

KRILLBASE: a circumpolar database of Antarctic krill and salp numerical densities, 1926-2016

Angus Atkinson*¹, Simeon L. Hill², Evgeny A. Pakhomov^{3,4}, Volker Siegel⁵, Ricardo. Anadon⁶, Sanae Chiba⁷, Kendra L. Daly⁸, Rod Downie⁹, Peter Fretwell², Laura Gerrish², Graham W. Hosie¹⁰, Mark J. Jessopp¹¹, So Kawaguchi¹², Bjørn A. Krafft¹³, Valerie Loeb¹⁴, Jun Nishikawa¹⁵, Helen J. Peat², Christian S. Reiss¹⁶, Robin M. Ross¹⁷, Langdon B. Quetin¹⁷, Katrin Schmidt¹⁰, Deborah K Steinberg¹⁸, Roshni C. Subramaniam¹⁹, Geraint A. Tarling², Peter Ward^{2**}

*Correspondence to Angus Atkinson aat@pml.ac.uk

¹Plymouth Marine Lab, Prospect Place, The Hoe, Plymouth Pl13DH Devon, UK

² British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3OET, UK

³Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2207-2020 Main Mall, Vancouver, BC, V6T 1Z4, Canada

⁴Institute for the Oceans and Fisheries (IOF), AERL, 231-2202 Main Mall, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

⁵Thünen Institute of Sea Fisheries, Palmaille 9, 22767 Hamburg Germany

⁶Faculty of Biology, Department Biology of Organisms and Systems, University of Oviedo, C/ Catedrático Rodrigo Uría s/n, E33071 Oviedo, Asturias, Spain

⁷JAMSTEC, 3125-27 Showamachi, Kanazawaku, Yokohama 2360001 Japan

⁸College of Marine Science, University of South Florida, St. Petersburg, FL. 33701, USA

⁹World Wildlife Fund, The Living Planet Centre, Rufford House, Brewery Road, Woking, Surrey, GU214LL, UK

¹⁰Sir Alister Hardy Foundation for Ocean Sciences, The Laboratory, Citadel Hill Plymouth PL1 2PB, UK

¹¹MaREI Centre, Environmental Research Institute, University College Cork, Haulbowline Rd, Cork, Ireland

¹²Australian Antarctic Division, Channel Highway, Kingston, TAS, 7050, Australia

¹³Institute of Marine Research, PO Box 1870,5817 Nordnes, Bergen, Norway

¹⁴Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing CA 95039, USA

¹⁵Tokai University, 3-20-1, Orido, Shimizu, Shizuoka 424-8610, Japan

¹⁶NOAA Fisheries, Southwest Fisheries Science Center, Antarctic Ecosystem Research Division 8901 La Jolla Shores Dr, La Jolla CA 92037

¹⁷Marine Science Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-6150 USA

¹⁸Virginia Institute of Marine Science, College of William & Mary, Gloucester Pt., VA 23062, USA

¹⁹Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC), University of Tasmania, Private Bag 80, Hobart, TAS 7001, Australia

** See "Author contributions" for authorship order

1 Abstract

- 2 Antarctic krill (Euphausia superba) and salps are major macroplankton contributors to 3 Southern Ocean food webs and krill are also fished commercially. Managing this fishery 4 sustainably, against a backdrop of rapid regional climate change, requires information on 5 distribution and time trends. Many data on the abundance of both taxa have been obtained 6 from net sampling surveys since 1926, but much of this is stored in national archives, 7 sometimes only in notebooks. In order to make these important data accessible we have collated available abundance data (numerical density, no. m⁻²) of postlarval E. superba and 8 salps (combined aggregate and solitary stages and species) into a central database, 9 10 KRILLBASE, together with environmental information, standardisation and metadata. The 11 aim is to provide a temporal-spatial data resource to support a variety of research such as 12 biogeochemistry, autecology, higher predator foraging and food web modelling in addition to fisheries management and conservation. Previous versions of KRILLBASE have led to a 13 series of papers since 2004 which illustrate some of the potential uses of this database. With 14 increasing numbers of requests for these data we here provide an updated version of 15 KRILLBASE that contains data from 15,194 net hauls, including 12,758 with krill abundance 16 data and 9.726 with salp abundance data. These data were collected by 10 nations and 17 18 span 56 seasons in two epochs (1926-1939 and 1976-2016). Here, we illustrate the seasonal, inter-annual, regional and depth coverage of sampling, and provide both 19 20 circumpolar- and regional-scale distribution maps. Krill abundance data have been 21 standardised to accommodate variation in sampling methods, and we have presented these 22 as well as the raw data. Information is provided on how to screen, interpret and use 23 KRILLBASE to reduce artefacts in interpretation, with contact points for the main data providers. 24 25 DOI for the published dataset: http://doi.org/brg8 26 27 Keywords: Euphausia superba, Salpa thompsoni, krill, salps, Antarctica, Southern Ocean,
- 28 KRILLBASE, database.

29 INTRODUCTION

30 The crustacean euphausiid species Euphausia superba (hereafter "krill") and the 31 tunicate family salpidae (hereafter "salps") are key large zooplankton taxa of the Southern 32 Ocean. Both taxa are important in biogeochemical cycling and nutrient export (Pakhomov et 33 al., 2002; Phillips et al., 2009; Gleiber et al., 2012; Schmidt et al., 2016). They have broadly 34 similar size, but have fundamentally different life cycles, habitat preferences, and nutritional 35 composition and thus have contrasting roles in the food web. Krill is a major food item for a 36 suite of vertebrate and invertebrate predator species (Murphy et al., 2007; Trathan and Hill, 37 2016). Salps appear in the diets of various invertebrates, fish and birds but do not seem to 38 be as important as krill to most of the air-breathing predator group (Pakhomov et al., 2002). 39 Also, compared to krill, salps seem to prefer warmer, deeper water habitats with moderate food concentrations and less sea ice (Pakhomov et al., 2002; Loeb and Santora, 2012). 40

Over the past 100 years the Southern Ocean has experienced regional warming 41 42 (Gille, 2002; Meredith and King, 2005; Whitehouse et al., 2008) and regionally-variable changes in sea ice cover (de la Mare, 1997; Murphy et al., 2014; Stammerjohn et al., 2012). 43 44 Whether there has been a consequent reorganisation of plankton distributions is a topic of much interest and debate (Pakhomov et al., 2002; Atkinson et al., 2004; Ward et al., 2012; 45 46 Loeb et al., 2015). Climate model ensembles predict that current positive trends in 47 atmospheric Southern Annular Mode (SAM) anomalies will continue this century (Gillett and 48 Fyfe, 2013). Since the population dynamics of key euphausiid and salp species relate to these climatic drivers (Saba et al., 2014; Ross et al., 2014; Steinberg et al., 2015; Loeb and 49 50 Santora, 2015), we need to understand the spatial and temporal dynamics of both krill and 51 salps.

In addition to their ecological role, krill are also the dominant fished species in the Southern Ocean in terms of catch weight, with a potential sustainable yield equivalent to 11% of current global fishery landings (Grant et al., 2012). The Antarctic krill fishery is managed by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) which is committed to precautionary, ecosystem-based management. This

57 means that CCAMLR is responsible for managing the impacts of the fishery on the health, 58 resilience and integrity of the wider ecosystem. However, there is little information about 59 many relevant aspects of krill ecology and population dynamics (Siegel and Watkins 2016), 60 including stock identity (Jarman and Deagle, 2016), and predator-prey relationships (Trathan 61 and Hill, 2016). Reducing these uncertainties might be necessary for CCAMLR to achieve its 62 conservation objectives (Constable, 2011).

63 Fishery managers and stakeholder groups aim to improve management using 64 feedback approaches and spatial and temporal protection, but more information is needed to 65 achieve this (Hill and Cannon, 2012). Thus, understanding krill distribution and dynamics is 66 also important for the development of sustainable fishery management and conservation 67 policy (e.g., identifying suitable Marine Protected Areas and assessing the dynamics of fished stocks). Consequently, a cross-sector group representing the fishing industry, 68 scientists and conservation NGOs has recently called for improvements in the availability of 69 70 information to improve understanding of the state of the krill-based ecosystem and 71 management of the fishery (Hill et al., 2014).

72 Spatial-temporal information on krill and salps can come from scientific surveys using acoustics or nets, predator studies or data from the fishery. Each has its strengths and 73 74 weaknesses and these are expanded on elsewhere (Atkinson et al. 2012b). For net 75 sampling surveys, data are available from a variety of expeditions since the 1920s. These 76 individual surveys provide important snapshots of the ecosystem but in isolation they cannot provide a broader context. Annual monitoring programmes collecting net and acoustics data 77 over standardized survey grids were initiated in the late 1980's and early 1990's (Reiss et 78 79 al., 2008; Fielding et al., 2014; Steinberg et al., 2015; Kinzey et al., 2015; Krafft et al., 2016). However, despite the technology used, these multi-year time series surveys only cover a tiny 80 81 fraction of the Southern Ocean area. A larger-scale and longer-term perspective is thus 82 useful to provide context for the standardised monitoring datasets.

The KRILLBASE project was started at the end of the 1990s to bring together the data necessary for this broader context. It was initiated by Angus Atkinson, Evgeny

85 Pakhomov and Volker Siegel and is one of many examples of international collaboration in 86 Antarctic research. Over the last 15 years we have documented and collated over 200 87 datasets, some of which are 90 years old and previously only available on paper log-sheets, 88 distributed across library archives. KRILLBASE thus pre-dates many other data rescue and 89 compilation initiatives. Only by combining data in this way can we provide coverage on a 90 scale commensurate with that of large marine ecosystems or with management and 91 conservation areas (Fig. 1). The most recent update to KRILLBASE was completed in 2016, 92 and making these data more accessible improves the capacity of a broader community to 93 investigate the dynamics and distribution of ecologically important krill and salps, and to 94 enhance the responsible management of krill fisheries and the conservation of Southern 95 Ocean ecosystems.

The objectives of publishing the revised KRILLBASE are a) to provide a link to key data and metadata for those wishing access to the krill and salp data sets, b) to illustrate the scope and coverage, with examples of potential uses of these data, c) to explain in detail its structure, with caveats and guidelines on how the data can be used, and (d) to provide a single, citable reference for these combined data sets.

101

102

2. DATA AND METHODS

103 2.1 KRILLBASE overview: summary

The data introduced here were compiled as part of a long term project to rescue and compile 104 data on a range of krill and salp variables, derived from net sampling surveys. This paper 105 introduces the most recent version of the krill and salp abundance data. More specifically, 106 107 the main fields indicate numerical density (i.e. the number of individual postlarval krill or salps under 1m² of sea surface area), which we refer to as abundance for brevity. The 108 109 version of the data that we present here (doi: http://doi.org/brg8, which can be accessed via https://www.bas.ac.uk/project/krillbase) amalgamates existing time series and other surveys 110 of numerical density of postlarval krill, Euphausia superba, and salps. These data span 111 112 1926-1939 (plus 1951) and 1976-2016, albeit with variable spatial and temporal coverage. It

113 is important to emphasise that this is a multi-national composite database not a synoptic 114 snapshot or a true time series, so care is needed when using and interpreting these data 115 due to the different sampling methods used. Table 1 provides a summary of its composite 116 structure. In this paper phrases referring to KRILLBASE column headings are in bold italics 117 (e.g. *BOTTOM_SAMPLING_DEPTH_M*) whereas searchable terms within the data (e.g. 118 *stratified haul*) are italicised.

The basic dataset is in a single table with an accompanying table of column descriptions available either in their entirety as two downloadable CSV files, or as a resource that can be queried online. Both of these versions can be accessed via the doi: <u>http://doi.org/brg8</u>. Metadata are available via a) this paper, which forms a reference that needs to be cited for the data source and b) detailed descriptions of data sources for each row of the data. These data are held at the Polar Data Centre at British Antarctic Survey to allow traceability, continuity of access and future updating.

126

127 2.2 Relationships to other databases

128 A previous version of KRILLBASE was published in this journal as part of a global dataset of macroplankton biomass on a grid (Moriarty et al. 2013). The present version 129 augments this with 50% more data. If necessary the abundance values can be converted to 130 an approximation of biomass (mg.C.m⁻³) using, for example, the procedure of Moriarty et al. 131 (2013) who first calculated the number of individuals per m³ by dividing density by sampling 132 depth (BOTTOM SAMPLING DEPTH M - TOP SAMPLING DEPTH M), and then applied 133 fixed conversion factors of 63 and 24 mg.C.ind⁻¹ for krill and salps respectively. Previous 134 135 subsets of the KRILLBASE data are also stored as presence/absence data at Pangaea 136 https://pangaea.de/ and at CCAMLR. Two of the datasets used in KRILLBASE are available 137 from their respective data websites (http://pal.lternet.edu/ and https://swfsc.noaa.gov/aerd/), Although these do not include the standardised krill abundances available in KRILLBASE, 138 139 we refer the user to these two websites to obtain the most up to date source data from the 140 Palmer-LTER and US-AMLR time series data. A separate data holding external to

141 KRILLBASE, for example including winter krill data from US SO-GLOBEC, is at BCO-DMO
142 <u>http://www.bco-dmo.org/</u>. KRILLBASE and other data collections and time series are linked
143 into a global network entitled IGMETS (International Group of Marine Time Series,
144 <u>http://igmets.net/</u>), a metabase that provides a catalogue of marine biological time series.

145

146 2.3 Structure of KRILLBASE

147 It is important to differentiate "records" (i.e., rows of the data in KRILLBASE) from 148 "net hauls" and from "sampling stations". The most common situation is for each record to 149 represent a single net haul at a single station. There is one indexing column (labelled 150 "STATION" and 28 further columns (i.e. fields) describing searchable and filterable date, 151 time, position, sampling and environmental information as well as krill and salp abundance. 152 The detailed description of each of these columns is provided in Table 2, while more detail 153 on the nets used for sampling is in Table 3).

154 While most of the 14,543 records pertain to a single haul made at a station, there are actually four types of record. These are differentiated in the "RECORD_TYPE" column. The 155 156 most common record, where a single net haul was taken at the station, is simply labelled "haul". The second category is labelled "stratified haul", (2,243 records), and these hauls 157 158 form part of a depth-resolved stratified series made at a station (e.g., 0-50, 50-100, 100-159 200). The third category is "stratified pooled haul" (567 records) and these pool the 160 abovementioned stratified hauls into a single combined 'virtual haul', in this example from 0-200m. The fourth category (48 records), are labelled "survey mean". In these the record 161 provides the arithmetic mean abundance from multiple stations within a survey. While less 162 163 than optimal, this aggregated information was the only data recoverable from the relevant surveys, which provided data from a valuable 1290 stations during the 1980s. 164 165 The krill data are presented as both the observed abundance

165 The krill data are presented as both the observed abundance 166 (*NUMBER_OF_KRILL_UNDER_1M2*, no.m⁻²) and the abundance standardised relative to a 167 benchmark (*STANDARDISED_KRILL_UNDER_1M2*, no.m⁻²), which is explained in Section 168 2.7. The salp data are presented as observed abundance for all species combined, where

169 an individual can be either a solitary oozoid or an individual within an aggregate chain

170 (NUMBER_OF_SALPS_UNDER_1M2, no.m⁻²).

Overall there are 15,191 hauls in the database, from 13,542 stations. Of these hauls, 7,295 have abundance information on both krill and salps. Others have absent data for either salps or krill, and these are flagged as "Not a Number" (*NaN*). This distinguishes it clearly from zero, which indicates that either no krill or no salps were caught. Absent data should therefore not be confused with zeros.

In *stratified pooled haul* records the_*NUMBER_OF_KRILL_UNDER_1M2* and *NUMBER_OF_SALPS_UNDER_1M2* values are the sums of the component *stratified hauls*, but are not given (*NaN*) if data were missing from one or more of the *stratified hauls*. Location information is generally taken from the deepest component *stratified haul*. Time information is taken from the shallowest component *stratified haul* as krill densities are most sensitive to light levels in the surface layers.

182

183 2.4 Data processing and error checking

184 Stations were plotted one survey at a time to identify errors in station positions, stations plotting on land, or with latitude and longitudes transposed or with the wrong sign. 185 Implausibly large distances between consecutive sampling points were identified and 186 corrected. Suspiciously low densities were identified, based on known or estimated volumes 187 filtered by the various nets and the assumption that no fewer than one krill could have been 188 caught. This test identified and led to the correction of a major error made on one portion of 189 the data when converting numbers of krill per 1000 m³ to numbers of krill per m⁻². Tests of 190 191 date, time and position coincidence led to the removal of several portions of data that had been entered twice with different station numbers. 192

The veracity of high krill abundances are hard to check, since densities in swarms have been estimated in the thousands per m³ of water. The highest density values for krill and salps were 9384 and 5886 inds. m⁻³, respectively. These form a natural tail to the frequency distribution of catch densities (Fig. 2) and are not isolated outliers. They are also

well within expected values (Hamner and Hamner, 2000). The highly patchy spatial
distribution of each taxon results in right-skewed frequency distributions, with modes at zero,
i.e. no krill caught (Fig.2). This distribution type is an important consideration in analyses.

200 Water depths for each net sample were obtained by superimposing the stations on a 201 GEBCO_2014 Grid, version 20150318, www.gebco.net bathymetry using Arc GIS 10.4.1 202 and extracting the minimum, mean and maximum water depth within 10km of each station. 203 The bathymetric information derived from this provides an additional check of the veracity of 204 position information. We identified 32 records in which the 205 BOTTOM_SAMPLING_DEPTH_M was implausibly deeper than the maximum depth in the 206 vicinity of the haul. For 10 of these, the longitude or latitude was reported as an integer. 207 Integer coordinates and shallow bathymetry may indicate inaccuracies in position information. Users should be aware that inaccuracies in latitude can also affect the 208 assessment of DAY NIGHT information used in the calculation of standardised krill 209 210 abundances. A couple of reported krill catches were from warmer waters north of the Antarctic Polar Front, giving grounds for suspicion, for example of identification. We kept 211 212 these records since expatriated individuals are a possibility and we did not want to pre-judge the data provided. Data caveat issues are indicated and described in the fields DATE_ 213 ACCURACY and CAVEATS respectively. 214

215

216 **2.5 Variation in sampling coverage and method**

Fig. 1 shows that KRILLBASE sampling is highly uneven, focussing on areas of fishing or historical interest to nations focussing on the Atlantic sector (USA, GERMANY, UK, Poland, South Africa, Spain) or Indian sectors (Soviet Union, Japan, Australia). While Fig 1 plots the stations with either krill or salp data or both, Supplementary Fig. 1 plots only those stations with krill data. Data compilation was mainly focused on the Antarctic zone; 765 records are north of the Antarctic Polar Front. "Discovery" sampling (i.e., those data obtained as part of the Discovery Investigations) in the 1920's and 1930's started nearer South Georgia and

became increasingly circumpolar but, despite this, major gaps in sample coverage exist in
important areas such as the Ross Sea, Weddell Sea and in large parts of the Pacific sector.

227 The composite nature of KRILLBASE means that the sampling methods vary. Fig. 3 228 illustrates this with a circumpolar comparison of the seasonal timing of sampling (Fig 3a), 229 bottom depth of sampling (Fig 3b) and mouth area of the net (Fig. 3c). Time of year of 230 sampling has a potentially strong influence on the abundance of zooplankton, due to life 231 cycle- and behavioural traits such as seasonal vertical migration (Foxton, 1966; Atkinson et 232 al., 2012a; Cleary et al. 2016). While samples were obtained during most months of the 233 year, 89% of the hauls were conducted in the period December to March (Fig 4), with no 234 longitudinal bias in timing (Fig 3a). However, in sparsely sampled areas, particularly north of the Antarctic Polar Front, sample timing varied greatly, underlining the caution needed in 235 interpreting these samples. The original objectives for using KRILLBASE did not require 236 237 winter samples but some winter data are available from several key surveys e.g http://www.bco-dmo.org/ and could be included in subsequent updates of KRILLBASE. 238 239 Most hauls in KRILLBASE were made between the surface and 100-200 m depth, 240 but vertical coverage varied greatly between the component surveys, as indicated by the 241 chequered colours of Fig 3b. Some screening is necessary to remove stations where an 242 unrepresentative portion of the depth distribution was covered. Fig. 5 summarises the 243 vertical distribution of krill and salps where stratified series of net hauls were undertaken (269 krill stations and 563 salp stations). This shows the highest densities of krill in the top 244 200 m, with declining densities below this. KRILLBASE is suitable for exploring the 245 246 horizontal distribution of krill in the important epipelagic zone, but is unsuitable to map 247 horizontal distribution below 200m. These deeper and near- seabed zones are being 248 increasingly recognised as important habitats for krill (Gutt and Siegel, 1994; Clarke and 249 Tyler, 2008; Schmidt et al., 2011; Cleary et al., 2016). 250 Salps have a deeper distribution than krill (Fig. 3) as a result of greater diel and

251 seasonal vertical migrations (Foxton, 1966; Tsuda and Nemoto, 2001; Loeb and Santora

- 252 2012). Care is therefore needed to avoid negative bias due to shallow net sampling. A
- 253 standardisation method similar to that applied to krill may reduce these inconsistencies and
- 254 provide a better picture of the spatial distribution of salps.
- 255

256 2.6 Inter-annual coverage

257 Fig 6 divides the Southern Ocean into broad sectors to illustrate the inter-annual 258 coverage of sampling. The coverage for salps broadly follows that for krill, with good 259 coverage in the Atlantic sector from 1926-1938 and after 1976. In the Indian Ocean sector 260 some data exist from the late 1930's when "Discovery" sampling became circumpolar, 261 reasonable coverage occurred from 1981 to the mid-1990s, but few data have been 262 collected there since. While coverage in the Pacific sector is too sporadic to document time trends, data for the other two sectors are sufficient to examine sectorial patterns of inter-263 annual and decadal scale variability of both krill and salps. 264

The survey mean data are included in Fig 6, and they provide important information for the period before coordinated monitoring programmes. These data can be included in regional scale analyses (e.g. time-series analyses), but since the data pertain only to the whole survey and not the component stations, care is needed when interpreting the data at finer scales than the 3° latitude by 9° longitude grids illustrated.

270

271 2.7 Standardisation: methods

The compiled data represent a range of sampling methods with different net types, 272 sampling depths, times of day and times of year (Fig. 3). Such differences in sampling 273 274 strategy could potentially bias the outcome of analyses. For example, differences in net 275 mouth size will lead to variable avoidance and the mesh size will affect retention. Differences 276 in net geometry, towing speed and trajectory will further affect catches, as will light levels 277 and swarm packing density (Hamner and Hamner, 2000; Everson and Bone, 1986; Krag et 278 al., 2014). For example, catchability decreases as light levels increase meaning that there 279 can be a latitudinal effect because summer days are much longer at high latitudes (Fig. 7).

These issues were recognised by Marr (1962) and Mackintosh (1973) who adjusted the densities accordingly when producing circumpolar distribution maps.

282 To minimise the influence of sampling differences, our database includes both the 283 raw numerical abundances of krill and values standardised to a single sampling method. We 284 calculated the standardised krill abundances using the process and conversion factors 285 described in the supplementary appendix of Atkinson et al. (2008). The standardised abundance (STANDARDISED_KRILL_UNDER_1M2) is an estimate of the krill abundance 286 287 that would have been observed if the haul had conformed with a sampling method consisting 288 of a night-time haul on 1st January, fishing to a depth of 200 m with a mouth area of 8 m². This strategy achieves near-maximum krill catch that is possible with scientific nets. 289

290 Standardisation was implemented by multiplying the raw abundances 291 (*NUMBER_OF_KRILL_UNDER_1M2, N*) by conditional conversion factors as follows:

292
$$N' = N \frac{0.11B}{1+105B} \cdot 2.255X \cdot \frac{2.5208}{K_{pred}}$$

293 where N' is the standardised krill abundance, B is the bottom sampling depth, X is a scalar to adjust the day-to-night conversion factor (2.255) and K_{pred} is the expected krill abundance 294 295 based on a general linear model in which mouth area and time of year are the independent 296 variables (see Table 4 and Atkinson et al. 2008 for further details). X=1 when the net was 297 hauled in daylight and X=1/2.255 when it was hauled at night. We also calculated 298 standardised krill densities for nets where there was insufficient information to determine 299 whether hauling occurred in daylight or at night. In these cases the value of X is the 300 probability that the net was hauled in daylight (i.e. day length in hours/24).

The revision of KRILLBASE included reassessment of the DAY_NIGHT field (indicating whether the net was hauled in the daylight or at night; see Table 5). Where valid sampling time information was available (consisting of a GMT NET_TIME or a local NET_TIME and sufficient information to adjust to GMT), we used the *Twilight* Excel workbook available from <u>http://www.ecy.wa.gov/programs/eap/models.html</u> to determine whether the haul was conducted in daylight (defined by a solar elevation >–0.833°). Where

307 no valid sampling time information was available, but there was an indication of day or night 308 in the original data, we used this information. Where it was not possible to make this 309 assessment because of insufficient information, we used the Twilight Excel workbook to 310 calculate day length for the sampling date and location, which was then used to adjust the 311 standardised krill density as described above. As this type of standardised krill abundance 312 (indicated by a value of 3 in the DAY_ NIGHT_METHOD field) uses a different time of day 313 adjustment from other standardised krill abundances it is good practice to assess its 314 influence on results.

315 **2.8 Standardisation: Caveats on the use of standardised krill densities**

316 KRILLBASE includes standardised krill abundance information for every haul, stratified pooled haul and survey mean except those with TOP_SAMPLING_DEPTH_M 317 deeper than 50m (because hauls which exclude the surface layers are not comparable with 318 those that include these layers). These standardised densities will be most reliable when the 319 320 information underlying the standardisation is accurate and within the range of values used to derive the conversion factors. The database provides information on the accuracy of date 321 322 information (DATE_ACCURACY) and the type of time information (DAY_ NIGHT_METHOD) available in each record. The effects of averaging dates and times for survey mean data 323 324 should also be considered.

325 Although the ideal method for depth standardisation is to make all hauls equivalent to 326 a haul sampling from 0 m to 200 m depth, the standardisation described in Atkinson et al. (2008) and used here, is a partial solution which standardises bottom sampling depth to 200 327 m when the actual value is less than 200 m. It does not exclude krill caught deeper than 200 328 329 m, where krill densities are generally lower (Schmidt et al., 2011), nor does it adjust for nets that did not sample to the surface (TOP_SAMPLING_DEPTH greater than 0m). Users are 330 331 advised to screen the data to ensure that top sampling depths are consistent with their 332 requirements, noting that there are 691 hauls in the current version of KRILLBASE have top sampling depths deeper than 5m and Atkinson et al (2008) excluded such hauls before 333 334 calculating the conversion factors.

335 Date information affects the standardisation through the adjustments for time of year 336 and time of day. Atkinson et al. (2008) derived the conversion factors from a dataset where 337 the latest sampling date was 26th April. Recent KRILLBASE updates include hauls taken as 338 late as 30th August, but we have not provided standardised krill densities for sampling dates 339 after 30th April because the standardisation is extremely sensitive to dates after this point (e.g. the time-of-year adjustment for 30th August increases krill density by a factor of 3834, 340 compared to a factor of 10 for 26th April, and a factor of 1.16 for 31st January). This strong 341 342 effect of time of year of sampling on abundance likely reflects both mortality and seasonal 343 vertical migration of krill out of the surface layer late in the season (Cleary et al. 2016)

344 Inaccuracies in the date will also affect the time-of-year adjustment applied in 345 standardisation. In the single record where the date is given only to the year, the assigned date was 1st January, meaning that there is no time-of-year adjustment and standardised 346 density is conservative. When the date is given for month as well as year, the assigned full 347 348 date is the middle of the month, meaning that true dates further away from 1st January will be treated more conservatively as a consequence and true dates closer to 1st January will 349 350 be treated less conservatively. The effect of any date inaccuracies increases with time from 1st January. The DATA_CAVEATS field in the database clearly indicates for each row 351 352 which, if any, of the above caveats applies.

353

354

3. RESULTS AND DISCUSSION

355 3.1 Effects of heterogeneous data sources and standardisation: Spatial effects

Fig 8 compares the circumpolar distribution of krill and salps, allowing a comparison between the standardised and un-standardised krill values. While hauls with zero krill remained as such, median standardised krill abundance of positive hauls was 2.2 times greater than that of un-standardised values. The overall circumpolar pattern of relative abundance is similar whether based on raw or standardised abundances but the detail in some areas does differ. This is likely due to longer summer days at higher latitudes

- (requiring upwards adjustment of most catches to night values) or the localised use of poor
 sampling combinations (e.g. smaller nets and/or early or late season sampling).
- The patchy distributions of krill and salps and spatial differences in sampling density influence the spatial patterns shown in the maps. A few red cells suggest extremely high krill or salp abundance, but some of these cells only encompass a few stations. Conversely, cells suggesting absence frequently have too few stations for a reliable picture. Users need to allow for variable sampling coverage, and while our standardisation attempts to reduce net sampling inconsistencies, it does not adjust for variable precision.
- 370

371 **3.2 Effects of heterogeneous data sources and standardisation: Temporal effects**

372 The South Georgia area exemplifies the krill-based ecosystem and this has been sampled for many years (Murphy et al. 2007). We have therefore selected a subset of 373 KRILLBASE in this area to show how sampling method can vary from year to year and how 374 375 this could affect time trends (Fig. 9). This area has been sampled with a wide variety of methods since the 1920s, and the mean krill abundance varies greatly from year to year due 376 377 to recruitment variability (Fig. 9a; see also Murphy et al., 2007; Fielding et al., 2014). While the standardised annual mean krill abundances are typically greater than the un-378 379 standardised values, the offset varies substantially. This is for a number of reasons, 380 including variable mouth areas and sampling depths of the net (Fig 9b) and variable time of 381 year and time of day of sampling (Fig 9c). For example, net mouth area is generally larger (albeit more variable) in the modern post 1970s era, concomitant with an increase in bottom 382 383 sampling depth of the nets. Likewise, during the modern era, the proportions of hauls in mid-384 summer and at night have increased.

The above factors are included in the standardisation process, but other issues may be important when deciding how to screen data and interpret time trends from a heterogeneous data set such as KRILLBASE. One factor is the density of sampling coverage within any given year. We have not plotted years when there are very few stations sampled (<10 stations) because a patchy swarming species like krill is likely to be missed

altogether by such limited sampling. However, the number of stations sampled varies greatly
from year to year (Fig. 6) so we have scaled the size of the symbols according to numbers of
stations to illustrate the variable confidence in the annual means.

A second important feature may be the geographical coverage of sampling (Fig 9d). 393 394 Even within a defined area such as South Georgia, the emphasis of sampling campaigns 395 may change. For example 1926- and 1927 were local krill surveys aimed for management of 396 the whaling industry then based at South Georgia, but throughout the 1930s "Discovery" 397 sampling became increasingly circumpolar. The 1980s were characterised by large-scale 398 surveys, for instance coordinated by the international Biological Investigations of Marine 399 Antarctic Systems and Stocks (BIOMASS) programme, while monitoring in the 1990s and 400 2000s was more shelf-orientated.

- 401
- 402

4. CONCLUSONS AND RECOMMENDATIONS

403

404 4.1 Uses and limitations of KRILLBASE

405 The first version of KRILLBASE was used by Atkinson et al. (2004) to quantify the circumpolar distribution of krill and salps, examine regional trends in their densities and 406 407 determine inter-annual relationships between krill density and winter sea ice cover. Interannual changes in mean krill abundance were subsequently related to temperature by 408 409 Whitehouse et al. (2008), to whale dynamics by Braithwaite et al. (2015) and to the dynamics of other so-called wasp-waist species by Atkinson et al. (2014). The fact that krill 410 411 and salp abundances vary so much between years is an advantage for this inter-annual 412 scale of analysis, because the signal is stronger than the noise. The spatial component of KRILLBASE has been used more widely. Circumpolar 413 414 distributions have been used as a context and validation for various models and analyses

415 including biogeochemical carbon cycling (Moriarty, 2009), krill and climate change (Flores et

al., 2012; Hill et al., 2013; Piňones and Federov, 2016), population connectivity (Thorpe et

- al., 2007; Siegel and Watkins, 2016), predator foraging (Pangerc, 2010) and vertical and
 - 16

418	horizontal krill habitat analyses (Atkinson et al., 2008; Schmidt et al. 2011). These studies
419	have tended to focus on large scales, but smaller scale analyses of well-sampled areas (as
420	shown in Fig. 10) are amenable to KRILLBASE, for example to interpret predator foraging
421	areas. The caveat here is that these maps are not synoptic, but instead are more akin to
422	probability maps of where krill or salps occur and a context for more synoptic snapshots from
423	surveys (Siegel et al., 2004; Kawaguchi et al. 2004).
424	In parallel to expansion of the abundance component of KRILLBASE, we are
425	generating a large database on krill length frequency, sex, and maturity stage from scientific
426	and fisheries data, a work still in progress. Combining the length frequency and abundance
427	components provides insights into biomass and production at large scales, allowing a
428	degree of scaling-up of acoustics-derived biomass surveys (Atkinson et al., 2009). The
429	sex/length frequency component has since been used, for example, to relate circumpolar
430	trends in body length to feeding conditions (Schmidt et al., 2014), and to examine sex-
431	related changes in seasonal growth and shrinkage (Tarling et al., 2016).
432	In comparison to krill, fewer studies have used the salp component of KRILLBASE.
432 433	In comparison to krill, fewer studies have used the salp component of KRILLBASE. Lee et al., (2010) examined inter-annual variability in krill and salps simultaneously,
432 433 434	In comparison to krill, fewer studies have used the salp component of KRILLBASE. Lee et al., (2010) examined inter-annual variability in krill and salps simultaneously, emphasising the opposite nature of the trends observed in the two taxa. Given the fact that
432 433 434 435	In comparison to krill, fewer studies have used the salp component of KRILLBASE. Lee et al., (2010) examined inter-annual variability in krill and salps simultaneously, emphasising the opposite nature of the trends observed in the two taxa. Given the fact that about half of the current KRILLBASE net hauls have both krill and salps recorded, a
432 433 434 435 436	In comparison to krill, fewer studies have used the salp component of KRILLBASE. Lee et al., (2010) examined inter-annual variability in krill and salps simultaneously, emphasising the opposite nature of the trends observed in the two taxa. Given the fact that about half of the current KRILLBASE net hauls have both krill and salps recorded, a simultaneous evaluation of the two taxa would be valuable. In any of these analyses,
432 433 434 435 436 437	In comparison to krill, fewer studies have used the salp component of KRILLBASE. Lee et al., (2010) examined inter-annual variability in krill and salps simultaneously, emphasising the opposite nature of the trends observed in the two taxa. Given the fact that about half of the current KRILLBASE net hauls have both krill and salps recorded, a simultaneous evaluation of the two taxa would be valuable. In any of these analyses, however, we emphasise that great care is needed when interpreting time trends, in order to
432 433 434 435 436 437 438	In comparison to krill, fewer studies have used the salp component of KRILLBASE. Lee et al., (2010) examined inter-annual variability in krill and salps simultaneously, emphasising the opposite nature of the trends observed in the two taxa. Given the fact that about half of the current KRILLBASE net hauls have both krill and salps recorded, a simultaneous evaluation of the two taxa would be valuable. In any of these analyses, however, we emphasise that great care is needed when interpreting time trends, in order to prevent aliasing of real patterns with differences in sampling methods. This applies equally
432 433 434 435 436 437 438 439	In comparison to krill, fewer studies have used the salp component of KRILLBASE. Lee et al., (2010) examined inter-annual variability in krill and salps simultaneously, emphasising the opposite nature of the trends observed in the two taxa. Given the fact that about half of the current KRILLBASE net hauls have both krill and salps recorded, a simultaneous evaluation of the two taxa would be valuable. In any of these analyses, however, we emphasise that great care is needed when interpreting time trends, in order to prevent aliasing of real patterns with differences in sampling methods. This applies equally to salps and to krill, for example, the seasonal and diel vertical migrations of salps mean
432 433 434 435 436 437 438 439 440	In comparison to krill, fewer studies have used the salp component of KRILLBASE. Lee et al., (2010) examined inter-annual variability in krill and salps simultaneously, emphasising the opposite nature of the trends observed in the two taxa. Given the fact that about half of the current KRILLBASE net hauls have both krill and salps recorded, a simultaneous evaluation of the two taxa would be valuable. In any of these analyses, however, we emphasise that great care is needed when interpreting time trends, in order to prevent aliasing of real patterns with differences in sampling methods. This applies equally to salps and to krill, for example, the seasonal and diel vertical migrations of salps mean they are prone to under-sampling by shallow nets (Fig 4).
432 433 434 435 436 437 438 439 440 441	In comparison to krill, fewer studies have used the salp component of KRILLBASE. Lee et al., (2010) examined inter-annual variability in krill and salps simultaneously, emphasising the opposite nature of the trends observed in the two taxa. Given the fact that about half of the current KRILLBASE net hauls have both krill and salps recorded, a simultaneous evaluation of the two taxa would be valuable. In any of these analyses, however, we emphasise that great care is needed when interpreting time trends, in order to prevent aliasing of real patterns with differences in sampling methods. This applies equally to salps and to krill, for example, the seasonal and diel vertical migrations of salps mean they are prone to under-sampling by shallow nets (Fig 4). An additional caveat concerns the issues of net sampling efficiency for mobile
432 433 434 435 436 437 438 439 440 441 442	In comparison to krill, fewer studies have used the salp component of KRILLBASE. Lee et al., (2010) examined inter-annual variability in krill and salps simultaneously, emphasising the opposite nature of the trends observed in the two taxa. Given the fact that about half of the current KRILLBASE net hauls have both krill and salps recorded, a simultaneous evaluation of the two taxa would be valuable. In any of these analyses, however, we emphasise that great care is needed when interpreting time trends, in order to prevent aliasing of real patterns with differences in sampling methods. This applies equally to salps and to krill, for example, the seasonal and diel vertical migrations of salps mean they are prone to under-sampling by shallow nets (Fig 4). An additional caveat concerns the issues of net sampling efficiency for mobile species such as krill. RMT8 catches during nighttime were set as our benchmark for
432 433 434 435 436 437 438 439 440 441 442 443	In comparison to krill, fewer studies have used the salp component of KRILLBASE. Lee et al., (2010) examined inter-annual variability in krill and salps simultaneously, emphasising the opposite nature of the trends observed in the two taxa. Given the fact that about half of the current KRILLBASE net hauls have both krill and salps recorded, a simultaneous evaluation of the two taxa would be valuable. In any of these analyses, however, we emphasise that great care is needed when interpreting time trends, in order to prevent aliasing of real patterns with differences in sampling methods. This applies equally to salps and to krill, for example, the seasonal and diel vertical migrations of salps mean they are prone to under-sampling by shallow nets (Fig 4). An additional caveat concerns the issues of net sampling efficiency for mobile species such as krill. RMT8 catches during nightime were set as our benchmark for standardisation because they were the most efficient means of capturing krill, but even these
432 433 434 435 436 437 438 439 440 441 442 443 444	In comparison to krill, fewer studies have used the salp component of KRILLBASE. Lee et al., (2010) examined inter-annual variability in krill and salps simultaneously, emphasising the opposite nature of the trends observed in the two taxa. Given the fact that about half of the current KRILLBASE net hauls have both krill and salps recorded, a simultaneous evaluation of the two taxa would be valuable. In any of these analyses, however, we emphasise that great care is needed when interpreting time trends, in order to prevent aliasing of real patterns with differences in sampling methods. This applies equally to salps and to krill, for example, the seasonal and diel vertical migrations of salps mean they are prone to under-sampling by shallow nets (Fig 4). An additional caveat concerns the issues of net sampling efficiency for mobile species such as krill. RMT8 catches during nighttime were set as our benchmark for standardisation because they were the most efficient means of capturing krill, but even these catches were likely to have underestimated absolute abundance. This is due to both net

- 446 overall circumpolar biomass of krill based on averaged KRILLBASE data is 379 million 447 tonnes, so it is unlikely that this sampling method is yielding order of magnitude 448 underestimates (Atkinson et al., 2009). KRILLBASE may provide insights on the relative 449 distribution and temporal variation in krill density, but modern acoustic methods calibrated 450 with nets are the accepted method for determining krill biomass (Fielding et al., 2014). 451 Integrating the assessments from these two fundamentally different types of sampling 452 represents the most robust practise to achieve large-scale and long-term estimates of krill 453 biomass.
- 454

455 4.2 Using KRILLBASE

456 The comprehensive data descriptions in this paper allow potential users to understand the breadth of the database and the main caveats that need to be considered to ensure that 457 interpretations are realistic and valid. Two of the components of KRILLBASE, the Palmer 458 459 Antarctica Long-Term Ecological Research (Palmer LTER) and Antarctic Marine Living Resources (AMLR) projects are live, ongoing monitoring programmes. Please consult 460 461 appropriate websites http://pal.lternet.edu/ and https://swfsc.noaa.gov/aerd/, respectively, for the most up to date versions of these two time series. For the Palmer LTER time series, we 462 463 have presented only the standardised versions of the krill data, and not the raw krill or salp 464 data. These are instead available direct from http://pal.lternet.edu/. For the KRILLBASE 465 dataset described in this paper, please use the doi http://doi.org/brg8 to obtain data and 466 consult the relevant data sources (Table 1) regarding queries. This data paper in addition to 467 the data doi should be cited as the metadata and the source of the data, to allow traceability 468 in the use of this database. This will hopefully provide leverage for obtaining future funding to 469 continue rescuing and update valuable historical datasets from the Southern Ocean. As a 470 final word we urge users to take a few minutes to consult the metadata, in particular Table 2, since almost every use of KRILLBASE will require first screening off some of the records. 471

472 473

Author contributions

474	AA, SH, EP and VS are the instigators of KRILLBASE, this project to produce the data
475	paper, and are listed in alphabetical order. The remaining authors are contributors to the
476	database and the current paper, also listed in alphabetical order. Original concept and initial
477	database: AA, VS, EP. Additional datasets: VL, CR, DS, LQ, RR, PW, SK, GH, SC, JN, RA,
478	BK, Data checking, manipulation, spatial analysis, standardisation and editing, AA, SH, RS,
479	HP, LG, PF, MJ, KS, VS, EP. Final maps: LG. Final data-basing HP, Drafting manuscript
480	SH, AA. Input to manuscript: all.
481	
482	Acknowledgements
483	We are greatly indebted to the crews and scientists who have collected thousands of net
484	samples over the last 90 years, analysed the catches, and then provided data in a format
485	that is useable. Boris Trotsenko was a major facilitator in rescuing old Soviet Union data.
486	Marie-Fanny Racault accessed satellite temperature climatology data and Janet Silk helped
487	with spatial data checks. We are grateful to Peter Rorthery for the original standardisation of
488	the krill density data. DS acknowledges the US National Science Foundation (grant PLR-
489	1440435), BK was supported by the Royal Norwegian Ministry of Fisheries and Coastal
490	affairs, the Institute of Marine Research, the University of Bergen, the Norwegian Antarctic
491	Research Expeditions (NARE), the Norwegian Research Council, Statoil Hydro and the
492	Norwegian Petroleum Directorate. In the last 5 years the funding to update the database was
493	via the Antarctic Climate and Ecosystem Cooperative Research Centre (for RS) and The UK $% \mathcal{C}(\mathcal{A})$
494	Natural Environment Research Council and Department for Environment, Food and Rural
495	Affairs grant NE/L003279/1, Marine Ecosystems Research Program (for AA). After this the
496	final production of the database with this data paper was funded by the World Wildlife Fund.
497	
498	References
499	Advisors A. Cianal V. Dalibament E. and Datham. Data and the state of

Atkinson, A, Siegel, V, Pakhomov, E, and Rothery, P.: Long-term decline in krill stock and 500 501 increase in salps within the Southern Ocean, Nature, 432, 100-103, 2004.

19

503 Atkinson, A., Siegel, V., Pakhomov, E.A., Rothery, P., Loeb, V., Ross, R. M., Quetin, L. B., 504 Fretwell, P., Schmidt, K., Tarling. G. A., Murphy, E. J., and Fleming, A.: Oceanic circumpolar 505 habitats of Antarctic krill, Mar. Ecol. Prog. Ser., 362, 1-23, 2008. 506 507 Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J., and Loeb, V: A re-appraisal of the 508 total biomass and production of Antarctic krill, Deep-Sea Res. Part I, 56, 727-740, 2009. 509 510 Atkinson, A., Ward, P., Hunt, B. P. V., Pakhomov, E. A., and Hosie, G. W.: An overview of Southern Ocean zooplankton data: abundance, biomass, feeding and functional relationships, 511 512 CCAMLR Science, 19, 171-218, 2012a. 513 514 Atkinson, A., Nicol, S., Kawaguchi, S., Pakhomov, E. A., Quetin, L. B., Ross, R. M., Hill, S. L., Reiss, C., Siegel, V., and Tarling, G.: Fitting Euphausia superba into Southern Ocean food-515 web models: a review of data sources and their limitations, CCAMLR Science, 19, 219-245, 516 517 2012b. 518 519 Atkinson, A., Hill, S. L., Barange, M., Pakhomov, E. A., Raubenheimer, D., Schmidt, K., Simpson, S. J., and Reiss, C.: Sardine cycles, krill declines and locust plagues: revisiting 520 521 "wasp-waist" food webs, Trends in Ecology and Evolution, 29, 309-316, 2014. 522 523 Braithwaite, J. E., Meeiwig, J. J., Letessier, T. B., Jenner, K. C. S., Brierley, A. S.: From sea 524 ice to blubber: linking whale condition to krill abundance using historical whaling records, Polar 525 Biol. 38, 1195-1202, 2015. 526 527 Clarke, A. and Tyler, P.A.: Adult Antarctic krill feeding at abyssal depths, Current Biology, 18, 282-285, 2008. 528 529 Constable, A. J.: Lessons from CCAMLR on the implementation of the ecosystem approach to 530 managing fisheries, Fish and Fisheries 12, 138-151, 2011. 531 532 Cleary, A., Durbin, E.G., Cesas, M.C., and Zhou, M. : Winter distribution and size structure of 533 Antarctic krill Euphausia superba populations in-shore along the West Antarctic Peninsula, 534 535 Mar. Ecol. Prog. Ser., 552, 115-129, doi: 10.3354/meps11772, 2016 536 537 De la Mare, W.: Abrupt mid-twentieth century decline in Antarctic sea-ice extent from whaling records, Nature, 389, 57-60, 1997. 538 539

540 Everson, I. and Bone, D.G. Effectiveness of the RMT 8 system for sampling krill (Euphausia 541 superba) swarms, Polar Biol. 6, 83-90, 1986. 542 543 Fielding, S., Watkins, J. L., Trathan, P. W., Enderlein, P., Waluda, C. M., Stowasser, G., 544 Tarling, G. A., Murphy, E. J.: Interannual variability in Antarctic krill (Euphausia superba) 545 density at South Georgia, Southern Ocean: 1997-2013. ICES J. Mar. Sci., 71, 2578-2588, doi 546 10.1093/icesjms/fsu104, 2014. 547 Flores, H., Atkinson, A., Rebolledo, E., Cirelli, V., Cuzin-Roudy, J., Fielding, S., van Franeker, 548 549 J. A., Groeneveld, J. J., Haraldsson, M., Kawaguchi, S., Krafft, B. A., Lombana, A., Marschoff, 550 E., Meyer, B., Milinevsky, G., Nicol, S., Pakhomov, E. A., Vande Putte, A. P., Reiss, C., 551 Rombolá, E., Schmidt, K., Siegel, V., Tarling, G. A., Teschke, M., Tonkes, H., Toullec, J.-Y., Trathan, P. N., Tremblay, N., Werner, R., and Werner, T.: Impact of climate change on 552 Antarctic krill . Mar. Ecol. Prog. Ser., 458, 1-19, 2012. 553 554 Foxton, P.: The distribution and life history of Salpa thompsoni Foxton, with observations on a 555 related species, Salpa gerlachei Foxton, Discovery Reports, 34, 1-116, 1966 556 557 Gutt, J. and Siegel, V.: Benthopelagic aggregations of krill (Euphausia superba) on the deeper 558 shelf of the Weddell Sea, Deep-Sea Res. 141,169-178, 1994. 559 560 561 Gille, S.T.: Warming of the Southern Ocean since the 1950s, Science 295, 1275-1277, 2002. 562 Gillett, N. P. and Fyfe, J. C.: Annular mode changes in the CMIP5 simulation. Geophys. Res. 563 Letts. 40,1189-1193, doi:10.1002/grl.50249, 2013 564 565 566 Gleiber, M. R., Steinberg, D. K., and Ducklow, H. W.: Time series of vertical flux of 567 zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 471, 23-36. 2012. 568 569 Grant, S. M., Hill, S. L., Trathan, P. N. and Murphy, E.J.: Ecosystem services of the Southern Ocean: trade-offs in decision-making. Antarctic Science, 25, 603-617, 2013 570 571 572 Hamner, W. M. and Hamner, P. P.: Behavior of Antarctic krill (Euphausia superba): schooling, 573 foraging, and antipredatory behavior. Can J. Fish. Aquat. Sci., 57,192-202, 2000. 574

- 575 Hill, S. L. and Cannon, M.,: A potential feedback approach to ecosystem-based management: 576 model predictive control of the Antarctic krill fishery. CCAMLR Sci., 20, 119-137, 2013. 577 578 Hill, S. L, Phillips, A., and Atkinson, A: Potential climate change effects on the habitat of 579 Antarctic krill in the Weddell quadrant of the Southern Ocean PLoS One 8 (8) e72246, 2013. 580 Hill, S., Cavanagh, R., Knowland, C., Grant, S., and Downie, R.: Bridging the krill divide: 581 582 understanding cross-sector objectives for krill fishing and conservation. British Antarctic 583 Survey, Cambridge, 2014. 584 585 Jarman, S. N. and Deagle, B. E.: Genetics of Antarctic krill. In: The biology and ecology of 586 Antarctic krill, Euphausia superba Dana, 1850, edited by Siegel, V., Springer, Dordrecht, The Netherlands, pp247-278, 2016. 587 588 Kawaguchi, S., Siegel, V., Litvinov, F., Loeb, V. and Watkins, J.: Salp distribution and size 589 composition in the Atlantic sector of the Southern Ocean, Deep Sea Research Part II: Topical 590 591 Studies in Oceanography, 51, 1369-1381, 2004. 592 Kinzey, D., Watters, G.M. and Reiss, C.S.,: Selectivity and two biomass measures in an age-593 594 based assessment of Antarctic krill (Euphausia superba), Fisheries Res., 168, 72-84, 2015. 595 596 Krafft, B. A., Melle, W., Knutsen, T., Bagøien, E., Broms, C., Ellertsen, B., and Siegel, V.: 597 Distribution and demography of Antarctic krill in the Southeast Atlantic sector of the Southern Ocean during the austral summer 2008, Polar Biol. 33, 957-968, 2010. 598 599 Krafft B. A., Skaret, G., Krag, L. A., Rustand, T., and Pedersen, R.: Antarctic krill and 600 601 ecosystem monitoring survey at South Orkney Islands in 2016. Institute of Marine Research Report No. 20, 22 pp, 2016. 602 603 604 Krag, L. A., Herrmann, B., Iversen, S. A., Engås, A., Nordrum, S., and Krafft, B. A.: Size selection of Antarctic krill (Euphausia superba) in trawls. PLoS ONE 9(8): e102168. 605 doi:10.1371/journal.pone.0102168, 2014. 606 607 608 Lancraft, T. M., Torres, J.J., and Hopkins, T. L.: Micronekton and macrozooplankton in the 609 open waters near Antarctic ice edge zones (AMERIEZ 1983 and 1986), Polar Biol. 9, 225-233. 1989. 610 611
 - 22

612 Lee C. I., Pakhomov, E. A., Atkinson, A., and Siegel V: Long-term relationships between the 613 marine environment, krill and salps in the Southern Ocean. Journal of Mar. Biol., 2010, Article 614 ID 410129, 18 pp doi 10.1155/2010/410129, 2010. 615 616 Loeb, V. Siegel, V., Holm-Hansen, O., Hewitt, R., Fraser, W., Trivelpiece, W., and Trivelpiece, 617 S.: Effects of sea-ice extent and krillor salp dominance on the Antarctic food web, Nature, 387, 897-900, 1997. 618 619 620 Loeb, V.J. and Santora, J.A.: Population dynamics of Salpa thompsoni near the Antarctic 621 Peninsula: growth rates and interannual variations in reproductive activity (1993-2009), 622 Progr. Oceanogr. 96, 93-107, 2012. 623 Loeb, V.J., and Santora, J.A.: Climate variability and spatiotemporal dynamics of five Southern 624 625 Ocean krill species, Progr. Oceanogr. 134, 93-122, 2015. 626 Marr, J. W. S.: The natural history and geography of the Antarctic krill (Euphausia superba 627 628 Dana), Discovery Rep. 32, 33-464, 1962 629 630 Mackintosh, N. A.: Distribution of post-larval krill in the Antarctic, Discovery Rep., 36, 1-94, 631 1973. 632 633 Meredith, M. P. and King, J.C.: Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century, Geophys. Res. Lett., 32, L19604, 2005. 634 635 Moriarty, R.,: The Role of Macrozooplankton in the Global Carbon Cycle, PhD Thesis, 636 637 University of East Anglia, Norwich, UK., 2009. 638 639 Moriarty, R., Buitenhuis, E.T., Le Quéré, C. and Gosselin, M. P.: Distribution of known 640 macrozoopankton abundance and biomass in the global ocean, Earth System Sci. Data, 5, 641 241-257, doi10.5194/essd-5-241-2013, 2013. 642 Murphy, E. J., Watkins, J. L., Trathan, P. N., Reid, K., Meredith, M. P., Thorpe, S. E., 643 644 Johnston, N. M., Clarke A., Tarling G. A., Collins, M. A., Forcada, J., Shreeve, R. S., Atkinson, A., Korb, R., Whitehouse, M. J., Ward, P., Rodhouse, P. G., Enderlein, P., Hirst, A.G., Martin, 645 646 A. R., Hill, S. L., Staniland, I. J., Pond, D.W., Briggs, D.R., Cunningham, N.J., and Fleming, A. 647 H.: Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links

648 in a krill centered food web, Philosophical Transactions of the Royal Society B, 362,113-148, 649 2007. 650 651 Murphy, E. J., Clarke, A., Abram, N.J. and Turner, J.: Variability of sea-ice in the northern 652 Weddell Sea during the 20th century. Journal of Geophys. Res.: Oceans, 119(7), 4549-4572, 653 2014. 654 655 Nishikawa, J., Naganobu, M., Ichii, T., Ishii, H., Terazaki, M., and Kawaguchi, K.: Distribution 656 of salps near the South Shetland Islands during austral summer, 1990-1991 with special reference to krill distribution, Polar Biol., 15, 31-39, 1995. 657 658 659 Nishikawa, J., and Tsuda, A.: Diel vertical migration of the pelagic tunicate, Salpa thompsoni in 660 the Southern Ocean during the austral summer, Polar Biol., 24: 299-302, 2001. 661 Orsi, A. H., Whitworth, T. and Nowlin, W. D.: 1995. On the meridional extent and fronts of the 662 663 Antarctic Circumpolar Current, Deep Sea Res. Part I, 42, 641-673, 1995. 664 665 Pakhomov, E. A., Froneman, P. W. and Perissinotto, R.: Salp/krill interactions in the Southern 666 Ocean: spatial segregation and implications for the carbon flux. Deep-Sea Res II, 49, 1881-667 1907, 2002. 668 669 Pangerc, T., 2010. Baleen whale acoustic presence around South Georgia. PhD Thesis, University of East Anglia, Norwich, UK. 670 671 Phillips, B., Kremer, P., and Madin, L.P.: Defecation by Salpa thompsoni and its contribution to 672 vertical flux in the Sothern Ocean. Mar. Biol. 156, 455-467, 2009. 673 Piňones, A. and Fedorov, A.V.: Projected changes of Antarctic krill habitat by the end of the 21st century, Geophys. Res. Lett 43, doi: 10.1002/2016GL069656, 2016. 674 675 676 Reiss, C. S., Cossio, A. M., Loeb, V. and Demer, D.A.: Variations in the biomass of Antarctic 677 krill (Euphausia superba) around the South Shetland Islands, 1996-2006, ICES J. Mar. Sci., 678 65, 497-508, 2008. 679 680 Ross, R. M., Quetin, L. B., Newberger, T., Shaw, C. T., Jones, J. L., Oakes, S. A., Moore, K. J.: Trends, cycles, interannual variability for three pelagic species west of the Antarctic 681 682 Peninsula 1993-2008, Mar. Ecol. Prog. Ser. 515, 11-32, 2014.

683	
684	Saba, G. K., Fraser, W. R., Saba, V. S., Iannuzzi, R. A., Coleman, K. E., Doney, S. C.,
685	Ducklow, H. W., Martinson, D. G., Miles, T. N., Patterson-Fraser, D. L., Stammerjohn, S. E.,
686	Steinberg, D. K. and Schofield, O. M.: Winter and spring controls on the summer food web of
687	the coastal West Antarctic Peninsula, Nature Comms. 5, 4318, doi 10.1038/ncomms5318,
688	2014.
689	
690	Schmidt, K., Atkinson, A., Steigenberger, S., Fielding, S., Lindsay, M. C. M., Pond, D. W.,
691	Tarling, G. A., Klevjer, T. A., Allen, C. S., Nicol, S., and Achterberg, E. P.: Seabed foraging by
692	Antarctic krill: Implications for stock assessment, bentho-pelagic coupling and the vertical
693	transfer of iron, Limnol. Oceanogr. 56,1411-1428, 2011.
694	
695	Schmidt, K., Atkinson, A., Pond, D. W., and Ireland, L. C.: Feeding and overwintering of
696	Antarctic krill across its major habitats: the role of sea ice cover, water depth, and
697	phytoplankton abundance. Limnol. Oceanogr 59: 17-36, 2014.
698	
699	Schmidt, K., Schlosser, C., Atkinson, A., Fielding, S., Venables, H.J., Waluda, C.M., and
700	Achterberg, E.P. Zooplankton gut passage mobilises lithogenic iron for ocean productivity,
701	Current Biology, in press
702	
703	Siegel V., and Watkins, J. L.: Distribution, biomass and demography of Antarctic krill,
704	Euphausia superba. In: Biology and Ecology of Antarctic krill. Springer, edited by Siegel, V.,
705	Dordrecht, pp 21-100, 2016.
706	
707	Siegel, V. Kawaguchi, S. Ward, P., ,itvinov, F. Sushin, V. Loeb, V. and Watkins, J: Krill
708	demography and large-scale distribution in the southwest Atlantic during January/February
709	2000, Deep-Sea Res. Part II, 51: 1253-1273, 2004.
710	
711	Stammerjohn, S. E., Massom, R. A., Rind, D. and Martinson, D.G. Regions of rapid sea ice
712	change: an inter-hemispheric seasonal comparison, Geophys. Res. Lett 39, L06501, 2012.
713	
714	Steinberg, D. K., Ruck, K. E., Gleiber, M. R., Garzio, L. M., Cope, J. S., Bernard, K. S.,
715	Stammerjohn, S. E., Schofield, O. M. E., Quetin, L. B. and R. M. Ross: Long-term (1993-2013)
716	changes in macrozooplankton off the Western Antarctic Peninsula, Deep-Sea Res. I, 101, 54-
717	70, http://dx.doi.org/10.1016/j.dsr.2015.02.009, 2015.
718	

10.3354/meps11634, 2016.

719

720

721 722

723	Thorpe, S. E., Murphy, E. J., and Watkins, J.L.: Circumpolar connections between Antarctic
724	krill (Euphausia superba Dana) populations: investigating the roles of ocean and ice transport,
725	Deep-Sea Res Part I, 54,792-810, 2007.
726	
727	Trathan P. N., and Hill, S. L.: The importance of krill predation in the Southern Ocean. In: The
728	biology and ecology of Antarctic krill, Euphausia superba Dana, 1850, edited by Siegel, V.,
729	Springer, Dordrecht, The Netherlands, pp 321-350, 2016.
730	
731	Ward, P. Tarling, G. A., Coombs, S. H., and Enderlein, P.: Comparing Bongo net and N70V
732	mesozooplankton catches: using a reconstruction of an original net to quantify historical
733	plankton catch data, Polar Biol., 35,1179-1186, doi: 10.1007/s00300-012-1163-x, 2012.
734	
735	Whitehouse, M. J., Meredith, M. P., Rothery, P., Atkinson, A., Ward, P., and Korb, R. E.: Rapid
736	warming of the ocean around South Georgia, Southern Ocean, during the 20 th century:
737	forcings, characteristics and implications for lower trophic levels, Deep-Sea Res. Pt. I, 55,
738	1218-1228, doi: 10.1016/i.dsr.2008.06.002, 2008.
739	
740	
741	
742	
743	
744	
745	
746	
747	
748 7/19	
750	
751	
752	
753	

Tarling, G. A., Hill, S., Peat, H., Fielding, S., Reiss, C., Atkinson, A.: Growth and shrinkage in

Antarctic krill Euphausia superba is sex-dependent. Mar Ecol. Prog. Ser., 547, 61-78, doi:

- 754
- 755
- 756
- 757 758
- 26

Table 1. Sources of data for KRILLBASE, according to nation and major sampling program. Sources are listed in descending order of number of hauls provided. More information on the actual data sources (including the references used where data were transcribed from publications) is provided in the SOURCE field of the database. Coverage is not necessarily evenly spread within the longitudinal boundaries, which are presented in nearest integer degrees. For Haul type H: normal haul, SH: Stratified haul that has been pooled into an equivalent "stratified pooled haul", SM: survey mean haul, where density estimates are only available as a mean from multiple stations comprising a survey (see section 2.3).

Source of data	Sent by Loeb, Hewitt, Reiss, data via US AMLR Reports	Archived data from original net sampling logsheets checked against a euphausiid Discovery era database by Atkinson	Sent by Siegel, plus a small amount of data transcribed from publications	Sent by Pakhomov	From Palmer LTER data holdings <u>http://pal.lternet.edu/</u> accessed July 2016	Sent by Ward, also data accessed from BAS Polar Data Centre and including SIBEX data holdings
Median bottom sampling depth (m)	170		185	100	120	205
Net types	Isaacs-Kidd Midwater Trawl	N70V, N100b, N200B	Mainly RMT8, also 0.6 m Bongos and Isaacs- Kidd Midwater Trawi	Bongo, Isaacs-Kidd trawl, Melnikov's net, Modified Juday net	2x2m fixed frame with 700 µm mesh.	RMT1, RMT 8, 0.62 cm Bongo, LHPR with 38 cm nosecone
Months covered	Jan-Mar	Jan-March, Nov-Dec	Jan-June, Oct-Dec	Jan-April, Dec	Jan-Feb	Jan-April, Oct-Dec
Range of longitude covered	63°W – 44°W	Circumpolar	122°W to 14°E	Circumpolar	78⁰W to 64⁰W	66W to 26W
Sampling years	1990-2011	1926-1939, 1951	1976, 1978 1980-1986, 1988-1990, 1994, 1995, 1997, 2001, 2004	1983-1990, 1992	1993-2016	1982,1985,199 6-1999 2001-2005, 2007-2009
Haul type	WS'H	H, SH	H,SH, SM	H, SH	н	H
Is salp data	1440	2723	1694	1577	0	810
ber of net hau krill data	3164	1637	2352	1557	1247	923
Numl Total	3864	3156	2352	1579	1247	923
National data source	US AMLR program	Discovery (UK) data	German GAMLR data	Soviet data	US Palmer LTER Program	British Antarctic Survey data

Data mainly transcribed from various publications, with AMERIEZ cruise data sent by Daly	Data sent by Hosie and Kawaguchi, Some data transcribed from Anare Research Notes and from publications.	Sent by Pakhomov	JARE data from Chiba, SIBEX data from Nishikawa, also transcribed from publications	Transcribed from publications	International data from CCAMLR Synoptic survey data obtained via CCAMLR	FRUELA Cruise data sent by Anadon	AKES data sent by Krafft
200	200	300	150	175	200	200	750
0.6 m Bongo, Plummet net, Tucker trawl	Square 0.5 m net, 0.5 m and 1 m Bongos, ORI net, RMT 8	Bongo, Mocness, RMT8	Norpac net, Square 0.5 m net, ORI net, Large Isaacs-Kidd Trawl, Kaiyo Maru trawl	0.5 and 0.6 m Bongos	RMT8	Modified WP2 net	Macroplankton trawl
Jan-March Nov-Dec	Jan-March Aug, Oct- Dec	Jan-May Oct, Dec	Jan-March Dec	Jan-March Dec	Jan-Feb	Dec-Jan	Jan-March
62°W to 36°W	30°E to 150°E	86°W to 179°E	63°W to 158°E	66°W to 43°W	69°W to 23°W	66°W to 59°W	37°W to 15°E
1981, 1983, 1984, 1986, 1994	1981,1983- 1987, 1991-1993, 1996, 1999, 2001, 2006	1980, 1981, 1983, 1994- 1998, 2001, 2003	1984, 1988- 1996	1981, 1984	2000	1996	2008
H SM	НSН	н	НSН	HSH	т	н	т
219	316	413	163	159	117	66	0
550	508	343	81	159	117	66	21
593	508	413	163	159	117	66	21
Other US National Programs	Australian data	South African data	Japanese data	Polish data	CCAMLR data (internationa I)	Spanish data	Norwegian data

COLUMN HEADING	DESCRIPTION
STATION	Unique identifier for each record (row). The first three letters identify the source of the data (starting letters of the name of the individual, national program, or country which provided the data). The next 4 numbers identify the season of sampling (e.g. 1926 spans Oct 1925 to Sept 1926). The next 3 letters provide additional sample information, often referring either to the net type used or the name of the sampling survey. Additional characters at the end list the station numbers etc. These are, as far as possible, the same as used in the original sources, with British Antarctic Survey and Palmer LTER cruise station numbers being replaced by cruise-unique "event numbers". Records are typically resolved to station but see RECORD_TYPE for more information on resolution.
RECORD_TYPE	This is an important field that will need screening before any use of the database. Records labelled " <i>haul</i> " are the usual situation meaning that the record refers to a single net haul. " <i>Survey mean</i> " represents a record where the krill or salp density represents an arithmetic mean of a group of stations whose central position and sampling point are thus provided in the database with less an arithmetic mean of a group of stations whose central position and sampling point are thus provided in the database with less accuracy then the other records. <i>Survey means</i> are given only when it was not possible to obtain station-specific data. " <i>Stratified haul</i> " represents a haul, usually within the top 200 m, which forms part of a stratified series (e.g. 0-50m, 50-100m, 100-200m). " <i>Stratified pooled haul</i> " represents a record that integrates these respective <i>stratified hauls</i> , whereby the krill or salp densities from the component nets have been summed (in this example into an equivalent 0-200m haul). Thus to avoid double counting any use of the data should sift out either <i>stratified pooled hauls</i> .
NUMBER_OF_STATIONS	For Survey mean data (see RECORD_TYPE) this refers to the number of stations that have been averaged to provide the krill or salp density values.
NUMBER_OF_NETS	This refers to the number of sequentially fished nets included in the estimate (e.g. the value would be 3 for a <i>stratified pooled haul</i> consisting of a stratified series sampling 0-50m, 50-100m and 100-200m, and it would be 32 for a <i>survey mean</i> which averages 32 hauls). A LHPR haul counts as one net despite multiple gauzes being cut. This value is also 1 for a paired Bongo haul (2 nets fished concurrently).
LATITUDE	South is negative. Units are decimal degrees
LONGITUDE	West is negative. Units are decimal degrees
SEASON	This is the austral "summer" season of sampling. For example the 1926 season spans all data from 1 Oct 1925 through to 30 Sept 1926.
DAYS_FROM_1 ST _OCT	This is the day of sampling during the austral season. Therefore 1 Oct is DAYS_FROM_ 1^{5T} _OCT =1. The value for dates after 28 February vary depending on whether they occur during a leap year.
DATE	The date of sampling, based on the dates provided to us (see "DATE ACCURACY" column).

Table 2. Detailed description of the columns in KRILLBASE

DATE_ACCURACY	"D" means the exact day of sampling is known. "M" means that we have been provided only with the month in which samples were taken, so the record's DATE value is entered as the middle of the month. "Y" means only the year of sampling is known, so the date is recorded as 1^{st} January (this affects one record only)
NET_TIME	This is the time of the haul: Either the start, midpoint or end times of hauls were used, as provided to us. Absent data means no net time information was available, or it was not entered into the database because the station was already classified as either day or night (Discovery data net times are recorded in their published "Station Lists" but not entered in KRILLBASE). Net times for <i>Stratified pooled hauls</i> represent that of the shallowest net of the series.
gmt_or_local	Information on whether the time in the previous column is GMT (labelled "GMT"). Data which were provided as local times with a stated offset to GMT have been converted to GMT. Data which were provided as local times with no offset have not been converted and are labelled " <i>local</i> ". Absent data means there was no net time information
DAY_NIGHT	This field indicates whether the net was hauled in daylight (labelled "day") or night time (labelled "night") and was used in the calculation of standardised krill densities. See DAY NIGHT METHOD for information on the source of these data.
DAY_NIGHT_METHOD	Method used to determine whether the net was hauled in daylight or at night time, which depends on the time information available: 1 - DAY_NIGHT is based on calculated solar elevation determined using NET_TIME, 2 - DAY_NIGHT is as recorded in the ship's log, 3 - no DAY_NIGHT information was available, and standardised krill densities were adjusted for the probability that the haul was conducted in daylight.
NET_TYPE	This is a brief name for the sampling net used. See Table 3 for more detailed descriptions of each net
MOUTH_AREA_OF_NET_M2	This is a nominal mouth area of the net calculated from the net dimensions. It is typically the simple linear area of the mouth, but for RMT8 and 1 it is assigned as value of 8 and 1 respectively. Bongo nets are assigned as an area of both openings combined and LHPR is given as maximum net diameter – both of these are used to crudely compensate for the lack of towing bridles and wire/release gear directly in front of the net, as compared to the standard ring nets often of similar net dimensions.
TOP_SAMPLING_DEPTH_M	Shallowest sampling depth (m)
BOTTOM_SAMPLING_DEPTH_M	Deepest sampling depth (m). Note that whilst most hauls were oblique, double oblique or vertical, a small minority were nearly horizontal, as shown by similar top and bottom depths. These would need to be screened out of nearly all analyses as they provide little information on numerical densities (no. m^2).
VOLUME_FILTERED_M3	Volume of water (m^3) filtered by the net. This value is provided only when the value is provided with the density data.
N_OR_S_POLAR_FRONT	Position (North or South) relative to the Antarctic Polar Front as published by Orsi <i>et al.</i> (1995).
WATER_DEPTH_MEAN_WITHIN_10KM	Mean water depth within a 10 km radius. In South Polar Stereographic projection, the stations were superimposed on the Gebco 2014 Grid bathymetry (http://www.gebco.net) and all pixels within a 10 km radius of the station were extracted. After removing data above sea level, the remaining pixel value for water depth was averaged.
WATER_DEPTH_RANGE_WITHIN_10KM	Depth range within a 10 km radius. In the procedure above, having removed pixels above sea level, the range in water depth was calculated as the difference between the shallowest and the deepest pixel. This will provide an index of even-ness of bathymetry (e.g. proximity to seamounts, canyons, continental slope).
CLIMATOLOGICAL_TEMPERATURE	Long term average February sea surface temperature for the sampling locale. This is not the actual sea temperature at the time of sampling but a climatological mean sea-surface value for February, averaged over the years 1979 to 2014, based on data downloaded July 2016 from http://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/ . Data were provided on a 0.75° by 0.75° grid and we extracted mean values using the same 10 km buffer method used for the bathymetry. These values may indicate a relation thermal restine as a basis for tration characterization.
SD_OF_SURVEY_MEAN_KRILL	The standard deviation of the krill densities extracted from the publications where the <i>survey mean</i> value of krill density is

Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-52, 2016 Manuscript under review for journal Earth Syst. Sci. Data Published: 15 November 2016

© Author(s) 2016. CC-BY 3.0 License.

	provided (see column RECORD_TYPE)
NUMBER_OF_KRILL_UNDER_1M2	Numerical density, N, of numbers of postlarval krill under 1 m ² (or, where based on a length frequency distribution as in the
	Discovery Investigations, it is krill >19mm in length). Where the numbers of krill <i>n</i> were provided per m ³ filtered, the density of krill
	was calculated based on top sampling depth t and bottom sampling depth b in metres as $N = n * (b-t)$
STANDARDISED_KRILL_UNDER_1M2	Standardised numerical density of postlarval krill. To reduce possible artefacts arising from differences in sampling method in
	KIILLBASE, this column presents krill density according to a single sampling method. This method is a 0-200 m night-time RMT8
	haul on 1 January, following the standardisation method in Atkinson et al. (2008). See main text for more details.
CAVEATS	Any issues which might require particular caution when using the data (e.g. potential inaccuracies in estimated date or day/night
	or sampling depths outside of the normal range) are listed here. Default is blank.
NUMBER_OF_SALPS_UNDER_1M2	The numerical density of salps, calculated as for krill. All individuals are counted, irrespective of which salp species or whether they
	are the solitaries of components of aggregate chains. Standardised salp densities have not been calculated.
SOURCE	Information about the source of the data, including a citable reference where available.

Table 3. Nets used in KRILLBASE. The nets are listed in alphabetical order.

Name given in KRILLBASE	Nominal Mouth	Number of hauls	Description of net
0 5 m Bongo	0.30	23	0.5 m diameter Bondo from ABDEX critices (nominal mouth area is that of hoth netc)
0.6 m Bongo	0.57	1040	0.6 m diameter Bondo net (nominal mouth area is of both nets)
0.62 m Bongo	0.6	452	BAS Bongo: 62 cm diameter (nominal mouth area is of both nets), 0.1 and 0.2 mm mesh
0.71 m Bongo	0.79	261	0.71 cm Bongo net (Nominal mouth area is of both nets)
1 m ringnet	0.79	111	Modern 1m diameter ring net
2 m fixed frame net	4	1247	2m square sided, fixed frame net, 700 micron main mesh, 500 micron cod end (Palmer LTER grid)
IKS net	1	48	IKS 1mm mesh net, 1 m 2 , 1 mm mesh
Isaac Kidd	3.08	4217	Isaac Kidd midwater trawl, 4.5 mm mesh
Juday net	0.11	15	0.37 m diameter Juday net, 0.15 mm mesh
Kaiyu Maru trawl	8	50	Kaiyo Maru Mid-water Trawl (KYMT: 9 and 7 m2 mouth area), 3.4 mm mesh (Nishikawa et al. 1995)
Large Isaac Kidd	6	300	Large Isaac-Kidd trawl including 10' one used for Japanese SIBEX and the 6m ² (4.5 mm mesh) one for Russian/Ukrainian sampling
Large Melnikov net	0.5	17	0.5m ² Melnikov trawl, 0.63 mm mesh
LHPR	0.45	28	Longhurst Hardy Plankton Recorder with 38 cm diameter nosecone used by BAS (0.2 mm mesh)
MOCNESS	1	9	MOCNESS net
Modified Juday net	0.5	694	Modified Juday net, 0.5m ² mouth area, 0.178 mm mesh
N100B	0.79	1835	Discovery's N100B net (1m diam. ring net)
N200B	3.14	18	N200B net used briefly in 1926 (2 m diameter ring net: soon abandoned as hard to handle)
N70V net	0.39	1396	Discovery's closing N70V net, also Polish N70V net
Norpac net	0.16	44	0.45m diameter NORPAC net of JARE expeditions (330 micron net with flowmeter)
ORI net	2.01	35	Japanese ORI net, 1.6 m diameter mouth, 2mm mesh
Plummet net	1	26	$1~\mathrm{m^2}$ plummet net used on AMERIEZ (US) cruises in 1980s
RMT1	1	94	RMT 1 net, 0.33 mm mesh
RMT8	8	2753	RMT 8 net, 5 mm mesh

Earth System Discussion Science usions

Macroplankton trawl	38	21	"Macroplankton trawl stretched mesh. The and trawl gear is desc	" of research vesse trawl has the same cribed in Krafft et a	I.G.O. Sars (AKES data), 3 mm mesh size measured fr mesh in all panels from mouth to cod end. Towing spet I. (2010).	om knot to knot/ 7 mm ed was 2.5-3 knots. Data
Small Melnikov net	0.22	178	0.22 m ² Melnikov trav	vl, 0.63 mm mesh		
ORI-VMPS	0.25	85	Square net, 0.5 m act	ross from Australia	n ANARE and Japanese (Nishikawa) sampling	
Tucker trawl	6	98	Tucker trawl, 4mm ma	ain mesh to a 1mn	r cod end, towed at 2 knots. Described in Lancraft et al.	(1989)
WP2	0.26	66	WP2 net from Spanis	h FRUELA cruises		
Table 4 Sumn	nary of stan	dardisat	ion process.			
Standardise for			Standard haul characteristics	Conversion factor	Definitions	Conversion factor applied when:
Sampling depth			0 to 200m	0.11B/(1 + 0.105B)	B= BOTTOM_SAMPLING_DEPTH_M	BOTTOM_SAMPLING_DEPT H_M <200
Time of day			Night-time	2.255		DAY _NIGHT = 0 (day time)
				2.255X	X = NEW_DAYLENGTH (specified as a proportion)	DAY_NIGHT = <i>blank</i> (no information)
Net mouth area a sampling	and time of ye	ear of	Net mouth area = 8m ² Time of year = January 1st	Lpred ^{off} / Kpred	K _{pred} =P * K _{nonzero} P=exp(L)/[1+exp(L)] L0g ₁₀ (K _{nonzero})= 0.474 – 0.1912L0g ₁₀ M + 0.00416J – 0.00002898J ² 0.00002898J ² L= -0.6478+2.335*L0g ₁₀ M+0.0204J-0.0001086J ² M = MOUTH_AREA_OF_NET_M3 J = JULIAN_DAY_FROM_OCT Lred ^{opt} =Popt * K _{non-zero} ^{opt} Popt=0.92 K _{non-zero} ^{opt} =2.74	MOUTH_AREA_OF_NET_M 3 <>8 or DAYS_FROM_1st_OCT <>93

Table 5 Derivation of Day or night information.

Information available	Information used to standardise time of day
Valid Net time (GMT, or Local with	Calculate solar elevation and use to determine Day
specified offset)	or night
No valid Net time but valid day or night	Use ship's log information to indicate Day or night
information from ship's log (values 0 or 1)	
No valid Net time or ship's log information	Calculate Day-length and use to adjust conversion
(e.g. when a Local time is specified but no	factor
offset is given, and the ship's log does not	
specify day or night or indicates twilight)	

FIGURE CAPTIONS

Figure 1 Distribution of sampling stations in KRILLBASE, showing generally elevated sampling effort in and around designated areas of protection and management. These stations may have krill or salp data or both; Supplementary Fig. 1 provides the distribution of just the krill sampling stations.

Figure 2 Frequency distribution of krill and salp abundances in the database. The data were filtered to remove *stratified hauls* before plotting the frequency of remaining hauls in relation to logarithmic bins. Data are presented for **a** krill raw (unstandardised) abundance, **b** krill standardised abundance and **c** salp (unstandardised) abundance.

Figure 3 Circumpolar variation in sampling method. This plot is based on all data in KRILLBASE, whether for krill or salps or both. **a** Time of year of sampling (mean day from 1 October), **b** Bottom depth of sampling. The dataset plotted includes the stratified pooled hauls and thus excludes their component stratified hauls (see section 2.3) **c** Mean mouth area of the net, based on the nominal values presented for each net type in Table 3. Antarctic Polar Front position is from Orsi et al. (1995).

Figure 4 Relative frequency of stations sampled within each month of the year.

Figure 5 Vertical distribution of krill and salps based on 793 stratified krill hauls and 2130 stratified salp hauls. Given the non-standard depth horizons between the various surveys sampling in this manner, the data were first subdivided into a nominal 7 categories of mean sampling depths, namely 0—50m, 50-100m, 100-150 m, 150-200 m, 200-300 m, 300-500 m and >500 m. Mean krill or salp densities are presented in each of these mean depth groups, plotted against mean sampling depth within each depth band.

Figure 6 Inter-annual sampling coverage. Number of stations sampled south of the Antarctic Polar Front in each austral season (October to following September). These are presented for **a** the Atlantic sector (nominally defined as 90°W to 10°E), **b** the Indian sector ($10^{\circ}E$ to $120^{\circ}E$) and **c** the Pacific sector ($120^{\circ}E$ to $90^{\circ}W$).

Figure 7 Change in day-length with time of year at various latitudes, indicating the effect of date inaccuracies on time of day adjustments made during standardisation of krill abundance.

Figure 8 Circumpolar distribution maps of krill based on **a** un-standardised krill densities (no. m⁻²), **b** standardised krill densities and **c** un-standardised salp densities, showing the stations sampled for these. All maps are South Polar Stereographic projection with grid size of 3° latitude by 9° longitude. Positions of krill stations are in Supplementary Fig. 1. The legend values and colour codings of cells refer to the arithmetic mean krill densities recorded within the cell.

Fig. 9 Inter-annual variability in sampling. Year-to-year variation in net sampling, and its effect on the difference between standardised and unstandardized krill density. Austral season is plotted on the x-axis of all panels with a vertical line demarcating the Discovery sampling era from the post-1975 sampling era. **a** inter-annual variation in arithmetic mean krill densities in the greater South Georgia area ($30^{\circ}-40^{\circ}W$, $50^{\circ}-60^{\circ}S$, based on hauls from October to April with a top sampling depth < 20m and bottom sampling depth >50 m following Atkinson et al. 2008). While we have not plotted data with fewer than 10 hauls in any year, the symbols are in three sizes to illustrate the variability in sampling effort: smallest: 10-20, medium: 20-50 and largest >50 hauls per season. **b** Inter-annual variability in mean mouth area of the net and mean bottom sampling depth of the net from the hauls in panel a. **c** Inter-annual variability in Julian day of sampling (days from 1 October) and the percentage of nightime hauls. **d** Percentage of hauls over continental shelves of the sampling area, defined as water depth < 1000 m.

Fig. 10 Basin-scale krill (panels **a** and **b**) and salp distribution (panels **c** and **d**) within two well studied sectors of the Southern Ocean, plotted on a finer, 1° latiutude by 2° longitude grid to highlight habitat differences between the two taxa.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 9

