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ABSTRACT: High salmon lice density is a threat to wild and farmed salmonid fish in Norway.
To assess and identify areas for high salmon lice infestation pressure, continuous monitoring is
necessary. The national Norwegian salmon lice monitoring program has until now been based on
sampling and counting of salmon lice on wild salmonids and smolts in sentinel cages. The number
of lice eggs hatched into the water masses, the relatively long-lasting pelagic life stages and the
high spatiotemporal variability of the ocean currents all have a major influence on the local infesta-
tion pressure. Thus, a new monitoring system including a numerical ocean model with high
temporal and spatial resolution has been established. The plan is that the model will complement,
direct or replace parts of the logistically demanding and costly field-based monitoring program. In
this study, we evaluate the model's ability to realistically simulate the spread and density of pelagic
salmon lice. Results from a 4 yr model run are presented, and the simulated density compared to the
mean abundance on smolts in sentinel cages. The comparison demonstrates that the modeled
salmon lice density corresponds well with the observational data. Within a slight shift in space, the
model matches the observed lice infestation class values in 78 % of the cases. Using the modeled
lice density, a binary forecast system is proposed to predict areas of elevated lice infestation pres-
sure. For the 2015 test case, the prediction system is correct (elevated/non-elevated) in 32 of 36
cases (89 %).
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INTRODUCTION

In Norway and worldwide, salmon farming has
been a rapidly expanding industry for the last
decades (Taranger et al. 2015). One of the largest
challenges within this industry is Lepeophtheirus
salmonis (Kreoyer, 1837) epidemics (Costello 2006,
2009, Jansen et al. 2012, Torrissen et al. 2013), named
salmon lice. Due to the high number of farmed fish
(mainly Atlantic salmon) in intensively farmed areas,
the density of infective lice larvae can reach severe
levels on both farmed and especially wild salmonids
(e.g. Jansen et al. 2012, Middlemas et al. 2013, Serra-
Llinares et al. 2014, 2016). In Norway, salmon lice
epidemics have increased in severity the last few
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years. During the 1990s, the aquaculture industry
was able to keep lice infestations on low levels as
reliable delousing treatments were developed. How-
ever, reliance on too few chemical therapeutics has
led to resistance (e.g. Jones et al. 1992, Denholm et
al. 2002, Helgesen et al. 2015) to such an extent that
forced slaughtering now is being used as last combat
tool against resistant and multi-resistant lice (Nor-
wegian Food Safety Authority, www.mattilsynet.no).
Furthermore, annual lice epidemics are assumed to
reduce populations of wild salmonids in large geo-
graphical areas (Skilbrei et al. 2013, Taranger et al.
2015, Thorstad et al. 2015, Vollset et al. 2014, 2015,
Anonymous 2016) and are limiting Norway's ability
to fulfill its responsibility for the conservation of wild
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salmon stocks (the Convention for the Conservation
of Salmon in the North Atlantic Ocean, 1982, www.
nasco.int/convention.html and the law of nature bio-
diversity §8).

To prioritize nature management, decision-makers
want high-resolution monitoring information that is
quantitative, sufficiently precise, easy to evaluate
and cost-effective to gather (Helland et al. 2015). The
national salmon lice monitoring program (Taranger
et al. 2015) is based on sampling and assessment of
salmon lice intensity on wild salmonids at standard
monitoring localities all along the coastline. The pro-
gram is logistically demanding, methodologically dif-
ficult, costly and gives only information from a few
single fjord systems along a long coastline scattered
with salmon farms and important wild stocks of
salmonids (Kristoffersen et al. 2014, Taranger et al.
2015). Consequently, a change in the monitoring,
advisory and management system for lice has been
proposed (Taranger et al. 2012), partly initiated since
2013 (Svasand et al. 2015, Taranger et al. 2015) and
recently also adopted and further developed by the
Norwegian government and Parliament (Anonymous
2015).

An important part of the new system will be a com-
bination of operational models that quantifies the
number of infective salmon lice. The idea behind
such a model system is that the total number of
pelagic lice larvae hatched and released into the
environment is calculated from data on the total
number of adult female lice, the number of fish and
the temperature reported by all active salmon farms
in Norway (see Jansen et al. 2012 and formula given
by Stien et al. 2005 for details). Then, the spatiotem-
poral amount of pelagic lice is modeled based on a
state-of-the-art hydrodynamic model (Warner et al.
2005, Haidvogel et al. 2008, Albretsen et al. 2011,
Lien et al. 2014) coupled to a particle tracking model,
capable of simulating pelagic salmon lice behavior
(Asplin et al. 2004, 2011, 2014, Johnsen et al. 2014).
Finally, the model results will be used to identify
areas of elevated salmon lice infestation pressure
and, in combination with observational field data,
provide the knowledge base for preparing advice to
the management authorities about lice infestation
pressure and carrying capacity of wild fish stocks in
the different fjords and coastal areas (Svasand et al.
2015, Taranger et al. 2015). A thorough validation of
the results from such a salmon lice model system is a
prerequisite to establishing its utility value.

Validation of such a model system is not straight for-
ward. First, because it is difficult to measure abun-
dance of salmon lice copepodids directly in the water

masses (Gillibrand & Willis 2007, Penston et al. 2008,
Penston & Davies 2009), indirect measurements of
newly attached lice on salmon smolts were used. Sec-
ond, we must define a relationship between the num-
ber of lice in the water (as calculated by the model)
and the lice on the fish (as observed). Here, we
assume that the second (response) is proportional to
the first (dose) through a linear relationship. Finally,
we have to consider how to compare discrete, coarse-
resolution point measurements in nature with high-
resolution gridded values from a numerical model.
This is not straightforward (Ebert 2008), and validation
of model results and its challenges has therefore been
subject to numerous studies both in traditional fore-
casting of weather and climate as well as in other
disciplines like medical diagnostics, economics and
biology. For our present exercise, a 4 yr monitoring
data set of lice abundance on hatchery-reared smolt
in sentinel cages in the Hardangerfjord (Asplin et al.
2011, Bjorn et al. 2011) will constitute the foundation
for our conclusions on the quality of the model results.
A number of studies have shown that ‘particles’ trans-
ported in the ocean rarely constitute smooth continu-
ous fields but rather establish patchy patterns with
strong gradients, increasing the difficulty of compari-
son (Mackas et al. 1985), and this is also the case
in our study (e.g. Johnsen et al. 2016). Therefore, we
have taken advantage of the comprehensive experi-
ence of newer model verification methods established
in atmospheric science, where e.g. precipitation and
cloud cover also are characterized by high spatio-
temporal variability. A comprehensive overview and
discussion of different approaches can be found in
e.g. Jolliffe & Stephenson (2003).

In the present study, we first carefully describe the
method of comparison between point measurements
and model-estimated salmon lice densities. Then, the
characteristics of, and between, the modeled dose
and the observed response are discussed. Further,
the 2 data sets are classified in relation to infestation
level (low, moderate, medium and high), and differ-
ent score measurements are discussed in the view of
the variability of neighboring points (3 x 3). The final
goal is to use the model to predict potential areas of
high lice pressure, and the validation is only the first
step to check the appropriateness of the model as a
forecast tool. Therefore, the result section ends with
an example of how the model can be used to develop
a binary forecast system for areas of elevated lice
infestation pressure. The new management and fore-
casting system is general; thus, the findings can be
transformed to other areas along the Norwegian
coast.
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MATERIALS AND METHODS
Study area

The long and branched Hardangerfjord is located
in western Norway, south of Bergen (Fig. 1). It
stretches 179 km from the coast into the mountainous
interior of Norway. The sill depth is ~170 m, and the
fjord has several deep basins with a maximum depth
of ~850 m. Because the Hardangerfjord system con-
sists of a number of large and small fjord arms and
has several connections to the open sea, the current
pattern is relatively complicated with large spatial
and temporal variability. A detailed description of the
fjord physics (currents, temperature and salinity) can
be found in Asplin et al. (2014) and Johnsen et al.
(2014).

Aquaculture production and number of hatched
salmon lice eggs

There are ~100 aquaculture farms (red dots shown
in Fig. 1) in the Hardangerfjord system, producing
~80000 t of salmon annually (www.fiskeridirektoratet.
no). All salmon farms in the Hardangerfjord system
are included in a salmon lice management plan, with
the aim of coordinating a synchronized fallowing of
farms. Following a prescribed plan, all farms within a

fallowing area were simultaneously emptied for
4 wk every second year (see FOR-2010-07-14-1123,
www.lovdata.no for details in the regulations). For all
active aquaculture farms in the study area (Fig. 1),
the following data were collected for the years 2012
to 2015: number of farmed fish, average number of
mature female lice per fish and water temperature
at 3 m depth, based on monthly reports from the
farmers to the Norwegian Directorate of Fisheries
(NDF, www.fiskeridir.no) and weekly reports to the
National Food Safety Agency (NFSA, www.mattil-
synet.no). The average daily louse egg hatch on each
farm was calculated according to Stien et al. (2005) as
a function of the number of fish in the farm, the aver-
age number of adult female lice per fish and the
water temperature. The quality of these estimates
might suffer from both the coarse and imprecise time
resolution, as well as the uncertainty in the lice
counts and the temperature, which is taken from only
1 depth in the cages.

Hydrodynamic model forcing

Currents and hydrography are provided by the
ocean model system NorKyst800 (Albretsen et al.
2011), based on the Regional Ocean Modeling
System (ROMS, www.myroms.org; Shchepetkin &
McWilliams 2005, Haidvogel et al. 2008). The hori-
zontal quadratic grid cell size is 800 x
800 m, and realistic forcing of the ocean

model from atmosphere, tides and rivers
are included as described by Asplin et al.
(2014) and Johnsen et al. (2014). The
model results consist of hourly values of
3-dimensional currents, salinity and tem-
perature and serve as input to the salmon
lice dispersion model. Comparisons be-
tween modeled and measured currents in
the Hardangerfjord show that the numeri-
cal model is able to reproduce the ob-
served currents (Johnsen et al. 2014).

Salmon lice dispersion model

The salmon lice advection and growth
model is based on the Lagrangian Advec-
tion and Diffusion Model (LADIM) (Ad-
landsvik & Sundby 1994). To mimic the 3

Fig. 1. Hardangerfjord and positions of the numbered sentinel cages.
Red dots indicate the positions of all salmon farms in the area

planktonic salmon louse stages (the 2 non-
infective nauplius I and II and the infective
copepodid), the particles are given a verti-
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cal behavior where they swim downward to avoid
low-salinity water and up towards surface light as
described by Johnsen at al. (2014). Horizontally, they
passively drift with the currents (Asplin et al. 2014,
Johnsen et al. 2014). The growth of the individual
louse is temperature-dependent and is parameter-
ized as a function of degree days. Following Samsing
et al. (2016), we assume the infective copepodid
stage to be between 40 and 170 degree days. The lice
mortality is assumed to be constant in time and space
at 17 % per day (Stien et al. 2005). The model output
consists of hourly fields of spatial distribution and
density of salmon lice copepodids in the sea.

Observation by sentinel cages

Sentinel cages stocked with hatchery-reared Atlan-
tic salmon smolts were used to gather independent
observational data of salmon lice infestation pres-
sure in different parts of the Hardangerfjord system
(Fig. 1). During a 4 yr (2012-2015) study period, 18
sentinel cages (diameter 0.8 m, height 0.9 m, covered
with a knotless mesh 1 x 1 cm) were deployed
annually at 0.5 m depth at fixed locations along the
fjord. The methodology for the mooring system is
described by Bjern et al. (2011) and has also been
used in Scotland (Pert 2011, Salama et al. 2013, Pert
et al. 2014). Two consecutive trials were performed in
2012 and 2013 and 3 trials in 2014 and 2015 (Table 1).
In each trial, 30 salmon smolts were placed in each of
the sentinel cages and kept at sea for ~3 (or 2) wk at
a time, after which all fish were gently removed from
the cages, euthanized by an overdose of anesthetic
(MS-222), placed in individual plastic bags and kept
on ice until inspected for lice at the laboratory within
the following 48 h. In the laboratory, the salmon lice
were identified and counted on a morphological
basis according to Johnson & Albright (1991), Schram
(1993) and recently also Hamre et al. (2013). In the
following, we have used the mean abundance,
defined as total number of lice divided by the total
number of fish, as a measure of the infestation level

Table 1. Time periods (d/mo) for sentinel cages deployed in
the Hardangerfjord 2012-2015

Year Period 1 (P1) Period 2 (P2) Period (P3)
2012 8/5-29/5 29/5-20/6 -
2013 13/5-5/6 5/6-26/6 -
2014 8/5-22/5 22/5-5/6 5/6-21/6
2015 12/5-27/5 27/5-9/6 9/6-23/6

in the cage. Due to the uncertainty of the observa-
tional date of the reported numbers of fish and lice
per fish (to NDF and NFSA), we consider a trial
length of 2 wk to be too short. In the analysis, we
therefore combine the 2 last trial periods in 2014 and
2015.

Score measurements

For discontinuous fields with high spatiotemporal
variability and a skewed distribution, commonly
used measures such as root mean square error and
correlation coefficients can give poor scores even if
both intensity and area extent are correct but are
slightly displaced in space and/or time. For skewed
distributions, extreme values will have undue influ-
ence on the values of standard measurements.

For multi-categorical data series that are not nor-
mally distributed, the probability of detection (POD),
more commonly called the hit rate (H) for data series
with only 2 categories, is a robust and well-suited
estimate of the forecast skill (Wilks 1995). POD is
defined as the number of events correctly forecasted
divided by the total number of events. H for a random
binary forecast (categorical forecast with only 2 cate-
gories which, for example, is the case if we only con-
sider the risk of copepodid density above a given
threshold) can take any value between 0 and 1 and
should thus be combined with the false alarm rate, F
(defined as the number of events predicted but not
confirmed by observations, divided by the total
number of events predicted), to give an estimate of
the quality of the forecast. For a forecast without skill,
H will be equal to F.

Another common way to quantify the quality of the
model prediction is to define a score index where the
skill of the forecast is compared to the skill of a refer-
ence forecast. The reference can for example be a
climatology (mean over several years), persistence
or a randomization of the data. Such a skill score can
be defined as follows:

Skill score = (POD - P’()Dreference)/(:l - PODreference) (1)

which is zero for a reference forecast, 1 for a perfect
forecast, positive for a forecast that is more skillful
than the reference and negative for a forecast that is
less skillful than the reference. In the present work,
the reference forecast is estimated by persistence
and randomization of the data.

The relative operating characteristic (ROC) is a
graph of H against Ffor different decision thresholds
(Mason 2003). Assuming a binary forecast system,
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the ROC is a pure index of accuracy that gives quan-
titative estimates of the probabilities of forecast out-
comes for any decision threshold that the system
might use, and the tradeoffs between these probabil-
ities as the decision threshold varies. An empirical
ROC can be plotted from forecasts of elevated den-
sity by stepping through different forecast systems,
each system generating a 2 x 2 contigency table and
values of Hand F (Mason 1982). For a forecast system
with zero skill, H = F, while in a perfect system, H=1
and F=0.

Comparison between measurements and simulated
data

The salmon lice data series is based on observa-
tions from 13 to 18 locations where sentinel cages
were deployed in 2 or 3 periods every summer for 4
yr. Locations where the cage was not deployed or
where there were technical problems with the cage
are shown as empty circles in the maps. Cage 12
(Fig. 1) was located in a fjord arm too narrow for the
800 m model and was consequently omitted. The
final data series constitutes 122 registrations. Al-
though this is a rather extensive dataset considering
the time and resources spent, the cage network is not
dense enough to completely describe the temporal
and spatial variability of copepodid density. The ob-
servations from the sentinel cages are assumed to
represent the sea lice density in the upper 2 m; there-
fore, the model output was vertically integrated
over this interval. There are some experimental data

showing how environmental factors affect the rela-
tionship between salmon lice pressure (dose = cope-
podid density in the water) and the number of lice on
a fish (response). However, a robust relationship is
not yet established, and as a first approximation, we
therefore assume that it is linear. The mean salmon
lice abundance found from the cage data is thus be-
lieved to be representative of the density of salmon
lice present in the water, integrated over the deploy-
ment time of the cage. To compute the time-integrated
salmon lice density from the model, we have first
made daily means from hourly lice densities and then
integrated over the relevant time periods (Table 1) in
each grid cell. Finally, we divided the concentration
by the model grid size to represent the density of
infective copepodids per square meter.

As a first approximation, we are seeking a linear
connection between modeled salmon lice copepod
density and lice count in the cages. The factor is
unknown and may vary in time and space. Here, the
model results were scaled by the ratio between the
annual mean value of the observed abundances and
the mean value of the modeled output in 3 x 3 grid
cells around each cage, thus removing the bias.
These scaling factors are 2.9, 1.2, 1.3 and 2.8 for
years 2012 to 2015, respectively.

Ocean-transported particles have a patchy dis-
tribution (Martin 2003 and references therein). An
example of the spatial and temporal variability in the
present study is illustrated in Fig. 2, where the day-
to-day variation of the number of salmon lice in 25
grid cells surrounding the position of Cage 11 is
shown. Within 1 wk, the variability can go from
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Fig. 2. Day-to-day variation of modeled salmon lice densities (integrated over the upper 2 m) in the 25 grid cells surrounding

the position of Cage 11 (25 blue dots each day). This illustrates the patchy nature of the densities. For example, the sea lice

density varies from 0.1 to 6 lice m~2 on Day 75 (14 June 2012), while the range the day before and after is <2 lice m™2. Each grid
cell covers 640 000 m?; thus, the range is 64 000 to 3 840 000 lice per cell
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Table 2. Spearman rho rank correlation (RHO) between lice counts from sentinel cages (lice per fish) and modeled lice density
in corresponding area (time-integrated lice m~2) and the probability of detection of infestation class (POD). 9/25 grid cell:
model results for 9 (3 x 3) or 25 ( 5 x 5) neighboring points

Measure Original forecast, at grid cell Nearest 9/25 grid cell Mean 9/25 grid cell Median 9/25 grid cell Max 9/25
RHO 0.68 0.88/0.91 0.71/0.73 0.72/0.74 0.66/0.66
POD 0.57 0.78/0.81 0.57/0.56 0.55/0.54 0.43/0.41

almost zero (Day 68) to >6 lice m™2 (Day 75, 14 June).
The presented variability can be explained by fluc-
tuations in the velocity field as presented by Asplin
et al. (2014).

A point-to-point comparison of model and observa-
tion is not straightforward in a patchy field. The prob-
lem is well known in meteorology, where so-called
neighborhood or fuzzy verification methods are used
to evaluate the fit between observations and predic-
tions when traditional methods fail to quantify the in-
creased quality of the forecast (Ebert 2008, Roberts &
Lean 2008). In such methods, the skill of the model
can be evaluated using neighboring points, instead of
a traditional point-to-point comparison. Because the
main objective of the present work is to examine
whether the model is able to reproduce the observed
lice distribution and thereby potentially serve as the
core in a future forecast system, we have used this
idea and checked for the model value in the 9 (3 x 3)
and/or 25 (5 x 5) grid cell area centered at the position
(latitude and longitude) for each single cage with
numerical value closest to the observed value. Our
approach by choosing the best fit is similar to the
‘Multi-event contingency table’ principle proposed by
Atger (2001). The model output based on this method
was used as the baseline data series and is shown in
the figures. For comparison, we have also assessed
the modeled mean, median and maximum over 9 or
25 grid cells centered at the position in addition to the
traditional point-by-point comparison. These results
are listed in Table 2. Based on extensive experience
and field observations on lice abundance in hatchery-
reared and sentinel-caged smolts over several years
and large areas along the coastline (Asplin et al. 2011,
Bjorn et al. 2011, 2012, 2013, Nilsen et al. 2014,
Karlsen et al. 2015, Svasand et al. 2016), the sentinel
cage infestation can be classified as low (0-1 louse
per fish), moderate (1-5 lice per fish), medium (5-10
lice per fish) and high (>10 lice per fish), as listed in
Table 3. The 2 data series were transformed to these
infestation classes, and the categorical model skill
was estimated. The transformation to infestation
classes might also be more interesting than the mean
abundance in an assessment framework.

Table 3. Classification of sea lice abundance counted on fish
from sentinel cages (lice per fish) and estimated with the
model (lice m™?)

Infestation level Number of lice

Low 0-1
Moderate 1-5
Medium 5-10
High >10

RESULTS

Modeled lice density versus observed lice
abundance (absolute values)

From the spatially integrated daily number of
hatched eggs presented in Fig. 3, it is likely that
there will be higher lice densities in June than in
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Fig. 3. Temporal evolution of the total number of salmon lice
eggs hatched into the Hardangerfjord region (defined from
59 to 60.6° N) water masses from April to July, 2012-2015.
The numbers from individual farms were computed based
on the number of fish in the farm, the average number of
adult female lice per fish and the water temperature, as re-
ported by the fish farmers (Stien et al. 2005). Sentinel cages
were deployed from earliest 8 May to latest 26 June (specific
time periods are listed in Table 1)
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corresponding to the deployment of sentinel cages
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in 2012 to the last period in 2015

May (except possibly in 2015) and large inter-annual
variability. However, both the data from the sentinel
cages and the model results show a far more compli-
cated pattern (Figs. 2, 4, & 5). This can partly be
explained by fallowing and by the large inter-annual
and spatial variability in egg release numbers from
individual farms.

Fig. 4 shows the spatial pattern in the observed lice
abundance and modeled lice density. The overall
impression is that the similarity is strong, with coin-
ciding high, medium, moderate and low levels of
abundance. The simulation for 2012 showed low
levels in the first period (not shown) and high levels
in the outer part in the second period, as observed
(Fig. 4). However, the model did not reproduce the
medium-high observed abundance in the middle
part (around Varaldsey, see Fig. 1) in the second
period. For 2013, the modeled lice densities were in
agreement with the cage observations in both peri-
ods: low levels in the first period (not shown), moder-
ate to medium levels in the middle part of the fjord
and low levels in the southern part in the second
period (Fig. 4). The 2014 simulation was in agree-
ment with the observations of high levels in the outer
part of the fjord and low levels in the inner part. The
model also reproduced the overall observed lice dis-
tribution in 2015, with high levels in the main part of
the fjord and low levels in the southern part, except
for the high lice levels observed in the fjord mouth.

Fig. 5 shows a comparison between the observed
number of lice per fish (cage data) and the modeled
number of lice m™ (baseline data series, best fit
within 3 x 3 cells). The co-variation between the 2
data series is high, and the Spearman rho rank

correlation coefficient is estimated as 0.88 (Table 2)
with a p-value equal to 107!® for the baseline data
series. Despite the high ranked correlation for the
other presented model data series, the distribution
of the model estimated density is skewed and long
tailed; thus, simple statistics like the mean, median
and maximum values will give a poor representation
of the elevated infestation pressure. The mean and
median values never exceed 9 lice m™2 and thus
always fail to reproduce the lice densities at the posi-
tions with highest observed values. In contrast, the
standard deviation can be large, and around some of
the cages, the maximum value is far above the
median value, thus preventing high correlation with
the observations, as seen in Table 2. Despite the high
correlation between the model baseline and the ob-
servations, we still lack an objective criterion for
how to select among the grid cells surrounding the
sentinel cage.

Salmon lice infestation classes

A frequency plot of the cage and model data sorted
in infestation classes are shown in Fig. 6. The model
fits well with the skewed distribution in the observa-
tions, where ~90 of the observations (of 122) were
considered to have small to moderate lice numbers
(Classes 1 and 2), while only 17 (14 in the model) had
abundance values above the assumed wild smolt
(Class 4) critical level of >10 lice per fish (e.g. Holst et
al. 2003, Finstad & Bjern 2011).

To also include the spatial and temporal dimension,
the observations and model results were system-
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Fig. 6. Frequency plot (number per class, of total 122) of ob-

servations (colored bars) and model results (black lines) of

sea lice abundance, 2012-2015. Numbers above bars show

the difference between observations and model. Ranges in

parentheses are the number of lice per fish in the different
categories (see Table 3)

atized as seen in Fig. 7, where the number of coincid-
ing observations and model results of each infesta-
tion class can be read vertically and horizontally
respectively. Summarizing along the diagonal, 95 of
the model data points were in the same infestation
class as the observations. In total, 22 of the model
estimates were underestimated by 1 infestation class
(summarizing along the dashed lines), 4 model esti-
mates were underestimated by 2 infestation classes,
1 was overestimated by 2 infestation classes, while
none were estimated to be >2 classes off.

The probability of detection (POD) was 0.78 (95 of
122) if we only include the perfect hits. This number
is obviously not independent of the number of cate-
gories and the category intervals, and there will also
be a question of how serious it is to miss by 1 or even
2 classes. Therefore, it is not uncommon to compute
PODs where the events that were under- and over-
estimated with 1 or 2 classes are weighted by for
instance 0.75 and 0.5, thus increasing the POD to
0.93. For reference, and to better illustrate the model
skill, one can assume all 122 model predictions to
be in infestation Class 1 (0-1 lice). This assumption
gives 46 hits, with POD,.; equal to 0.37 and a skill
score of 0.66. Alternatively, we may use randomiza-
tion to find the reference POD. Following the proce-
dure described by Burrows (1991), we find a POD,
equal to 0.40 and a skill score of 0.67. By randomly
permuting the sequence of cage data 10000 times
and calculating the PODs by the method of best fit in
a 3 x 3 neighborhood, we obtain the green histogram

Observed copepodid abundance class

ok ; il i i
0 1 2 3 4 5
Normalized model-integrated copepodid class

Fig. 7. Hits between observed and modeled infestation

classes (total = 122). Summarizing horizontally and vertically

gives the total number of observations and model results in

each class, respectively. Diagonal shows the number of co-

inciding infestation classes. Solid, dashed and dotted lines

parallel to the diagonal show the numbers where the model
is 1, 2 and 3 classes off the observations, respectively
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Fig. 8. Distribution of 10000 probability of detection (POD)
values obtained by rearranging the cage data (black line in
Fig. 6) in an arbitrary order, using the best fit model series
(in 3 x 3 grid cell neighborhood) and rescaling so that
the mean matches the mean from the cages. Green: total
permutations. Blue: permutations handling the first and sec-
ond period separately. Red line: POD of the unperturbed/
baseline series

in Fig. 8. The mean POD is 0.46 with a standard devi-
ation of 0.04. With this as a reference and counting
perfect matches along the diagonal, the skill score
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Fig. 9. Modelled forecast of areas of elevated lice pressure. Period 1, 12-27 May 2015 (left) and Period 2, 27 May to 23 June
2015 (right)

(Eq. 1) is 0.59. There is a seasonal tendency of higher
values both in the model and cage data in the second
period. Taking this into account by permuting the 2
periods separately, we obtain the higher PODs shown
in the blue histogram in Fig. 8. Here, the mean is 0.54,
and the standard deviation is 0.04. With respect to
this higher reference POD, the skill is reduced to 0.52.

All these 3 reference forecasts show that the sal-
mon lice density predicted with the model is far from
random. It is worth noting that, as pointed out by
Barnston (1992), the skill score will depend on the
number of categories (increasing with decreasing
number) and further decreases with the skewness of
the data sample. For salmon lice monitoring, models
must first and foremost be precise enough to forecast
when and where infestation pressure rises to elevated
levels. The POD for the subset of the data where the
observations is within the highest infestation class
(Class 4) was estimated as 0.76 (13 of 17; 4 of the
observations are not predicted), and the false alarm
rate is 0.08 (1 of 14).

As stated before, an important part of the new
management system will be models that quantify the
number of infective salmon lice for all regions and
times, to point out areas of elevated salmon lice infes-
tation pressure (Taranger et al. 2015, Svéasand et al.
2015). Taking into account the need for an appro-
priate scaling and the patchiness of the copepodid
fields, we sought a binary forecast to predict areas of
high lice density. An empirical relative operating
characteristic (ROC) was used, varying the observed
lice abundance to separate only between high and
low levels. The different thresholds were taken by

varying the high/low threshold in the modeled field
and the proportion of grid cells (3 x 3) at each cage
location with modeled high lice density. Using the
2012-2014 observations and the corresponding model
fields, H and F were computed for all thresholds. A
number of sub-optimal (H < 1, F =2 0) solutions were
found. These were used to predict the lice densities
in 2015 and validated against the cage observations
(high/low) that year. Setting 10 lice per fish as the
limit between observed high and low lice abun-
dance, using 1.5 lice m~2 as the threshold for modeled
lice density and a modeled high level proportion of
80% in each 3 x 3 cell, the forecasted areas of ele-
vated lice densities for Periods 1 and 2 in 2015 are
shown in Fig. 9. Comparing with the observed cage
abundances, H=0.66, F=0.04, and POD = 0.89 in the
model prediction for 2015.

DISCUSSION

A model system combining a hydrodynamic cir-
culation model and a particle tracking model was
used to simulate the spatiotemporal distribution of
infective salmon lice in the Hardangerfjord. The
aim was to establish a validation method and to test
the model results against point measurements in a
more detailed manner than previously (Asplin et al.
2014, Johnsen et al. 2016). Further, the first approxi-
mation of a quantitative relation between model
estimated densities of salmon lice copepodids (the
dose) and infestation on salmonid fish (the response)
was tested.
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Field experience from the salmon lice monitoring
program (e.g. Bjorn et al. 2011, Svasand et al. 2016)
was used to define 4 classes of salmon lice abun-
dance: low (Class 1), moderate (Class 2), medium
(Class 3) and high (Class 4). A comparison against
outputs from the hydrodynamic salmon lice disper-
sion model system showed that 78 % of the modeled
data points coincided classwise with the observa-
tions, and only 3% of the data points were 2 classes
off. From this, we concluded that the hydrodynamic
salmon lice dispersion model system is able to esti-
mate the spatiotemporal distribution and densities of
salmon lice copepodids in the Hardangerfjord and
serve as a core component when assessing region-
ally elevated infestation pressure from salmon lice.
Further, a binary forecast system was proposed and
tested on the 2015 distributions. When including
only 2 classes (elevated/non-elevated), the predic-
tion system was correct in 32 of 36 cases (89 %).

The difference in spatiotemporal scale between
model and observations is a challenge when using
a traditional validation metrics (Table 2). However,
using a newer neighboring verification method (Ebert
2008), it was possible to demonstrate the potential of
the model in the sense that the observed infestation
levels are a possible projection from the model within
a slight shift in space. The results are in accordance
with the findings of Johnsen et al. (2016), who tested
the model system in a northern Norwegian fjord
system (the Folda fjord system). The main finding in
their paper was that the simulated densities of infec-
tive salmon lice varied in synchronization with lice
infestations observed on wild sea trout. Furthermore,
in areas where the lice counts on wild sea trout
showed high numbers, the model simulated high
densities of copepodids in the water, and vice versa.

Earlier studies on this topic in Scotland, Canada
and Norway have mainly been restricted to idealized
assumptions in =1 parts of the model system, such as
a lack of realistic numbers of hatched eggs from the
salmon farms, idealized wind forcing and freshwater
input or simplification of lateral boundary conditions.
Despite the simplifications made in these earlier stud-
ies, they provided valuable knowledge about salmon
lice dispersion because they illustrated and explained
the potential spatiotemporal variation in the infesta-
tion pressure, discussed the sensitivity to crucial
parameters, e.g. vertical distribution, and described a
correspondence between model results and observa-
tions (Asplin et al. 2011, Stucchi et al. 2011, Adams et
al. 2012, Salama et al. 2013, 2016, Johnsen et al. 2014).

Salama et al. (2013) compared model predictions of
lice densities to lice sampled by both planktonic

trawls and settlement on sentinel caged fish in Scot-
land. Due to the lack of data on hatched egg releases
in their study, the number of particles from each farm
was scaled by biomass only, and the ranks of abun-
dance were compared. In our system, a special
focus has been on computing realistic numbers of
hatched salmon lice eggs from each farm. In both
Salama et al. (2013) and the present study, the lice
infections observed in the sentinel cages were non-
homogenously distributed, the numerical models were
successfully able to differentiate between high and
low infective areas, and the ranked correlations were
high. In addition, the quantitative comparison in the
present study demonstrates that, where we earlier
lacked a quantitative relationship between the model
results and the observations (Asplin et al. 2011,
Johnsen et al. 2014, Karlsen et al. 2015), this relation-
ship is now established.

When comparing models and observations, it is
important to point out that the conclusion on the
value of the model result implies that the object to be
studied can be perfectly observed. This is not the
case here. Available in situ measurements of salmon
lice and its early life stages as nauplii and copepodids
in fjord and coastal water outside sea farms are hard
to obtain and quite limited (Penston et al. 2004, 2008,
Penston & Davies 2009, Nolan et al. 2001, McBeath et
al. 2006, Salama et al. 2016). In situ measurements of
salmon lice have shown increased densities of larvae
in the water column with decreasing distance from
salmon farms as well as evidence of a correlation
between abundance of larvae in the water column
and the number of mature salmon lice in nearby
farms (Gillibrand & Willis 2007, Penston & Davies
2009), but they represent snap-shots of the envi-
ronment and are not in operational use. In contrast,
indirect measurements of salmon lice abundance on
salmonids in sentinel cages enable continuous sam-
pling (Asplin et al. 2011, Bjorn et al. 2011, Karlsen et
al. 2015). Despite the fact that the quality of the indi-
rect measurements can be influenced by biofouling
on the sentinel cages, the quality of the smolt, the
handling of the fish and the counting of the lice, these
data were considered to be the best available and
were therefore used for the model result validation.
The measurement method with settlement of salmon
lice on smolt has been used in salmon farming areas
in Ireland, Scotland and Norway (Asplin et al. 2011,
Bjorn et al. 2011, Pert et al. 2014). The model results,
representing the infective dose, are thus compared to
the response on the smolt. In our study, we assumed
that the infestation levels (abundance) found on the
smolt are linked to the modeled salmon lice densities
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through a linear relationship. Our results indicate
that this is a reasonable assumption and is also in
accordance with results of Johnsen et al. (2016).
Although it has been shown that factors like the age
of the lice, the water temperature, the current speed,
the light conditions, turbulence, the water salinity,
etc., influence the infestation process (Bricknell et al.
2006, Samsing et al. 2014), a complete understand-
ing is still not established. It would also have been
preferable to have an observational data set where
high infestation levels occurred more frequently than
in the present and with higher resolution in space to
confirm the modeled patchiness in lice abundance.
The first could have been obtained by making obser-
vations later in the summer, when the expected in-
festation level is higher than in May, but this would
have been out of phase with the migratory peak of
wild salmonids, which has been the scope of the
monitoring (e.g. Jensen 1968, Thorstad et al. 2015).
The patchiness seen in the model results is a natural
phenomenon for plankton in the sea (Omori & Ham-
ner 1982, Martin 2003 and references therein) and is
a result of the variable and turbulent currents.

The quality of the salmon lice dispersion model will
depend on several factors, such as (1) the quality of
the modeled currents, temperature and salinity,
which again depend on the quality of the model forc-
ing (e.g. winds, tides, ocean boundary conditions and
river runoff), (2) the formulation of the vertical
behavior of the planktonic lice in different life stages
and (3) the number of hatched lice nauplii as the
source term for the model. The 2 first factors are dis-
cussed in detail by Asplin et al. (2014) and Johnsen et
al. (2014). The authors discuss the mechanisms
behind the water transport and the spatiotemporal
variability of the environmental conditions in the
upper 50 m of the fjord. The conclusion was that there
is a reasonably good agreement between modeled
and observed currents, temperature and salinity
within the existing model framework. The lice be-
havior model is based on the best existing knowl-
edge. A sensitivity study by Johnsen et al. (2014) was
further used to improve the lice behavior part of the
model, and it is likely that this behaviour is realisti-
cally represented. However, more data on hatch rate,
survival and vertical positioning of planktonic lice in
temperature and turbulence gradients are needed for
further improvements. The source term for lice nau-
plii in the model is believed to be the most critical
issue for the quality of the dispersion model when
used in a quantitative way for assessment of lice
infestation pressure. High-quality reports from the
fish farmers are therefore of crucial importance, and

a more exact report on counting time (changing from
week/month number to the real date when the ob-
servation was taken) should be prioritized by the
authorities. It should also be considered whether
the choice of using the temperature at 3 m depth is
optimal. Finally, no information on wild and escaped
farmed salmon as sources for lice is available (Heuch
& Mo 2001). This source is believed to be of relative
little importance in the Hardangerfjord system, but
data should be added for completeness.

A shortcoming with the cage data, as used for
model validation, is their skewness and their low spa-
tiotemporal resolution compared to the model. In
addition, there are uncertainties due to within-cage
variability in the data, unknown predators or a non-
linearity in the relation between lice density and
infestation level (dose-response) as described above.
To remedy the first issue, a number of validation
exercises were combined from regional to cage scale.
On the cage scale, model results and observations
were compared through the Spearman ranked rho
correlation coefficient, POD and skill score. The
quality of the model was considered by estimating
the POD and the false alarm rate from the subset of
the data where the infestation pressure was high.

The procedure of selecting the best fit in a neigh-
borhood of the grid cell containing the cage requires
some investigation. Is it possible for a bad model to
gain high skill by using the 9 neighboring model
values and the knowledge of the observed value? To
examine this, the sequence of cages was randomized
repeatedly, and the unperturbed model results were
used to calculate a POD with the same selection
procedure. The results are presented in Fig. 8. The
green histogram is obtained by random perturba-
tions of the whole sequence, while the blue respects
the seasonal signal in that the permutations handles
the first and second period separately. The distribu-
tions look reasonably normally distributed with mean
PODs of 0.46 and 0.54 respectively, both with a stan-
dard deviation of 0.04. The vertical red line is the
POD = 0.78 from the model without randomization,
which is 6 and 8 standard deviations above the mean,
respectively. Thus, it is highly unlikely that the model
skill is an accidental consequence of the selection of
the best fit.

The validation exercise has shown the predicative
potential for the model, in the sense that the model is
able to reproduce the observed lice infestation pres-
sure within a slight shift in space. In an operational
setting, observations will not be available either for
scaling or to tell which model point to choose. There-
fore, the identified skills through the model valida-
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tion were brought forward in a binary prediction
model, where a sub-set of the observations was used
to optimize the scaling and interpretation of the mod-
eled lice distribution around each cage, before it was
used as a forecast tool to identify areas of elevated
lice infestation pressure and validated against the
remaining data set. In the forecast, there was 1 false
alarm (F = 0.04), while the model missed 3 of 9
observed high values (H = 0.66) in 2015. The false
alarm was for Cage 3 (inner fjord) in the first period.
In the observations, this false alarm overlaps with an
area of elevated (but not high) lice infestation level.
The 3 misses are for Cages 6, 7 (mid-fjord) and 14
(outer fjord) in Period 2. Cages 6 and 7 are very close
to the modeled area of elevated lice pressure, while
Cage 14 is in an area with low modeled lice pressure.
Given that no high lice infestation pressure exists in
the neighborhood of Cage 14, it is believed that this
alarm is missed due to a source outside the Hardan-
gerfjord. Even if the forecast tool points out the areas
for elevated salmon lice infestation pressure with
great skill (high H and a low F), more data should be
added in the analysis to develop an even more robust
prediction model. It is therefore important that the
time series of the sentinel cage-observed lice infesta-
tion is maintained in a consistent way.

Although we only have validated the model results
with observational data from the Hardangerfjord, the
model is generic, and there is reason to assume that
similar skill is achieved all along the Norwegian
coast. With the exception of narrow fjords, where the
800 m grid might be too coarse to resolve the flow
and hydrography properly, there is no variability in
the quality of the results from the hydrodynamic
model covering the entire Norwegian coast, nor are
there major differences in the numerical planktonic
lice vertical distribution along the coast (Johnsen et
al. 2016). It is also likely that the fish farmers are
equally good at reporting lice numbers all over in
Norway. Thus, we have established a model system
covering the entire Norwegian coastline, including a
quantitative relationship between the model results
(dose) and the observations (response) for future
management use.

A preliminary version of this system has been in
operation throughout the Norwegian coastline since
the spring of 2015 (Taranger et al. 2012, Anonymous
2015, Nilsen et al. 2016). Instead of monitoring
salmon lice intensity solely on wild salmonids at stan-
dard monitoring locations (Serra-Llinares et al. 2014,
2016, Taranger et al. 2015), the lice monitoring pro-
gram has included output from the hydrodynamic
lice dispersal model, as described in this work. The

emphasis has been on forecasting areas with high
density of copepodids during the periods of critical
smolt migration (spring, e.g. Thorstad et al. 2015) and
seawater feeding (early summer, e.g. Thorstad et al.
2015) for wild salmonids. Our new results (Fig. 9)
imply that the POD for detecting such areas of po-
tential elevated lice infestation pressure is 0.83.
Although more data from cages with high mean
abundance should have been available to make this
comparison even more robust, our results imply that
we are able to forecast these areas with relatively
high certainty. To ensure field confirmation of the
forecast model results, intensive sampling of wild fish
and environmental data (Helland et al. 2015) in both
elevated and control areas (Lindenmayer & Likens
2009) has been conducted (Nilsen et al. 2016). When
the objective is to cover the entire Norwegian coast,
a grid net with 800 x 800 m grid cells is the practical
limit considering the current computing capacity.
Hence, this resolution is also in operational use at the
meteorological institute in Norway (MET Norway).
Nevertheless, retrospective hydrodynamic modeling
with even higher model resolution (50-200 m) and
input data (Johnsen et al. 2016), when properly vali-
dated against wild fish data (R. M. Serra-Llinnares
pers. comm.), will provide the foundation for even
more precise advice in areas of elevated lice in-
festation pressure (Svdsand et al. 2015). Hence,
together with the flexibility in the prescribed model
system (Albretsen et al. 2011, Johnsen et al. 2016),
the national salmon lice monitoring program is well
suited to take the advantage of the increased super-
computing resources in the future. Altogether, the
predicted lice distribution from numerical models,
in combination with field data, will improve advice
on sustainable fish farming in production areas
(Adlandsvik 2015, Anonymous 2015) and provide
decision makers with robust and high-quality resolu-
tion advice. Because the model also can be used to
test scenarios of optimal farm localization, production
zones, fire brakes and control strategies (Svasand et
al. 2015), it can provide the foundation for a more
sustainable growth of the aquaculture industry in
Norway.
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