in the Barents Sea. The

average August temperature taken from the Bird Island–Bear

Island section was used as abiotic driver in the analysis. This tem-

perature series has been reported to be correlated with the tem-

perature of inflowing Atlantic waters into the Barents Sea, which

in turn, influences the distribution of pre-juvenile (0-group) cap-

elin, Gundersen (1993). The data are taken from the database of

the Working Group on the Integrated Assessments of the Barents

Sea (see e.g. ICES, 2016). Figure 4 shows all variables used in the

analysis.

For the observations shown in Figure 4, we derive the 5D time

series vector D � (capelin*, cod, krill, herring, temperature)

where capelin* represents age-dependent capelin biomass at ei-

ther age 1–4. We use capelin biomass data from 1972 to 2015,

and associated covariate data within the same time range.

Of the data ensemble used, temperature is the only data that can

be considered as raw, with measurement precision being �10% of a

degree Celcius. The biotic data is either processed (upscaled or aver-

aged) survey information (e.g. krill density) or estimates derived

from stock assessment models (biomass of capelin, herring, and

cod). Unfortunately, the abiotic data comes with no measure of pre-

cision. Figure 4d shows a spike in the herring biomass after 1982.

The spike (in 1983) corresponds to an extraordinary year class of the

stock after a long collapse period, where the spawning-stock biomass

went from almost zero (between 1970 and 1982), to about 0.5 mil-

lion tonnes in 1983 (see Toresen and Østvedt, 2000; Røttingen and

Tjelmeland, 2003).

Observation data for capelin of age 4þ (see Figure 4) is usually

sparse and unreliable because Barents Sea capelin usually spawns

at 3 years, and then dies (Gjøsæter et al., 2002). We shall therefore

restrict the analysis and discussion of simulation results to cover

(a) (b)

(c) (d)

Figure 2. The RPC and heatmap representations for the example capelin-cod system. In figure (a), the lengths of the blue and red stippled
lines are the RPC values for cod!capelin (RPC 	 0.2) and capelin!capelin (RPC 	 0.8), respectively, at a 16-year cycle. An analogous
interpretation applies to figure (b), at an 8-year cycle. Observe the correspondence between the max/min points in the RPC curves (a and b)
and the change in colour intensity at corresponding year cycle in the heatmaps (c and d). The heatmaps represent the contribution from
{cod, capelin} to capelin (c), and from {cod,capelin} to cod (d).

Table 1. Consistency between Figure 2 and rijðfÞ notation in
Equation (6).

i J rijðfÞ
1 1 capelin ! capelin
1 2 cod ! capelin
2 1 capelin ! cod
2 2 cod ! cod

Figure 3. A simplified foodweb (biomass flow) representation of the
Barents Sea ecosystem, redrawn after Hjermann et al. (2004). The
thickness of each arrow (from prey to predator) indicates the
perceived importance of the pathway. This manuscript focuses only
on pathways involving fully drawn arrows. The zooplankton consists
mainly of copepods, krill and amphipods.
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capelin in the age range 1–3 only, even though age-4 results will

be shown for the sake of completeness.

Results and discussion
The application of the MAR model in this article is justifiable

since there were no strong nonlinearities in the data. Had such

nonlinearities existed however, data transformation (through e.g.

log-transformation) would have been required, in addition to

window shifting so that the MAR model applies to a fixed data

length (see e.g. Francis et al., 2014).

We applied a MAR model to D, where the model coefficients

were calculated using the Burg algorithm (see e.g. Schlögl, 2006),

and the best-fit model was selected within AR order 1–5. Based

(a) (b)

(c) (d)

(e) (f)

Figure 4. The biotic and abiotic data.

Table 2. Results for AIC and model order for biomass groups.

Autoregression order
Biomass age group

1 2 3 4

0 146.36 157.66 161.04 147.31
1 0.00 3.87 6.50 0.00
2 18.56 0.00 0.00 4.85
3 19.74 13.80 10.56 18.87
4 36.20 17.21 28.70 39.01
5 29.59 19.09 49.84 58.34

For each column under the biomass groups, the values show deviations from
the minimum AIC values for that particular column.
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on the estimated AR coefficients, the prediction was obtained by

Equation (1), and the variance-covariance matrix R was obtained

using the prediction error. It must be mentioned that the (full)

general MAR model, where each time series variable (xðtÞ; yðtÞ)
has feedback to each other time series variable, was applied on D.

However, it is inconceivable that fish will have direct effect on

temperature. There are two options in addressing this particular

case:

(1) define the MAR model such that coefficients of terms quan-

tifying fish effect on temperature (Fish ) Temperature) is

set to zero, or

(2) allow the framework (including AIC-base model choice) to

determine the best model.

The latter option (unconstrained coefficients) allows us to test

the robustness of our framework, and in particular, its ability to

work in situations where there are no clear guidelines about im-

probable causal flow directions. We have opted for this option,

and based on the AIC, evaluated the robustness of our numerical

framework.

A table of varying model orders and AIC differences is pre-

sented in Table 2.

The AR order corresponding to zero AIC value is indicative of

the best fit model. The results from this table establish the model

order. Next, we adopt option 1 above, in determining the struc-

ture of the causal flow model. Figure 5 are the generated heat-

maps of the variance–covariance matrices.

We follow the proposed statistical procedure to determine

whether the autocovariance (main diagonal) components of the

variance-covariance are dominant. Accordingly, we calculated the

correlation (Spearman’s q) matrix of eðtÞ, and associated p-values

(see Table 3). We evaluate the statistical significance of the ele-

ments in the correlation matrix at a significance level a ¼ 5%. The

results in Table 3 show that with exception of P1;5 for age-1 cape-

lin (p-value ¼ 0.024), P1;2 for age-2 capelin (p-value ¼ 0.013) and

P1;3 for age-3 capelin (p-value ¼ 0.004), we can assume the off-

diagonal elements to be insignificant. Since the number of samples

is <50, we also applied Kendall’s s statistic. We obtined results

that were consistent with those obtained using the Spearmans q.

Given that each age-group only one of the off-diagonal elements

failed our significance test, we can assume (within the constraints

of uncertainty) that the fundamental assumption of the methodol-

ogy is satisfied. On the other hand, for cases where several off-

diagonal elements appear to be significant, one may apply a more

complicate model, such as the extended power contribution

model by Tanokura and Kitagawa (2004). Further discussion of

the results will concentrate on the RPC heatmaps.

Figure 6 shows heatmaps of the RPC of capelin (auto-contri-

bution), cod, krill, herring, and temperature. The y-axis lists the

contributing variables, while the x-axis indicate annual cycles.

The strength of a contribution is linked to the heatmap color in-

tensity, defined by the colorbar. We first present point-wise sum-

mary of the results, where the emphasis is on the RPC to the

capelin biomass from all other sources (i.e. {cod,krill,herring,tem-

perature}! Capelin) in Figure 6. Next, we discuss the model re-

sults in light of existing knowledge from the literature.

Summary of results: RPCs to capelin biomass
The analysis shows strong auto-contribution of capelin to its own

dynamics, with multiple periodicities lasting from between 2 and

5 years. This means the effect of a strong capelin year-class will be

expected to last for up to �5-years. This observation applies reli-

ably to capelin of ages 1–3. The direct influence of cod on age-1

capelin dynamics appears to be insignificant. The cod dynamics

appears to have most influence on ages 2 and 3 capelin, but over

different time scales. For age-2 capelin, the cod influence is regis-

tered after 3 years, while the effect on age-3 capelin is at least,

9 years. Our analysis (see the heatmaps) indicates a generally

weak link between krill and capelin biomass dynamics. The her-

ring power contribution to capelin dynamics is most significant

on age-1 capelin, with a 2–5 year cycle, and this influence can last

Figure 5. Variance-covariance matrices of covariates in time domain.
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Table 3. P-value matrix P, and associated Spearmaned q statistic matrix for capelin.

Capelin age P (p-value matrix) Spearmanatrq matrix

1
� 0:848 0:868 0:841 0:024

� 0:481 0:800 0:768

� 0:919 0:207

� 0:716

�

2
666666664

3
777777775

1 �0:164 �0:178 �0:159 0:313

1 0:008 �0:134 �0:117

1 �0:222 0:130

1 �0:091

1

2
666666664

3
777777775

2 � 0:013 0:751 0:975 0:582

� 0:259 0:984 0:712

� 0:729 0:158

� 0:473

�

2
666666664

3
777777775

1 0:352 �0:110 �0:314 �0:033

1 0:105 �0:341 �0:091

1 �0:099 0:162

1 0:011

1

2
666666664

3
777777775

3 � 0:084 0:004 0:923 0:155

� 0:224 0:997 0:470

� 0:903 0:409

� 0:804

�

2
666666664

3
777777775

1 0:222 0:411 �0:230 0:165

1 0:123 �0:436 0:012

1 �0:209 0:038

1 �0:138

1

2
666666664

3
777777775

4 � 0:280 0:131 0:342 0:611

� 0:519 0:717 0:757

� 0:929 0:424

� 0:840

�

2
666666664

3
777777775

1 0:093 0:179 0:065 �0:045

1 �0:007 �0:092 �0:111

1 �0:233 0:031

1 �0:158

1

2
666666664

3
777777775

In the p-value matrix, we use the notation ‘–’ to represent p-values < 2.2e-16.

Figure 6. Heatmaps of the RPC in frequency domain for capelin. In general Cap(a) refers to capelin of age a. Each row corresponds to one
RPC, rajðfÞ, from covariate j on the vertical axis to Cap(a).
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over several overlapping cohorts, resulting in a strong 16-year pe-

riodicity influence (60%), see Figure 6—cap1. The effect of tem-

perature seem to be strongest on age-1 capelin, and decreases in

influence with increasing capelin age.

Discussion
According to the heatmaps, the dynamics of the capelin biomass

appears to be predominantly autonomous (RPCs of over 80%—

see the strength of the capelin ! capelin RPC for all ages in

Figure 6), with a cycle of at least 5 years. This periodicity cycle

also coincides with observed stock fluctuations, with capelin col-

lapse being reported during the periods 1985–1989, 1993–1997,

2003–2007 (Gjøsæter et al., 2015). Yndestad and Stene (2002) re-

ported fluctuations of the capelin stock—which they referred to

as stochastic resonance, with a 6.2 year cycle—as a natural envi-

ronmental adaptation, and optimal strategy for growth and sur-

vival. Our results on the autonomous dynamics of the capelin

biomass and its periodicity are therefore consistent with the liter-

ature, and with empirical observations.

Our results show that of all the age groups, age-2 capelin ap-

pears to be most affected by cod predation, occurring at cycles be-

tween 2 and 3 years, and more than 3 years. This is consistent

with (Hjermann et al., 2004), where age-2 capelin is reported to

be most affected, especially during years of high cod predation.

Hamre (2002) reported (a) temperature cycles of 8–15 years in

the Barents Sea, coincident with strong year classes of herring and

cod, and that (b) the abundance of immature cod determines the

mortality of maturing capelin, i.e. capelin at around age-3. Put

together, we should expect immature cod to influence the dy-

namics of age-3 capelin at the same frequency as the occurrence

of the strong age classes of cod, i.e. between 8 and 15 years, which

is consistent with the results from our analysis. With regards to

herring, the strong effect on young capelin (age 1) is supported

by the fact that herring preys principally on capelin larvae, with

the presence of young herring (1–2 years old) being associated

with low capelin recruitment; even close to zero recruitment in

some years (Huse and Toresen, 2000; Hjermann et al., 2004). The

direct effect of herring on ages 2 and 3 capelin are either weak or

insignificant. This result fits well with the herring ecology as they

feed on younger stages of capelin.

Krill is known to be most important for planktivorous capelin

of age 2–3 years old, and the lack of relationship for age 1 is sup-

ported by Dalpadado and Skjoldal (1996). The literature shows

that a strong reduction in stock size of older capelin (between

1984 and 1987) was followed by an increase in biomass of the two

main krill species in the Barents Sea (Thysanoessa inermis and

Thysanoessa longicaudata), and a decrease in abundance and bio-

mass of krill could be linked to the rapid growth of the capelin

stock up to 1991 (Dalpadado and Skjoldal, 1996). The general

weak effect for all ages, can be explained by the fact that the

capelin-krill interaction is has a stronger top-down, rather than a

bottom-up effect. This inference is strongly supported by the lit-

erature (see e.g. Skjoldal and Rey, 1989; Dalpadado and Skjoldal,

1996b; Dalpadado et al., 2001; Baum and Worm, 2009).

In general, the literature reports a weak, direct climatic influ-

ence on the dynamics of capelin (Ozhigin and Luka, 1985). The

apparently stronger temperature effect on age-1 capelin may be

explained by the fact that the temperature series used has been re-

ported to correlate with the temperature of inflowing Atlantic wa-

ters into the Barents Sea. These waters in turn, influence the

distribution and survival of pre-juvenile (0-group) capelin

(Gundersen, 1993), and subsequently, the biomass of age-1

capelin.

Ability to detect causal direction
In general, most models for inferring causality between an ob-

served pair of observations are based on the assumption that one

of the observation sets in the causal-effect pair is measured accu-

rately, see e.g. Janzing et al. (2012). Observations with measure-

ment errors for both the input and output of a natural system

are common, and complicate the task of determining a causal

direction (Zhang and Luo, 2014). Figure 7 demonstrates the

ability of the methodology to deduce directionally dependent

RPCs (distinguishing between A! B and B ! A). This charac-

teristic translates into the ability of the methodology to quantify

multi-directional causal links. As an illustration, we found no

contribution from cod to the dynamics of age-1 capelin in Figure

6. However, Figure 7 shows that age-1 capelin has significant

RPC to the total cod biomass dynamics in 2–5 year cycle.

Furthermore, for age-2 capelin, a comparison of the heatmaps in

Figure 7 and Figure 6 shows that a clear distinction between the

dynamics capelin! cod, and cod! capelin can be made.

Conclusions
We have presented a statistical method for analysing the feedback

relationship among system observations, and applied it to investi-

gate how the biomass dynamics of Barents Sea capelin is medi-

ated by other biological species and temperature. In fisheries

science, it is usual that the time series data available are short (see

Schnute, 2004) and thus prone to aliasing. Our analysis is incapa-

ble of identifying mediating effects on a time scale shorter than

two years. This limitation is linked to the Nyquist-Shannon sam-

pling theorem (Shannon, 1949; Jerri, 1977), which states that the

sampling frequency should be at least twice the highest frequency

contained in the signal. The goal of the Nyquist-Shannon theorem

Figure 7. Heatmaps of the RPC in frequency domain for cod.
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is to avoid aliasing, i.e. when a signal is discretely sampled at a

rate that is insufficient to capture the changes in the signal.
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