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Abstract

To tailor the farming environment to a fish species, we should understand the spe-

cies-specific responses to stimuli, including the degree of adaption and learning.

Groups of gilthead sea bream were given a delay Pavlovian conditioning regime

using a conditioning stimulus (CS) of light flashes signalling arrival of food. Controls

were exposed to light flashes unrelated to feeding. Fish in both treatments showed

an initial fear response of moving away from the CS combined with reduced swim-

ming speed. In subsequent trials, the Control fish largely habituated the fleeing

response but sustained to respond by reducing the swimming speed. The Condition-

ing fish also stopped to escape from the CS, but opposed to the Control group they

gradually increased their swimming speed in response to the CS. In addition, the

number of fish in the feeding/CS area increased and became similar to basal level

after around 16 trials. A small and variable proportion of the fish displayed black

vertical bands on their body and territorial behaviour, and a social hierarchy could

interfere with the processes of habituation and conditioning. The swimming speed

of the fish increased with number of dark individuals, but this was not found during

the CS and the light stimulus thus seemed to overrule the effect of territorial beha-

viour. The persistent negative response to light flashes in the Control suggests that

fish seemingly adapted to repetitive stressors are still in a state of alertness. The

change in the response to light shows the potential for rewarding aversive stimuli

to reduce stress.
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1 | INTRODUCTION

To tailor the farming environment to a given fish species, it is crucial

to learn more about the initial response to various stimuli as well as

the subsequent conditioning to biologically relevant stimuli and

habituation to stimuli without any consequences. The capacity fish

have for conditioning and habituation will determine how well fish

cope with repetitive husbandry procedures and fluctuating

environmental conditions. The learnt association between biologically

relevant stimuli (unconditioned stimuli, US) and initially neutral cues

(conditioned stimuli, CS), i.e. Pavlovian conditioning, induces a condi-

tioned response (CR) at presentation of the cue alone (Lieberman,

2000). Pavlovian conditioning has been demonstrated in numerous

fish species relevant for farming and research such as zebrafish

(Danio rerio) (Manabe, Dooling & Takaku, 2013), rainbow trout

(Oncorhynchus mykiss) (Colson et al., 2015; Nordgreen, Janczak,
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Hovland, Ranheim & Horsberg, 2010), Atlantic salmon (Salmo salar)

(Bratland et al., 2010), Atlantic cod (Gadus morhua) (Nilsson, Kris-

tiansen, Fosseidengen, Fern€o & van den Bos, 2008a,b) and Atlantic

halibut (Hippoglossus hippoglossus) (Nilsson et al., 2010). Signalization

of food arrival could be used in everyday farming to make feeding

more predictable and to assess the appetite in fish groups (Bassett &

Buchanan-Smith, 2007; Fern€o, Huse, Jakobsen, Kristiansen & Nils-

son, 2011). Anticipatory behaviour may also be used as an operative

welfare indicator (Folkedal, Stien et al., 2012). However, findings

from one species and one life stage cannot directly be transferred to

another species (Martins et al., 2012). The cruising predator cod

approaches the CS and the feeding area (Nilsson et al., 2008a,b),

whereas the “sit-and-wait” predator halibut only responds by subtle

positional changes (Nilsson et al., 2010), and the conditioned

response of parr and post-smolt of Atlantic salmon are also markedly

different (Folkedal, Stien, et al., 2012; Folkedal, Torgersen, et al.,

2012).

Farmed fish are repeatedly exposed to stimuli that are initially

perceived as aversive but are without any biological consequences

which makes the fish to habituate to the stimulation (Folkedal, Torg-

ersen, Nilsson & Oppedal, 2010; Madaro et al., 2016). In contrast,

when fish are repeatedly exposed to a stimulus associated with

reward or punishment, they will develop a conditioned response.

Cues used in conditioning may initially release a fright reaction and

may only after some time result in a positive response—“from fright

to anticipation” (Bratland et al., 2010; Nilsson, Stien, Fosseidengen,

Olsen & Kristiansen, 2012). How habituation modulates the response

to the initial frightening stimulus when the stimulus is rewarded ver-

sus unrewarded is, however, not addressed in previous studies. This

knowledge is required in understanding the scope for using reward

to accelerate accommodation processes.

Farmed fish are reared in high densities and agonistic behaviour

has been observed in several species (Barreto, Boscolo & Gonc�alves-
de-Freitas, 2015; Fern€o & Holm, 1986; Jobling, 1983; Solstorm

et al., 2016). Aggressive individuals should be expected to influence

the baseline behaviour and stress level of subordinate fish and could

thereby interfere with the processes of habituation and conditioning.

The effect of social hierarchies has, however, been devoted little

attention in earlier studies of learning in fish groups.

Gilthead sea bream (Sparus aurata) is widely cultured in the

Mediterranean. Sea bream is a grazing species feeding mainly on

shellfish, snails and mobile prey like fish (Andrade, Erzini & Palma,

1996; Pita, Gamito & Erzini, 2002). Farmed sea bream has been

observed to increase swimming speed both during feeding (Andrew,

Noble, Kadri, Jewell & Huntingford, 2002) and before scheduled

feeding (S�anchez, L�opez-Olmeda, Blanco-Vives & S�anchez-V�azques,

2009), suggesting anticipation for food. However, the appetitive

behaviour has not been studied in detail, and to the best of our

knowledge no detailed description of the anticipatory behaviour of

sea bream during reward conditioning exists. A striking feature of

gilthead sea bream and other sparidaes is transient changes in skin

colouration in dominant individuals as displayed by vertical dark

bands on the light hued bodies (Papadakis, Glaropoulos,

Alvanopoulou & Kentouri, 2016; Pavlidis & Mylonas, 2011). This

overt marker may be used to assess the effect of the social environ-

ment on learning.

Here, we investigated habituation and Pavlovian anticipatory

behaviour of gilthead sea bream exposed to an initially aversive

flashing light that either announced a food reward (habituation and

conditioning) or was unrewarded (control, habituation only). We

hypothesized that, compared to unrewarded sea bream, rewarded

sea bream would habituate more rapidly and eventually express food

anticipation to the light flashes. We further predicted that social

hierarchies would influence the anticipatory behaviour.

2 | MATERIALS AND METHODS

The experiment was carried out at the Matre Research Station (Insti-

tute of Marine Research, Norway) in April 2012, using commercially

bred juvenile gilthead sea bream (Ferme Marine de Douhet, Ile

d’Ol�eron, France) that were reared in Spain prior transportation to

Norway in January 2012. The fish were kept in indoor tanks (500 L)

in groups of ~28 fish per tank, under a 12D:12L photoperiod and

fed a daily ration of 2% of biomass (ad libitum) (4.5 mm dry pellets,

EFICO YM 54 N0, BioMar, Spain). All tanks were supplied with sea-

water (20.0 � 0.1°C, 33 & salinity) with the flow rate adjusted to

keep a minimum O2 saturation of 80% in the effluent water. The fish

were given an acclimation period of 3 months after arrival, and 4

days before the experiment started the standard length and weight

were 22.3 � 1.0 (mean � SD) cm and 246.8 � 41.6 (mean � SD) g

respectively.

To secure a high feeding motivation, the daily feed ration was

reduced to 1.4% of biomass 2 days before experimental start and

kept at this level throughout the experiment. The conditioning

experiment lasted 4 days. Automatic feeders (arvotech.fi), deliver-

ing the pellets in one corner of each tank, were set to distribute

the daily ration over 10 equally sized meals (300 s), every hour

from 09:00 until 18:00. The conditioning stimulus (CS) consisted

of flashing (1 s on and 2 s off) with a light bulb (12 V, 21 W)

positioned 5 cm above the surface in the feeding area, and food

was given as the unconditioned stimulus (US). The conditioning

regime consisted of the CS-light flashing from 30 s before feeding

to 10 s after start of feeding (i.e. delay conditioning). A triplicate

tank group was given the conditioning regime (Conditioning

group), whereas a triplicate Control group was fed 30 min after

the CS, that is, the CS had no predictive or incentive value. On

Day 1 in trials 3, 4 and 5, all feeders in the Conditioning group

failed to deliver food during the CS. We therefore stopped the

conditioning procedure for Day 1 after trial 6, resulting in only 6

trials this day. On the last day of the experiment (Day 4), the

conditioning procedure was stopped after the 5th meal, resulting

in a total of 28 trials.

Video recordings were made of all trials by a submerged cam-

era in each tank that allowed behaviour observations of about 75%

of the tank volume from bottom to surface, including the feeding
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area. Videos of every second trial were for all tanks (three tanks

per treatment) analysed for fish spatial distribution 10 s before and

10 s after the CS flashes started. This was carried out by counting

the number of fish in the quarter of the tank defined as the feed-

ing area in a frozen video image. For the same time points and for

all tanks, a swimming speed analysis (body lengths/s) was carried

out on 10 randomly selected individuals by measuring the time

from when the snout and tail passed a virtual vertical line. This line

was set by the observer in the video image tank centre to provide

a best possible side view of the fish, and allowed for recording of

fish in any vertical position. Using the same start video frame for

all 10 individuals per tank per observation time point, we avoided

multiple recordings of the same fish. Individual fish with darker skin

pigmentation (vertical bands, assumed to reflect territorial beha-

viour) were not included in the swimming speed analysis as their

speed was markedly slower than non-territorial fish. To study how

the presence of fish that appeared with darker skin pigmentation

affected the average swimming speed of other fish in the tank, the

number of dark fish in the tank was recorded 10 s before the CS

flashes started.

Welch two-sample t-test was used to test differences between

treatment groups in swimming speed and number of fish in the feed-

ing area, before and during the CS. Kendall’s tau rank correlation test

was used to test whether swimming speed and number of fish in the

feeding area before and during the CS were correlated with trial

number, for each treatment group separately. Change in swimming

speed from baseline to during the CS in each treatment group was

tested with paired t-test. Effect of treatment, number of dark individ-

uals and their interaction on the swimming speed before and during

the CS was tested with linear model (lm). As number of dark fish is

count data, effect of treatment, trial and their interaction on the num-

ber of dark fish in the tank was tested with generalized linear model

(glm) for Poisson distribution. Also, the effect of number of dark indi-

viduals in the tank on the number of fish in the feeding area before

and during the CS was tested with glm for Poisson distribution. All

statistical analyses were done with R software system Version 3.2.1

(Copyright 2015, The R Foundation for Statistical Computing, Vienna,

Austria), and the level of significance was set to 0.05.

3 | RESULTS

The number of fish in the feeding area before the CS did not differ

between the Conditioning and the Control groups (Welch two-sam-

ple t-test, t = 0.51, p > .1) and did not change over trials in neither

the Conditioning (Kendall’s tau rank correlation, tau = .066, p > .1)

nor the Control (tau = .022, p > .1) group (Figure 1a). Both treat-

ment groups showed initially a negative response to the CS light

flashes by fleeing from the feeding/CS area, but the strength of the

response declined with trial number for both groups and the number

of fish in the feeding area 10 s after the onset of the CS increased

with trial number in both the Conditioning (Kendall’s tau rank corre-

lation, tau = .68, p < .001) and Control (tau = .76, p < .001) groups

(Figure 1b). The number of fish in the feeding area during the CS

was significantly higher in the Conditioning group than in the Con-

trol (Welch two-sample t-test, t = 4.70, p < .001) group, especially

from around 10 trials onwards (Figure 1b). The Control group did

not reach baseline levels of presence in the feeding area during the

CS period (Figure 1). In contrast, although the Conditioning group

never clearly aggregated in the feeding area during the CS flashes,

the number of fish in the feeding area was slightly higher than base-

line level after approximately 16 trials onwards (Figure 1).

The baseline swimming speed was highly variable over the trials,

and did not differ between the treatment groups (Welch two-sample

t-test, t = 1.36, p > .1, Figure 2a). Both groups initially responded to

the CS flashes by decreased swimming speed to below baseline

levels (paired t-test; Conditioning group: t = 6.37, p < .001; Control

group: t = 7.34, p < .001, Figure 2). The Control group sustained the

reduced swimming speed during the CS flashes throughout the study

(Figure 2b), with no correlation between swimming speed during the

CS and trial number (Kendall’s tau rank correlation, tau = 0.11,

p > .1). In contrast, the swimming speed during the CS in the Condi-

tioning group increased with trial number (tau = .40, p < .001), and

eventually the swimming speed during the CS was similar to baseline

levels from around trial 16 (Figure 2). Comparing the treatment

groups during the CS, the swimming speed of the Conditioning

group was significantly higher than that of the Control group (Welch

two-sample t-test, t = 8.82, p < .001, Figure 2b). Although difficult

F IGURE 1 Mean � S.E. number of fish
present in CS/feeding area during the
course of the experiments at: (a) baseline
(10 s before the CS), and (b) 10 s into the
CS period. Open circles indicate Control
group, filled circles indicate Conditioning
group
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to quantify from the video observations, the anticipatory swimming

pattern of the Conditioning group became much more erratic during

the CS flashes compared to the baseline behaviour.

The number of individuals displaying vertical dark bands on their

body varied both between and within tanks, but dark fish were pre-

sent in all tanks in most trials (Figure 3). These fish mainly stayed

close to the tank bottom, maintained a slow swimming speed and

frequently performed mock charges towards fish near-by. There was

no effect (glm, Poisson distribution, p > .1) of trial number or proce-

dure, and no interaction effect, on the number of dark individuals

before the onset of the CS. There was, however, a positive effect of

number of dark individuals in the tank before the CS on the baseline

swimming speed (lm, p < .001, Figure 3a). No general effect of pro-

cedure was found (p > .1) although there was an interaction effect

of number of dark individuals and procedure (p < .05). In contrast,

during the CS no effect of number of dark individuals in the tank on

swimming speed was found (p > .1), and there was no interaction

effect, although there was an effect (p < .001) of procedure with fish

in the Conditioning group swimming faster than fish in the Control

group (Figure 3b). There was no effect of number of dark individuals

in the tank before the onset of the CS on number of fish in the

feeding area neither before (glm, Poisson distribution, p > .1) nor

during (p > .1) the CS.

4 | DISCUSSION

In both the Conditioning and Control groups, the reaction to the

light flashes changed markedly over time. Initially, sea bream in both

groups showed a fright reaction to the light flashes. However,

whereas the fish in the Control group habituated the initial response

of fleeing from the CS light flashes, they still responded by lower

swimming speed during the light flashes. Habituation is not neces-

sarily total, that is, the response may decline, but not towards zero

(Christoffersen, 1997), as earlier shown for salmon parr (Folkedal

et al., 2010; Madaro et al., 2016), and the persistent response could

reflect a prolonged alertness with a shift in attention in an otherwise

monotonous environment (Mendl, 1999). In the Conditioning group,

the interplay between aversive and reward stimuli gradually pro-

gressed to a quite different response, with no reduction in swimming

speed during the light flashes and attraction of fish to the feeding

area. The fish thus switched from fright to anticipation after reward

conditioning. This has previously been demonstrated in several spe-

cies, including Chinook salmon (Oncorhynchus tshawytscha) (Schreck,

Johnson, Feist & Reno, 1995), Atlantic salmon (Bratland et al., 2010)

and Atlantic cod (Nilsson et al., 2012), but the discrepancy between

subtotal habituation of the behavioural response to a non-rewarded

stimulus versus anticipation when the very same stimulus signalled

F IGURE 2 Mean � S.E. swimming
speed (body lengths/s) at: (a) baseline (10 s
before the CS), and (b) 10 s into the CS
period. Open circles indicate Control
group, filled circles indicate Conditioning
group

F IGURE 3 Correlation between the
number of dark fish in the tank and
average swimming speed. (a) Average
baseline swimming speed (10 s before the
CS). The solid line shows the regression for
the Conditioning group: Swimming
speed = 0.175 dark fish + 0.917, and the
dashed line the regression for the Control
group: Swimming speed = 0.269 dark
fish + 0.576. (b) Average swimming speed
during the CS (10 s into the CS). Open
circles indicate Control group, filled circles
indicate Conditioning group
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reward is to our knowledge a novel finding. In cod, the swimming

speed response to a splashing dip net became totally habituated,

whereas the oxygen hyperconsumption response partly persisted,

suggesting that alertness towards the moving object indeed was sus-

tained (Nilsson et al., 2012). The method used in Nilsson et al.

(2012) did, however, not allow for a direct comparison of swimming

speed during the CS period between rewarded and non-rewarded

fish. The current study using gilthead sea bream does demonstrate a

large scope for catalyzing behavioural habituation by reward condi-

tioning, where the Control group did not habituate their swimming

speed response versus full habituation of the response in the Condi-

tioned group.

The weak positive CS response of fish aggregating in the feeding

area observed for the Conditioning group after around 16 trials sug-

gests associative learning. The fish were, however, relatively spread

in the tank both before and during the CS light flashes, and sea

bream did thus not show a strong or consistent response of moving

into the feeding area in response to the CS. This contrasts previous

observations in cod (Nilsson et al., 2008a,b) and salmon (Bratland

et al., 2010; Folkedal, Stien, et al., 2012; Folkedal, Torgersen, et al.,

2012). Furthermore, the lack of increased swimming speed above

baseline in the Conditioning group was unexpected, as this has been

observed during conventional and demand feeding (Andrew et al.,

2002), and during the hours before a daily meal in tanks (S�anchez

et al., 2009). We ascribe much of the lack in spatial responsiveness

to the small size of the tanks used; at any distance from the defined

feeding area, the fish could attack pellets shortly after arrival. With

regard to swimming speed, the food arrived in one tank corner, and

attacking the pellets was carried out in a “burst and stop” motion to

prevent crashing into the tank wall. A high swimming speed during

feeding may thus not be as efficient as within the vast volume of

sea cages (Andrew et al., 2002). The currently observed shift to an

erratic swimming pattern during the CS in the Conditioned group all

the same indicates search behaviour and food anticipation.

The observed variations in number of fish with dark vertical

bands between trials within the same tank suggest that this is a

highly flexible trait, in line with the findings of Papadakis et al.

(2016) describing territorial behaviour in gilthead sea bream in a sim-

ilar tank and social environment. The positive relationship found

between the number of dark territorial individuals and baseline

swimming speed suggests that the social hierarchy influenced the

whole group by increasing the general activity level. There was a

weak but significant interaction effect with a somewhat stronger

influence of dark individuals on swimming speed in the Control

group. Still, the general pattern that the presence of dark individuals

largely determines swimming speed was similar in both groups and

cannot solely be an effect of conditioning procedure. The number

and swimming speed of the fish in the feeding area during the CS

flashes was not related to the presence of dark individuals before

the onset of the CS, suggesting that the light stimulus overruled the

effect of territorial behaviour. Similarly, Papadakis et al. (2016)

reported minimal territorial behaviour during feeding compared to

before and after. This may explain why social hierarchies did not

influence the anticipatory behaviour as we predicted. However,

when social hierarchies have large effect on variation in baseline

behaviour as in the present study, differences between baseline

levels and CS levels may be more difficult to detect and anticipation

more challenging to quantify even if it is not reduced per se.

We have shown that sea bream like other investigated aquacul-

ture species can form an association between an initially aversive CS

and a food-US, as displayed by anticipatory behaviour. Based on the

relatively small changes in behaviour of fish in the small tanks in the

present set-up, it is difficult to conclude if anticipatory behaviour

could be used as an operative welfare indicator in sea bream. Studies

in larger rearing units should resolve this. The persistence of the

negative response to light flashes in sea bream not rewarded by

food could mean that fish even seemingly adapted to repetitive

stressors in aquaculture are still in a state of prolonged alertness.

The difference between the Conditioning and the Control groups in

habituation to the flashing light shows the potential for positive

stress conditioning in aquaculture, boosting adaptation by pairing

stressors with reward.
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