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Abstract

The aim of this study was to elucidate how vitamin E (alpha tocopherol) may ameliorate

the toxicity of the pesticide chlorpyrifos in Atlantic salmon. Freshly isolated hepatocytes
were exposed to vitamin E, chlorpyrifos or a combination of vitamin E and chlorpyrifos (all
100 pM). Transcriptomics (RNA-seq) and metabolomics were used to screen for effects of
vitamin E and chlorpyrifos. By introducing vitamin E, the number of upregulated transcripts
induced by chlorpyrifos exposure was reduced from 941 to 626, while the number of down-
regulated transcripts was reduced from 901 to 742 compared to the control. Adding only vi-
tamin E had no effect on the transcriptome. Jak-STAT signaling was the most significantly
affected pathway by chlorpyrifos treatment according to the transcriptomics data. The meta-
bolomics data showed that accumulation of multiple long chain fatty acids and dipeptides
and amino acids in chlorpyrifos treated cells was partially alleviated by vitamin E treatment.
Significant interaction effects between chlorpyrifos and vitamin E were seen for 15 metabo-
lites, including 12 dipeptides. The antioxidant had relatively modest effects on chlorpyrifos-
induced oxidative stress. By combining the two data sets, the study suggests that vitamin E
supplementation prevents uptake and accumulation of fatty acids, and counteracts inhibited
carbohydrate metabolism. Overall, this study shows that vitamin E only to a moderate de-
gree modifies chlorpyrifos toxicity in Atlantic salmon liver cells.

Introduction

Several nutrients have modifying effects on the toxicity of contaminants. Interactions between
nutrients and contaminants can enhance the protection against negative effects of unwanted
compounds. For example, vitamin E (tocopherols), flavonoids, and fatty acids amend the toxic-
ity of polycyclic aromatic hydrocarbons (PAHs) and pesticides [1,2,3]. The mechanisms under-
lying such interactions are however often not very well characterized.

Interactions between nutrients and contaminants are of particular interest in fish, and espe-
cially in farmed fish such as Atlantic salmon, with the recent replacement of fish-based feed in-
gredients with plant-based feed ingredients. Due to overfishing and reduced global stocks of
fish used to produce commercial feeds [4], the farming industry today uses salmon diets >60%
of the fish oil replaced with plant oil, and with decreasing fishmeal inclusion levels [5]. Dietary
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fatty acid composition can affect tissue fatty acids in Atlantic salmon in a tissue-dependent pat-
tern [6], especially in liver and white muscle [7], and compromise the immune system of the
fish [8]. In addition, while fish-based oils are rich in alpha-tocopherol, plant-based feeds may
contain more gamma-tocopherol. These forms of vitamin E, which have antioxidant and anti-
inflammatory properties, may have different abilities to protect the fish against the effects

of contaminants.

With increasing inclusion of plant-based ingredients, feeds for Atlantic salmon may become
contaminated with agricultural pesticides. Recently, wide-scale screening of fish feeds for con-
taminants has identified, among others, the insecticides chlorpyrifos-methyl and pirmiphos-
methyl as possible threats for farmed salmon [9]. New plant-based feeds thus not only alter the
dietary balance of essential nutrients and change the nutritional composition of the fish, but
also introduce contaminants not normally associated with salmon farming. The organophos-
phate pesticide chlorpyrifos is a broad-spectrum insecticide used to kill a wide variety of insects
[10]. It remains one of the most widely used agricultural organophosphate insecticides, and is
currently in use in more than 100 countries worldwide [11,12,13]. Chlorpyrifos is highly toxic
to aquatic organisms including fish. It bioaccumulates in fish and has a 96-hour LC50 toxicity
value in rainbow trout (Oncorhynchus mykiss) between 7.1 and 51 pg/L, depending on water
temperature [14]. Chlorpyrifos has at least three main modes of action in mammals. It inhibits
the enzyme acetylcholinesterase (AChE), causes oxidative stress and endocrine disruption [15].
In both mammals and fish, AChE inhibition is the main effect of chlorpyrifos exposure [16].
The main detoxification system is via the cytochrome P450 enzyme system [17]. Chlorpyrifos
is completely metabolized to chlorpyrifos oxon and then to 3,5,6-trichloro-2-pyridinol (TCP)
in the mammalian liver by cytochrome P450 system [18].

The aim of this study was to evaluate whether vitamin E (alpha tocopherol) amends the tox-
icity of chlorpyrifos in Atlantic salmon. Vitamin E has been reported to be partially protective
against chlorpyrifos in animal models [19,20,21]. Freshly isolated primary hepatocytes were
used as a model, and cells were either kept as control or treated with 100 uM alpha tocopherol,
100 uM chlorpyrifos or a combination of vitamin E and chlorpyrifos for 48 hours. Previous ex-
periments have shown the chosen chlorpyrifos concentration to be non-cytotoxic to Atlantic
salmon hepatocytes, but still high enough to induce marked transcriptional responses [22].
Similar experiments have been conducted with vitamin E, providing the rationale for using the
selected concentration of alpha tocopherol in the current study (unpublished data). Direct se-
quencing (RNA-seq) and metabolite profiling were used to screen for interactive effects be-
tween vitamin E and chlorpyrifos. To evaluate whether transcriptional profiling can be used to
predict the metabolite outcome in the cells, we compared the significantly affected KEGG path-
ways, as identified with transcriptional profiling, with the predicted cellular responses based on
affected metabolites.

Materials and Methods
Fish sampling and cell harvesting

Fish sacrifice was conducted by the authors and approved by the Norwegian Animal Research
Authority (NARA) via NIFES' Animal Care and Use Committee. Juvenile Atlantic salmon
(Salmo salar) were obtained and kept at the animal holding facility at Industrilaboratoriet
(ILAB), Bergen, Norway. The fish were fed once a day a special feed produced without synthet-
ic antioxidants and with low levels of contaminants, delivered by EWOS, Norway (Spirit 400-
50A HH, 6.0 mm). All glassware, instruments and solutions were autoclaved prior to liver per-
fusion. Hepatocytes were isolated from 6 male Atlantic salmon (mean+SEM: 555420 g) with a
two-step perfusion method earlier described by Sefteland et al. [23]. The fish were sacrificed by
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terminal anaesthetization with tricaine methanesulfonate (MS-222) (200 mg/1). Harvesting of
cells was conducted in agreement with and approved by national legislation. The final cell pel-
let was resuspended in L-15 medium containing 10% Fish serum (FS) from salmon (Nordic
BioSite, Oslo, Norway), 1% glutamax (Invitrogen, Norway) and 1% penicillin-streptomycin-
amphotericin (10000 units/ml potassium penicillin 10000 mcg/ml steptomycin sulfate and

25 pg/ml amphotericin B.) (Lonzo, Medprobe, Oslo, Norway). The Trypan Blue exclusion
method was performed in accordance with the manufacturer’s protocol (Lonzo, Medprobe,
Oslo, Norway) and was used to determine cells viability. The cell suspensions were plated on
2 pg/cm” laminin (Sigma-Aldrich, Oslo, Norway) coated culture plates (TPP, Trasadingen,
Switzerland) and the hepatocytes were kept at 10°C in a sterile incubator without additional
0,/CO, (Sanyo, CFC FREE, Etten Leur, Netherland). The following cell densities were used;
7.2x10° cells per well in 6-well plates (in 3 ml complete L-15 medium for transcriptional and
metabolite profiling) and 0.2x10° cells per well in xCELLigence 96-well plates (in 0.2 ml com-
plete L-15 medium for cytotoxicity screening).

Exposure experiments

The cells were cultured for 36-40 h prior to chemical exposure with exchange of medium (con-
taining 10% FS) after 18-20 hours. For the exposure experiments, cells were treated with alpha
tocopherol (100 pM), chlorpyrifos (100 M) or a combination of alpha tocopherol (100 uM)
and chlorpyrifos (100 pM) and harvested after 48 hours exposure. Table 1 shows an overview
of the number of samples collected for the two experiments. Chlorpyrifos was dissolved in
DMSO. An equal amount of DMSO was used in all four experimental groups. Alpha tocopher-
ol and chlorpyrifos were obtained from Sigma (Sigma-Aldrich, Oslo, Norway). The cells were
exposed in triplicate wells using 6-well culture plates for the transcriptional and metabolite
profiling, and in single 96-wells culture for the xCELLigence cytotoxicity screening. The expo-
sure medium contained 1% FS. The exposure medium was exchanged with new medium after
18-20 hours and the chemical exposure was sustained for another 24 hours.

Cytotoxicity screening

Impedance-based real time detection of cellular viability was conducted using the xCELLigence
system (Real-Time Cell Analyzer RTCA-SP, ACEA Biosciences, San Diego, USA), described in
detail by Abassi et al. [24]. Recording of cell index (CI) values and normalization was per-
formed using the RTCA Software version 1.2.1. Primary hepatocyte cells were evenly distribut-
ed to 96-well E plates. Each well contained about 0.2 million cells. Coating and cell density
optimization was ensured by preliminary experiments. The cells were allowed to attach to the
96-well E plates at room temperature (30 min) before being inserted in the cell incubator for

Table 1. Number of samples used for the various analytical methods.

Group RNA-seq Metabolomics Metabolomics exposure Description
(cells) (cells) medium

Control 6 6 1 Control (w/DMSO)

Alpha tocopherol (100 pM) 6 6 1 Vitamin E (Vit E) exposed (w/
DMSO)

Chlorpyrifos (100 pM) 6 6 1 Chlorpyrifos (CPF) exposed (w/
DMSO)

Chlorpyrifos (100 uM) + Alpha tocopherol 6 6 1 Chlorpyrifos/vitamin E exposed (w/

(100 pM) DMSO)

doi:10.1371/journal.pone.0119250.t001
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continuous impedance recording. The real time cell monitoring was conducted at 10°C in an
incubator without additional O,/CO, (Sanyo, CFC FREE, Etten Leur, Netherland), using the
RTCA single plate xCELLigence platform. The data was collected with intervals of 2 min after
compound exposure for 12 hours, and then every 15 min for 60 hours. For calculation of cell
viability after 48 hours of exposure, the impedance signal was analyzed by normalizing data of
each singe well to a reference time point set about one hour before the final exchange of expo-
sure medium, or after about 38 hours of exposure: Cl(,ormalized) = Cliime x/Clnorm time (termed
“normalized cell index” or NCI). The NCI values were calculated from cells obtained from 6
different male fish (n = 6). Determination of cytotoxic effect was done according to the Inter-
national standardized test for in vitro cytotoxicity ISO 10993-5:2009 [25].

RNA isolation

Hepatocyte cells from Atlantic salmon were treated with lysis buffer before homogenization
with the Precellys 24 homogenizer by using ceramic beads CK28 (Bertin Technologies, Mon-
tigny-le-Bretonneux, France). The RNeasy Plus mini kit (Qiagen, Crawley, UK) was used to ex-
tract total RNA according to the manufacturer’s protocol. The RNA was eluted in 30 ul RNase-
free MilliQ H,O and stored at —80°C before further processing. RNA quality and integrity were
assessed with the NanoDrop ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA) and the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto,
CA, USA). The 260/280 and 260/230 nm ratios were 2.15 + 0.00 and 2.20 + 0.05 in cells, respec-
tively (n = 24, mean + SEM). The RNA 6000 Nano LabChip kit (Agilent Technologies, Palo
Alto, CA, USA) was used to evaluate the RNA integrity of the samples. The RNA integrity
number (RIN) was 9.5 + 0.1 (n = 24) in liver (mean + SEM).

Direct RNA sequencing (RNA-seq)

Direct RNA sequencing (RNA-seq) was used to screen for transcripts possibly affected by vita-
min E (alpha tocopherol) and chlorpyrifos exposure in 24 Atlantic salmon hepatocyte cell cul-
tures (about 7 mill. cells per culture). Poly (A) mRNA was isolated using magnetic beads with
oligo (dT) from total RNA obtained from 24 cell cultures. Fragmentation buffer was added to
shred mRNA to short reads. Using these short fragments (about 200 bp) as templates, random
hexamer primers were applied to synthesize first-strand cDNA. Second-strand cDNA was syn-
thesized using buffer, AINTPs, RNaseH, and DNA polymerase I. QiaQuick PCR extraction kit
(Qiagen) was used to purify short double-stranded cDNA fragments. These fragments were
then resolved with EB buffer for end reparation, added poly (A), and then ligated to the se-
quencing adapters. After agarose gel electrophoresis, the suitable fragments were selected for
PCR amplification as templates. Finally, the libraries were sequenced using Illumina HiSeq
2000 (San Diego, CA, USA).

An Atlantic salmon transcriptome assembled from liver tissue was used as a reference for
alignment of the RNA-seq data (24 samples, 12 millions reads per sample). Unigenes were an-
notated with Blastx alignment between unigenes and the databases of NR, NT, SwissProt,
KEGG, COG and GO. The DESeq software package was used to screen for differentially ex-
pressed genes (DEGs). The DESeq package is based on the negative binomial distribution, and
provides a method to test for differential expression by use of a shrinkage estimator for the var-
iance. We used P-adjustment < 0.5 and the absolute value of log, ratio > 1 as the threshold to
judge the significance of gene expression difference. All RNA-seq work was performed by staff
at the Beijing Genome Institute (BGI, Hong Kong).
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Metabolite profiling

Global biochemical profiles were determined in 24 Atlantic salmon hepatocyte cell cultures.
Each sample contained about 7 million cells. Samples were extracted and prepared for analysis
using Metabolon’s standard solvent extraction method. The extracted samples were split into
equal parts for analysis on GC/MS and LC/MS/MS platforms. The LC/MS portion of the plat-
form was based on a Waters ACQUITY UPLC and a Thermo-Finnigan LTQ mass spectrome-
ter, which consisted of an electrospray ionization (ESI) source and linear ion-trap (LIT) mass
analyzer. The sample extract was split into two aliquots, dried, and then reconstituted in acidic
or basic LC-compatible solvents, each of which contained 11 or more injection standards at
fixed concentrations. One aliquot was analyzed using acidic positive ion optimized conditions
and the other using basic negative ion optimized conditions in two independent injections
using separate dedicated columns. Extracts reconstituted in acidic conditions were gradient
eluted using water and methanol both containing 0.1% Formic acid, while the basic extracts,
which also used water/methanol, contained 6.5mM Ammonium Bicarbonate. The MS analysis
alternated between MS and data-dependent MS” scans using dynamic exclusion. The samples
destined for GC/MS analysis were re-dried under vacuum desiccation for a minimum of 24
hours prior to being derivatized under dried nitrogen using bistrimethyl-silyl-triflouroaceta-
mide (BSTFA). The GC column was 5% phenyl and the temperature ramp was from 40° to
300°C in a 16 minute period. Samples were analyzed on a Thermo-Finnigan Trace DSQ fast-
scanning single-quadrupole mass spectrometer using electron impact ionization. Accurate
Mass Determination and MS/MS fragmentation (LC/MS/MS) was based on Waters ACQUITY
UPLC and a Thermo-Finnigan LTQ-FT mass spectrometer, which had a linear ion-trap (LIT)
front end and a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer back-
end. For ions with counts greater than 2 million, an accurate mass measurement could be per-
formed. Accurate mass measurements could be made on the parent ion as well as fragments.
The typical mass error was less than 5 ppm. Ions with less than two million counts require a
greater amount of effort to characterize. Fragmentation spectra (MS/MS) were typically gener-
ated in data dependent manner, but if necessary, targeted MS/MS could be employed, such as
in the case of lower level signals. Instrument variability was 4% for internal standards and total
process variability for endogenous metabolites was 12%. The bioinformatics system consisted
of four major components, the Laboratory Information Management System (LIMS), the data
extraction and peak-identification software, data processing tools for QC and compound iden-
tification, and a collection of information interpretation and visualization tools for use by data
analysts. Identification of known chemical entities was based on comparison to metabolomic
library entries of purified standards. The metabolomics work was done by employees at Meta-
bolon, USA.

Statistics

Gene expression levels were calculated by using the Reads per kb per million reads (RPKM)
method [26]. Screening of differentially expressed genes (DEGs) was done with pairwise com-
parison using the DESeq software [27]. GO annotation was obtained from blastx searches
against the NR database of NCBI by using BLAST2GO with default parameters (blastx E107).
Pathways enrichment analysis was done by annotation with the KEGG database (blastx E107°).
Following normalization to total protein (Bradford assay) and log transformation, ANOVA
contrasts were used to identify biochemicals that differed significantly between experimental
groups. Analysis by two-way ANOV A identified biochemicals exhibiting significant interac-
tions and main effects for experimental parameters of dietary nutrient or contaminant. Welch’s
two-sample t-tests were used to identify biochemicals/metabolites that differed significantly
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Table 2. Number of affected transcripts and metabolites using two different statistical stringencies.

Statistical comparisons

Significantly Total Transcripts  Total Transcripts  Total Metabolites  Total Metabolites
altered transcripts (11) transcripts (11) metabolites (11) metabolites (11)
transcripts/ Log2>1 P- Log2>1 P- P<0.05 P<0.05<P-
metabolites adj<0.50 adj<0.10 adj<0.10

VitE 0 0[0 0 0[0 1 o1 3 03
Control

CPF 1843 942|901 533 351|182 155 130|25 25 21)4
Control

Vit E + CPF 1368 626|742 368 228|140 117 81|36 36 18|18
Control

CPF 1470 636|834 413 107|306 154 135|19 30 23|7
Vit E

Vit E + CPF 894 495|399 221 16457 87 58|29 51 3714
Vit E

Vit E + CPF 0 0|0 0 0lo 32 0|32 28 1|27
CPF

CPF = Chlorpyrifos. Vit E = Vitamin E.

doi:10.1371/journal.pone.0119250.t002

between experimental groups (P<0.05). Correction for multiple testing was done with false
discovery rate (FDR) using q-values (P-adj) [28]. Statistical analyses of the log-transformed
data were performed with the program “R” [29]. The functional pathway analyses were gener-
ated through the use of IPA [30].

Results
Exposure experiment and cytotoxicity

The different cell suspensions used in this study had cell viability between 89-96% as deter-
mined by the Trypan Blue exclusion method. After 48 hours of exposure, no significant effect
of chlorpyrifos treatment was observed on cytotoxicity measured with the xCELLigence sys-
tem. Neither did vitamin E supplementation, alone nor in combination with chlorpyrifos, have
any effect on cytotoxicity (data not shown).

Transcriptomics results

On average, 12,085,418+62,567 single-end Illumina reads were sequenced from the cell culture
samples (n = 24, mean+SEM). The reads were mapped to a liver Atlantic salmon transcriptome as-
sembled from 65,863,720 paired-end Illumina reads. Total mapped reads were 10,163,717+62,277
(n = 24, mean+SEM) or about 84%. The reference transcriptome was made from a pool of total
RNA obtained from liver of four juvenile Atlantic salmon. Assembly of the transcriptome created
156,417 contigs with an average length of 266 nucleotides (nts) and 65,519 unigenes with an aver-
age length of 571 nts, as well as 45,855 singletons. The number of unigenes annotated in various
databases were: NR: 32,699, NT: 41,578, Swiss-Prot: 29,033, KEGG: 23,356, COG: 9,486, and GO:
22,371.

Table 2 shows an overview of the number of differentially expressed genes (DEGs) accord-
ing to the transcriptional profiling. The DESeq method was used with a log2 ratio >1 (>2-fold
change) and FDR-adjusted P-values (P-adj) <0.50 and <0.10. In the pairwise comparison (A
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versus B), the former one (A) is considered as the control, and the latter one (B) is considered
as the treatment. Exposure to 100 uM chlorpyrifos significantly upregulated 942 transcripts
and downregulated 901 transcripts. Treatment with 100 uM alpha tocopherol alone did not
significantly affect any transcripts in the cells. Compared to the control, by adding alpha to-
copherol to chlorpyrifos the number of significantly upregulated transcripts was lowered from
942 to 626 and the number of significantly downregulated transcripts was lowered from 901 to
742. A direct comparison between the chlorpyrifos and vitamin E treatment groups showed
636 upregulated and 834 downregulated transcripts. The comparison between the vitamin E
and vitamin E plus chlorpyrifos treatment groups produced 495 upregulated and 399 downre-
gulated transcripts. S1 Dataset shows the gene lists from these pairwise comparisons. Using a
stricter P-adj cut-off of <0.1, the corresponding numbers of significantly regulated genes from
the pairwise comparisons were Control vs. CPF: 351 genes upregulated/182 genes downregu-
lated, Control vs. CPF+VitE: 228 upregulated/140 downregulated, and CPF vs. VitE: 107 upre-
gulated/306 downregulated. Since the primary goal of the transcriptional profiling was to
identify biological processes, pathways and ontology categories, and not to identify specific bio-
markers, gene lists created with the less strict P-adj cut-off was selected for downstream IPA
analyses. With this approach, about 45% of the DEGs listed in S1 Dataset and used for down-
stream analyses were identified with annotation (blastx search against the NR database, cut-off
E107).

KEGG pathway enrichment analysis identified JAK-STAT signaling (pathway ID ko04630)
as the most significantly affected system by chlorpyrifos exposure in Atlantic salmon hepato-
cytes (Fig. 1A), followed by Protein processing in endoplasmic reticulum (ko04141) (Fig. 1B),
Pathways in cancer (ko05200) and Osteoclast differentiation (ko04380). Statistically significant
KEGG pathways (P<0.05) from gene set enrichment analysis are shown in S2 Dataset. Path-
ways linked to typical human diseases and of little relevance for fish were omitted from the
lists. Addition of vitamin E to chlorpyrifos appears to have a limited impact on these molecular
mechanisms and others according to the KEGG pathway enrichment analysis. Antigen pro-
cessing and presentation (ko04612) became more significantly affected by the inclusion of vita-
min E in the exposure media, but most of the pathways appear on both lists although with
slightly different significance levels. Vitamin E supplementation amended the following signifi-
cantly changed pathways, Carbohydrate digestion and absorption (ko04973), Aldosterone-reg-
ulated sodium reabsorption (ko04960), Glycosaminoglycan biosynthesis—chondroitin sulfate
(ko00532) (significantly affected by chlorpyrifos alone, but not with co-treatment with vitamin
E), and Focal adhesion (ko04510), MAPK signaling pathway (ko04010), Ubiquitin mediated
proteolysis (ko04120), Other types of O-glycan biosynthesis (ko00514), D-Glutamine and D-
glutamate metabolism (ko00471), Regulation of actin cytoskeleton (ko04810) and ErbB signal-
ing pathway (ko04012) (significantly affected with vitamin E supplementation, but not by
chlorpyrifos alone).

Metabolomics results

A total of 28 samples were analyzed for metabolites, 24 cell culture samples and four exposure
medium samples. Cell extracts (n = 6 per group) were normalized to Bradford protein values
prior to analysis. From analysis of the dataset a total of 329 named metabolites were detected
from the metabolite profiling. Vitamin E and chlorpyrifos interacted significantly on 15 metab-
olites (Table 3), while 9 metabolites were significantly affected by vitamin E alone and 196 by
chlorpyrifos alone (2-way ANOVA). Table 2 shows an overview of the number of differentially
regulated metabolites between the four treatment groups determined by Welch's two-sample
t-test and using two levels of statistical stringency (P<0.05 or P<0.05 and P-adj<0.1). With
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Fig 1. Predicted cellular outcome of chlorpyrifos exposure (100 uM) in Atlantic salmon hepatocytes
based on affected transcripts. Effects on A) Jak-STAT signaling (KEGG pathway ID ko04630) and B)
Protein processing in endoplasmic reticulum (ko04141). Colored enzymes: green for downregulated genes,
red for upregulated genes.

doi:10.1371/journal.pone.0119250.9001

the former stringency, 130 metabolites were upregulated and 25 downregulated by chlorpyrifos
exposure compared to the control. Supplementation of vitamin E reduced the number of sig-
nificantly upregulated metabolites 130 to 81, while at the same time increased the number of
downregulated metabolites from 25 to 36. Compared to the control, vitamin E
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Table 3. Biochemicals with interaction effects between chlorpyrifos (CPF) and vitamin E (Vit E).

Two-Way ANOVA

Super Sub Pathway Biochemical Name Platform Comp KEGG HMDB CPF Main VitE CPF:Vit E
Pathway ID Effect P- Main Interaction P-
value Effect value
Amino Phenylalanine and homogentisate LC/MS 521 C00544 HMDB00130 0.0083 0.0370
Acid Tyrosine Metabolism neg
Methionine, Cysteine, homocysteine GC/MS 40266 C00155 HMDBO00742 0.8590 0.0143
SAM and Taurine
Metabolism
Peptide Dipeptide alanylarginine LC/MS 37096 0.0058 0.0291
neg
alanylisoleucine LC/MS 37118 0.0038 0.0229
pos
alanylleucine LC/MS 37093 0.0021 0.0347
pos
alanylphenylalanine ~ LC/MS 38679 0.0000 0.0334
pos
alanyltyrosine LC/MS 37098 0.0000 0.0255
pos
alpha- LC/MS 40033 0.0004 0.0304
glutamyltyrosine pos
leucylalanine LC/MS 40010 0.0002 0.0462
pos
leucylarginine LC/MS 40028 0.0000 0.0174
neg
methionylmethionine  LC/MS 40696 0.0031 0.0117
neg
seryltyrosine LC/MS 42077 0.0031 0.0211
pos
valyllysine LC/MS 41384 0.0000 0.0333
neg
valyltyrosine LC/MS 40697 0.0002 0.0366
neg
Lipid Fatty Acid, 13-HODE + 9-HODE LC/MS 37752 0.6442 0.0093
Monohydroxy neg

doi:10.1371/journal.pone.0119250.t003

supplementation alone only significantly downregulated 1 metabolite (2-stearoylglyceropho-
sphoinositol). Principal component analysis (PCA) revealed a separation between the control
and chlorpyrifos-treated cells regardless of vitamin E treatment. Heterogeneity was observed
within sample groups suggesting differences in basal metabolism between these primary-de-
rived cells obtained from six different male fish. Chlorpyrifos-treated cells also sorted separate-
ly by hierarchical clustering compared to the control. This trend was independent of vitamin E
suggesting this antioxidant may have a limited impact on the metabolic profile of these hepato-
cytes. Chlorpyrifos was detected in cell extracts (Fig. 2A), but not exposure media suggesting
this metabolite was below the limit of detection in these samples. Alpha tocopherol was de-
tected in exposure media (Fig. 2B) and in the cells (Fig. 2C). Pathway-specific heat maps of af-
fected metabolites, with fold changes and significance levels, are shown in S3 Dataset.
Chlorpyrifos exposure induced changes in metabolites linked to four major systems in the he-
patocytes. These were energy metabolism, lipid metabolism, BCAA/glutathione metabolism
and nucleotide metabolism.
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Fig 3. Predicted cellular outcome of chlorpyrifos exposure (100 uM) in Atlantic salmon hepatocytes based on affected metabolites. Effects on A)
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protein concentration.

doi:10.1371/journal.pone.0119250.g003

Chlorpyrifos exposure increased the accumulation of multiple free amino acids in the hepa-
tocytes. Elevated levels of valine, isoleucine, and leucine in chlorpyrifos-treated cells were ac-
companied by an accumulation of the related alpha-keto acids 4-methyl-2-oxopentanoate and
3-methyl-2-oxovalerate (Fig. 3A). Vitamin E supplementation partially restored dipeptide lev-
els in chlorpyrifos treated cells. Chlorpyrifos exposure depleted the levels of glutathione (GSH)
and oxidized glutathione (GSSG), and increased the levels of cystine (formed by the oxidation
of two cysteine molecules that covalently link via a disulfide bond) (Fig. 3A). In addition, in-
creased levels of cystathionine, homocysteine and 5-oxoproline and diminished levels of 2-ami-
nobutyrate and ophthalmate were seen in chlorpyrifos-exposed cells.

The long chain fatty acids palmitate and stearate accumulated in chlorpyrifos-treated hepa-
tocytes compared to the controls (Fig. 3B). Vitamin E treatment was able to partially restore
fatty acid levels to near control levels. The accumulation of these metabolites in chlorpyrifos-
treated cells may reflect a change in the hydrolysis of complex lipids such as triglycerides as
supported by the accumulation of monoacylglycerols such as 1-linoleoylglycerol and 1-arachi-
donylglycerol. The accumulation of these metabolites was modestly impacted by vitamin E
supplementation. The polyunsaturated fatty acids docosapentaenoate, docosahexaenoate, and
arachidonate were diminished in the presence of chlorpyrifos. Decreased levels of these metab-
olites indicate a conversion to lipid peroxidation products such as 13-HODE and 9-HODE
that can be indicative of increased oxidative stress and are PPAR ligands associated with in-
flammatory hyperalgesia. Vitamin E supplementation also prevented chlorpyrifos-induced
cholesterol accumulation in the cells.
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For energy metabolism, chlorpyrifos exposed cells exhibited reduced levels of glycogen me-
tabolites maltopentaose, maltotriose and maltose compared to controls (Fig. 3C). Vitamin E
supplementation in the presence of chlorpyrifos was unable to restore glycogen metabolite lev-
els. Alterations in glycogen may restrict glucose availability as evidenced by reduced levels of
glucose in these cells. The glycolytic metabolites glucose 6-phosphate (G6P), fructose 1,6-
bisphosphate, 3-phosphoglycerate, and lactate were reduced in the presence of the pesticide, re-
gardless of vitamin E treatment. The TCA cycle intermediates citrate, alpha-ketoglutarate, and
succinate significantly accumulated in the presence of chlorpyrifos.

Following chlorpyrifos exposure, the purine degradation products inosine, hypoxanthine,
adenine, and xanthine accumulated in hepatocytes (Fig. 3D). Elevated levels of these metabo-
lites can contribute to altered redox homeostasis since the generation of xanthine is accompa-
nied by the production of hydrogen peroxide (H,0O,). Purine catabolism may also be a
component of the homeostatic response of the mitochondria to oxidative stress. Alternatively,
these findings reflect increased nucleic acid availability potentially resulting from decreased cell
growth and/or limited energy generation and excess AMP levels. Elevated levels of the pyrimi-
dines cytidine and thymidine in chlorpyrifos treated cells were accompanied by an accumula-
tion of uracil that may be indicative of an increase in nucleotide catabolism. These metabolic
imbalances were not alleviated by vitamin E supplementation.

Ingenuity pathway analysis (IPA)

IPA Core analysis and the IPA Compare function were used for evaluation of biological pro-
cesses, pathways and networks. In order to use IPA, all identifiers must be recognized as mam-
malian homologs. Some fish-specific genes obviously cannot be given human ortholog names
recognized by IPA, and thus cannot be included in IPA-Core analysis. To search for ameliorat-
ing effects of vitamin E on chlorpyrifos toxicity, the pairwise “control versus chlorpyrifos” and
“control versus chlorpyrifos and vitamin E” comparisons were more closely examined. The
number of identifiers included in the “control versus chlorpyrifos” and “control versus chlor-
pyrifos and vitamin E” IPA Core analyses were 640, 77 and 716, and 482, 64 and 565, respec-
tively (transcripts, metabolites/biochemicals and combined). Heat maps generated with the
IPA Compare function based on activation score from the transcriptomics analyses suggested
that vitamin E supplementation ameliorated effects induced by chlorpyrifos related to cell sur-
vival and viability, bone cell formation-linked mechanisms, fatty acids (uptake of palmitic acid,
concentration of acylglycerol) and amino acids (transport of L-amino acid), as well as numer-
ous pathways linked to cancer and other mechanisms mainly of relevance for human health
(S1 Table). A similar analysis by using the IPA Core analyses with metabolite identifiers sug-
gested that vitamin E supplementation lowered the impact on free radical generation and de-
toxification (synthesis of nitric oxide, concentration of glutathione) and corresponding effects
as suggested by the transcriptional data on fatty acid metabolism and amino acid transport. By
combining the significantly affected transcripts and metabolites, in addition to effects on cell
survival and viability, predicted activation of functions linked to fatty acids (accumulation of
lipids (Fig. 4A), uptake of fatty acid, uptake of palmitic acid, accumulation of triacylglycerol)
and predicted inhibition of functions linked to carbohydrates (metabolism of polysaccharide
(Fig. 4B), transport and oxidation of monosaccharide, oxidation of D-glucose) were the most
distinct effect of vitamin E supplementation.

Discussion

This work shows that alpha tocopherol (vitamin E) to a modest degree can affect chlorpyrifos
toxicity in Atlantic salmon liver cells. The cellular response as predicted by the metabolite
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doi:10.1371/journal.pone.0119250.9004
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outcome suggests that the main effects of chlorpyrifos exposure were on energy metabolism,
lipid metabolism, BCAA/glutathione metabolism and nucleotide metabolism. Jak-STAT sig-
naling was the most strongly affected pathway by chlorpyrifos exposure according to the tran-
scriptional profiling. Vitamin E supplementation could only to a certain degree rescue the cells
from the negative effects of the organophosphate pesticide.

In the nervous system, one of the main targets of chlorpyrifos toxicity in animals [10,31],
the negative effects of the pesticide can lead to development of oxidative stress [32]. Numerous
studies both with mammalian and fish models suggest that oxidative stress is one of the main
outcomes of chlorpyrifos exposure [15]. As predicted, oxidative stress mechanisms were also
affected by chlorpyrifos exposure in the Atlantic salmon hepatocytes. Depleted glutathione
(GSH) and oxidized glutathione (GSSG) in the presence of chlorpyrifos indicate a decline in
total glutathione availability, while elevated levels of cystine (formed by the oxidation of two
cysteine molecules that covalently link via a disulfide bond) suggests free radical exposure. Al-
ternatively, elevated cystathionine and homocysteine levels coupled with diminished 2-amino-
butyrate and ophthalmate levels suggest a deficit in cysteine biogenesis and consequently the
capacity to replenish glutathione. In support, higher levels of 5-oxoproline following pesticide
treatment is indicative of the import and degradation of gamma-glutamyl amino acids to re-
plenish GSH. Vitamin E administration was unable to restore cysteine metabolism in this
study. Elevated accumulation of the purine degradation products inosine, hypoxanthine, ade-
nine, and xanthine following chlorpyrifos exposure indicate altered redox homeostasis since
the generation of xanthine is accompanied by the production of hydrogen peroxide (H,O,)
[33]. Published studies also demonstrate that purine catabolism may be a component of the ho-
meostatic response of the mitochondria to oxidative stress [34].

At the transcriptional level, chlorpyrifos exposure significantly affected the Gene Ontology
“Response to oxidative stress” (GO:0006979) genes antioxidant 1 copper chaperone (ATOX1),
protein phosphatase 1 regulatory subunit 15B (PPP1R15B) and nuclear factor erythroid 2-re-
lated factor 2 (NFE2L2). The latter gene, NFE2L2, is a transcription activator that binds to anti-
oxidant response elements (ARE) in the promoter regions of target genes important for the
coordinated regulation of genes in response to oxidative stress [35]. NFE2L2, which was down-
regulated by chlorpyrifos exposure, did not show altered transcription in cells co-treated with
vitamin E. In addition, the B-cell translocation gene 1, anti-proliferative (BT'G1) and NF-
kappa-B 1 p105 subunit (NFKB1) genes were significantly affected by chlorpyrifos and vitamin
A co-treatment but not by chlorpyrifos alone, while vitamin E supplementation counteracted
the chlorpyrifos-induced ATOXI1 response. The NFKBI encodes a transcription factor present
in almost all cell types involved in multiple cellular responses to stimuli such as cytokines and
stress [35]. Its downregulation in cells co-treated with chlorpyrifos and vitamin E but not in
pesticide-treated cells alone may indicate ameliorating effects of the antioxidant on mecha-
nisms linked to apoptosis or proteasome-dependent degradation of proteins. Accordingly, the
ATOX1 protein functions as an antioxidant against superoxide and hydrogen peroxide [35],
and the differential transcription in cells given vitamin E may suggest a protective effect of the
antioxidant. Chlorpyrifos exposure also induced pyruvate dehydrogenase kinase isozyme 2
(PDK2), a serine/threonine kinase functionally belonging in the Gene Ontology “Cellular re-
sponse to reactive oxygen species” (GO:0034614) that plays a role in the regulation of cell pro-
liferation and in resistance to apoptosis under oxidative stress [35]. No effect of vitamin E
supplementation was however seen on PDK2 transcription in the cells. CuZn superoxide dis-
mutase (SOD1) and catalase (CAT), suggested markers for longer-term chlorpyrifos exposure
(15 days) in the Nile tilapia (Oreochromis niloticus) by Oruc [36], were not among the affected
transcripts in cultured Atlantic salmon hepatocytes. To see effects on typical oxidative stress re-
sponse genes, fish studies suggest that longer-term chlorpyrifos exposure is needed [37].
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Opverall, the transcriptional data including significantly affected pathways (S2 Dataset) suggest
that the antioxidant had only a modest effect on chlorpyrifos-induced oxidative damage lead-
ing to apoptosis.

One of the most pronounced effects of chlorpyrifos exposure on metabolites was the accu-
mulation of multiple free amino acids in the hepatocytes. The accumulation of multiple free
amino acids in chlorpyrifos treated cells may reflect decreased utilization for protein synthesis
or an increase in proteolysis considering multiple dipeptides significantly accumulated in these
cells. Elevated levels of valine, isoleucine, and leucine in chlorpyrifos-treated cells were accom-
panied by an accumulation of the related alpha-keto acids 4-methyl-2-oxopentanoate and 3-
methyl-2-oxovalerate that may also be indicative of degradation. These findings may reflect ox-
idative damage of proteins and subsequent degradation. Vitamin E supplementation partially
restored dipeptide levels in chlorpyrifos treated cells and this was the strongest effect of vitamin
E observed in the current study. Significant interaction effects between chlorpyrifos and vita-
min E were observed for 12 dipeptides. Collectively, these findings are in agreement with pub-
lished studies demonstrating chlorpyrifos induces oxidative stress in multiple model systems
[36,37,38,39,40]. Alpha tocopherol supplementation at the studied concentration did not coun-
teract these effects, suggesting that vitamin E, except its ability to partially restore dipeptide lev-
els, has a relatively limited ability to rescue chlorpyrifos-induced oxidative stress in salmon
hepatocytes.

Chlorpyrifos exposure affected the levels of several long chain fatty acids. The accumula-
tion of these metabolites in chlorpyrifos treated cells indicates a change in the hydrolysis of
complex lipids such as triglycerides as supported by the accumulation of monoacylglycerols
such as 2-linoleoylglycerol and 1-arachidonylglycerol. Vitamin E treatment was able to par-
tially restore the levels of these fatty acids to near control levels. Altered levels of lysolipids in-
dicate a difference in membrane remodeling in the presence of pesticide. The accumulation of
these metabolites was only modestly impacted by vitamin E supplementation suggesting a
partial restoration of lipid homeostasis. Elevated lipid levels indicate increased eta-oxidation
as suggested by the accumulation of acetylcarnitine (contributes to the movement of acetyl
CoA in the mitochondria during lipid oxidation), in line with earlier mammalian studies [39].
In contrast to long chain fatty acids, the polyunsaturated fatty acids docosapentaenoate, doco-
sahexaenoate, and arachidonate were diminished in the presence of chlorpyrifos. Lower poly-
unsaturated fatty acids indicate utilization of these precursors for the generation of pro- and
anti-inflammatory eicosanoids. Furthermore, decreased levels of these metabolites may be in-
dicative of conversion to lipid peroxidation products such as 13-HODE and 9-HODE that can
be indicative of increased oxidative stress and are peroxisome proliferator-activated receptor
(PPAR) ligands associated with inflammatory hyperalgesia. 13-HODE and 9-HODE are oxi-
dative metabolites of the essential fatty acid linoleic acid [35] and these were the only lipid me-
tabolism biochemicals that showed a significant interaction effect for chlorpyrifos and vitamin
E. In a previous study in which Atlantic salmon hepatocytes were exposed to chlorpyrifos [22],
several putatively annotated eicosanoids in different lipid metabolism pathways were affected by
the exposure. We were however not able to reproduce the effect on these metabolites in the cur-
rent experiment, although the suggested overall effect on lipid metabolism was the same. A pre-
dicted inhibition of release of eicosanoids, due to altered levels of arachidonic acid, D-glucose, D-
mannose, glycine and cholesterol after chlorpyrifos exposure, was enhanced by vitamin E supple-
mentation in the current study. Compared to the cells exposed to chlorpyrifos alone, vitamin E
supplementation contributed to a predicted inhibition of eicosanoid synthesis.

It is well known that many lipid-soluble contaminants, including organophosphorous pesti-
cides, can contribute to accumulation of lipids in fish liver [41]. In crucian carp (Carassius aur-
atus gibelio), for example, Xu et al. [42] found increased levels of triglycerides in the liver after
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exposure to the organophosphorous pesticide trichlorfon. Recent studies have shown a strong
correlation between chemical exposure and steatosis (fatty liver) [43]. We have earlier shown
that the organochlorine insecticide endosulfan induces steatosis in Atlantic salmon hepatocytes
[44], while Sun et al. [45] showed a similar response in male rockfish (Sebastiscus marmoratus)
exposed to the triazole-containing fungicide paclobutrazol. As shown in Fig. 3A, a number of
genes who’s proteins are linked to increased accumulation of lipids displayed differential ex-
pression in this study. Of these, it is interesting to note that while vitamin E prevented the
chlorpyrifos-induced increased expression of PPARA, no effect was seen on the PPAR beta 1A
(PPARBIA, an ortholog to mammalian PPARD).

Impaired metabolism of a number of drugs has been linked to steatosis, suggesting an asso-
ciation between increased lipid deposition and impaired cytochrome P450 (CYP) enzymes
[46]. In carp (Cyprinus carpio), it has been shown that long-term exposure to chlorpyrifos re-
sults in CYP1A mRNA induction and increased EROD activity in the liver [47]. Surprisingly,
the highly inducible CYP1A gene was not among the gene transcripts significantly induced by
chlorpyrifos exposure in the exposed liver cells. According to the transcriptional data, only two
gene transcripts, both annotated to cytochrome P450 2K1, were differentially affected by chlor-
pyrifos exposure. Co-treatment with vitamin E prevented this effect.

One possible explanation on how vitamin E might help prevent accumulation of lipids in
fish liver is disturbance of cholesterol transport and uptake, as no cholesterol accumulation
was observed in pesticide-treated cells. The transcriptional data showed that chlorpyrifos-in-
duced downregulation of low-density lipoprotein receptor (LDLR) was prevented by vitamin E
treatment. LDLR binds low-density lipoprotein (LDR), the major cholesterol-carrying lipopro-
tein of plasma, and transports it into cells by endocytosis [35]. Similarly, hormone-sensitive li-
pase (LIPE), which primarily hydrolyzes stored triglycerides to free fatty acids [35], and fatty
acid-binding protein 3 (FABP3) which is involved in uptake, intracellular metabolism and
transport of long-chain fatty acids [35], were upregulated by chlorpyrifos treatment but not in
cells co-treated with vitamin E. The antioxidant appears to have less effect on membrane-asso-
ciated gene proteins such as sphingosine 1-phosphate receptor 2 (SIPR2) and phospholipase
A2, Group XIIB (PLA2G12B) that were affected by chlorpyrifos treatment.

One of the main findings in the current study was that chlorpyrifos exposure affected energy
metabolism in the cells. Chlorpyrifos exposed cells exhibited reduced levels of the several glyco-
gen metabolites. Vitamin E supplementation in the presence of chlorpyrifos was unable to re-
store glycogen metabolite levels. Alterations in glycogen may restrict glucose availability as
evidenced by reduced levels of glucose in the cells. Consequently, the glycolytic metabolites glu-
cose 6-phosphate (G6P), fructose 1,6-bisphosphate, 3-phosphoglycerate, and lactate were re-
duced in the presence of the pesticide. Alternatively, lower glucose levels may suggest a
difference in transport as supported by rat studies showing that chlorpyrifos inhibits glucose
uptake in liver [38]. Consequently, the glycolytic metabolites glucose 6-phosphate (G6P), fruc-
tose 1,6-bisphosphate, 3-phosphoglycerate, and lactate were reduced in the presence of the pes-
ticide, regardless of vitamin E treatment. Chronic exposure to organophosphate pesticides can
lead to deleterious effects on carbohydrate metabolism. Carbohydrate-metabolizing organs,
such as the liver, can be affected by organophosphate pesticides through altered glycolysis, glu-
coneogenesis, glycogenesis, and glyconeogenesis [48]. Fig. 3B summarizes which gene tran-
scripts and metabolites that were involved in polysaccharide metabolism as identified by the
IPA analyses. In contrast to glycolytic intermediates, the TCA cycle intermediates citrate,
alpha-ketoglutarate, and succinate significantly accumulated in the presence of chlorpyrifos re-
gardless of vitamin E supplementation. This imbalance in TCA metabolites may be indicative
of mitochondrial dysfunction and potentially reflect oxidative inhibition of mitochondrial en-
zymes such as aconitase. Similarly, the reduced activity of liver mitochondrial isocitrate
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dehydrogenase (IDH) has been correlated with organophosphate toxicity in other models
[49,50]. Taken together, these findings suggest that chlorpyrifos may limit the energetic capaci-
ty of salmon hepatocytes, and that vitamin E supplementation has limited ability to restore
these mechanisms.

Interestingly, the IPA evaluation suggested that several pathways normally linked to the
central nervous system were affected in liver by chlorpyrifos exposure. This finding is not sur-
prising given that one of the main effects of chlorpyrifos exposure in animals is inhibition of
AChE activity [31]. Two major cholinesterase enzymes are found in fish. AChE is most com-
mon in brain and muscle, while butyrylcholinesterase (BChE) is found mainly in plasma and
in the liver [51]. Relatively high AChE activity has been reported in fish liver [52]. A significant
reduction in hepatic AChE activity and mRNA level has been reported in fish exposed to chlor-
pyrifos [53]. The significant effect seen on Jak-STAT signaling by chlorpyrifos exposure may
be due to damage inflicted by the bioactivated oxon on liver cholinesterases or reflect alter-
ations in protein phosphorylation pathways [54]. A similar response has been reported in
brain of mice exposed to chlorpyrifos [55].

Chlorpyrifos is a known endocrine disruptor. Two transcripts annotated to genes associated
with the Gene Ontology “Response to estrogen stimulus” (GO:0043627) were significantly af-
fected by pesticide treatment. Both the TGF beta receptor-1 (TGFBR1) and the Cbp/p300-in-
teracting transactivator 2 (CITED2) were downregulated by chlorpyrifos exposure. Vitamin E
supplementation did however not alter this response. In addition, two gene transcripts associ-
ated with the Gene Ontology “Estrogen receptor binding” (GO:0030331) were differentially
regulated. ATP-dependent RNA helicase DDX5 (DDXS5) was upregulated by chlorpyrifos ex-
posure, while nuclear receptor-interacting protein 1 (NRIP1) was downregulated by the pesti-
cide. The latter response was ameliorated by vitamin E treatment, however, the TGF-beta
signaling pathway response was not modified by the antioxidant. These findings suggest that
chlorpyrifos may affect mechanisms linked to endocrine disruption in Atlantic salmon
liver cells.

The transcriptional and metabolite profiling approaches give complementary outcomes,
supported by the IPA analyses. According to the transcriptional data, Jak-STAT signaling, Pro-
tein processing in endoplasmic reticulum and Pathways in cancer were the three most signifi-
cantly affected KEGG pathways by chlorpyrifos exposure. These results suggest that the
pesticide induced cellular damage leading to apoptosis. Significant effects were seen on several
DEGs belonging to the Gene Ontology “Induction of apoptosis” (GO:0006917). These included
genes such as GTP cyclohydrolase 1 (GCH1), serine/threonine-protein kinase 24 (STK24),
Krueppel-like factor 10 (KLF10), rho GTPase-activating protein 7 (DLC1), TGFBRI, etopo-
side-induced protein 2,4 homolog (EI24), mitochondrial ubiquitin ligase activator of NF-kB
(MUL1), as well as apoptosis regulator BCLX. This result fits nicely with the observed accumu-
lation of free amino acid as shown by the metabolomics data. Branched amino acids, such as
valine, isoleucine, and leucine discussed above, can induce apoptosis in animal cells [56]. Jak-
STAT signaling has also been linked to altered lipid metabolism [57]. As described above, one

of the main effects of chlorpyrifos exposure was induction of steatosis. Intracellular fat accu-
mulation has been shown to induce endoplasmatic stress and disrupt Jak-STAT signaling in
human cell cultures [58], further demonstrating the complementary nature of the two meth-
ods. As a key regulator of numerous cytokines, growth factors and hormones, the JAK-STAT
pathway [57] can have a profound effect on energy metabolism in vivo [57]. This study shows
a similar outcome in cell cultures. Applied together, transcriptional and metabolite profiling
therefore appear to be complementary by nature.

In conclusion, this study shows that vitamin E supplementation may help protect cells
against chlorpyrifos-induced toxicity by restoring dipeptide levels, preventing accumulation of
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lipids and modifying carbohydrate metabolism. Both the transcriptional and metabolite profil-
ing suggest that this effect is relatively modest, and that vitamin E supplementation will not res-
cue the cells completely. Although chlorpyrifos exposure clearly induced oxidative stress in the
hepatocytes, the protective effect of vitamin E was minor. The study also demonstrates the
complementary nature of transcriptional and metabolite profiling, with the more detailed tran-
scriptional responses supplementing the cellular outcome as predicted by the metabolite
changes.
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